
Today in Physics 217: vector calculus in curvilinear coordinates

• Vector derivatives in curvilinear coordinate systems: 
spherical and cylindrical coordinates.

• The Dirac delta function.

• Divergence and curl, fields and potentials, and the 
Helmholtz theorem.

Homework 1 is due today. Upload it to your Box folder.

Homework 2 is on the course website; due next Tuesday.
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Curvilinear coordinates

Coordinate systems, which are probably all familiar to you but you’ll need to get back in practice:

• Cartesian coordinates: used to describe systems with rectilinear symmetry, and as the default for systems without any 
apparent symmetry.

• Curvilinear coordinates: used to describe systems with symmetry. We will often find spherical symmetry or axial 
symmetry in the problems we will do this semester, and will thus use

• Spherical coordinates

• Cylindrical coordinates

Both always displayed on Cartesian axes.

• There are other curvilinear coordinate systems (e.g. ellipsoidal) which have special virtues, but we won’t get to use 
them this semester.
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Spherical coordinates

The location of a point P can be defined by specifying the following 
three parameters:

• Radius r: distance of P from the origin.

• Polar angle θ: angle between the position vector of P and the z 
axis. (Like 90° – latitude.)

• Azimuthal angle φ: angle between the projection of the 
position vector P and the x axis. (Like longitude.)
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Spherical coordinates (continued)

• The Cartesian coordinates of P are related to the spherical coordinates 
by

as one can see easily by pondering the trigonometry of the diagram at 
right. 

• The unit vectors of spherical coordinate systems are not constant: 
their direction changes when the position of point P changes.
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Spherical coordinates (continued)

• In Cartesian coordinates, an infinitesimal displacement from point P is 
equal to

• In spherical coordinates, an infinitesimal displacement from point P is 
equal to

where     is parallel to r,     is perpendicular to    and lies in the r-z 
plane,      is perpendicular to this plane, and all point in the direction 
in which their corresponding coordinates increase.
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Example: transformation of unit vectors

Griffiths problem 1.38: Express the spherical-coordinate unit vectors in 
terms of the Cartesian ones.

The only difficulty with doing so is that the unit vectors are different at 
every point in space, so we study the geometry of very small 
displacements about the position vector r (at right):

• An infinitesimal displacement dr along r points in the direction that the 
radial unit vector must point. Using the chain rule, 

• This displacement has magnitude
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Example: transformation of unit vectors (continued)

• Thus the unit vector in the direction of dr is

• Polar angle next, following the same pattern, reusing the position vector r, 
and noting that we want the unit vector to point in the direction of 
increasing θ: away from the +z axis, as at right:
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Example: transformation of unit vectors (continued)

• And then azimuthal angle, again making sure the unit vector points in the 
direction of increasing φ: counterclockwise in the x-y plane:
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Spherical coordinates (continued)

• In a Cartesian coordinates, an infinitesimal volume element at point P 
has volume dτ given by

• In a spherical coordinates, an infinitesimal volume element at point P 
has
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Spherical coordinates (continued)

• In Cartesian coordinates, an infinitesimal area element on a (cardinal) 
plane through point P is

In spherical coordinates, the infinitesimal area element on a sphere 
through point P is
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Vector derivatives in spherical coordinates

What if you want to express a vector derivative in spherical coordinates? (Or someone asks you to, on an exam …)

• Start from the Cartesian-coordinate version, and first use the chain rule to transform the derivatives, e.g.

• Use the coordinate definitions to reduce the remaining derivatives and eliminate all Cartesian coordinates, e.g.

• Transform the unit vectors, as we did on pages 6-8.

• Then multiply the whole mess out and simplify. 

• This is tedious, and takes hours, but is instructive and highly recommended, even though it’s not on the homework 
explicitly. See also Appendix A in Griffiths.
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Vector derivatives in spherical coordinates (continued)

• The following operations will be encountered frequently enough that they’re even written on the inside front cover 
of Griffiths:
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Cylindrical coordinates

Spherical coordinates are useful mostly for spherically symmetric 
situations. In problems involving symmetry about just one axis 
(axisymmetry), cylindrical coordinates are used:

• The radius s: distance of P from the z axis.

• The azimuthal angle φ: angle between the projection onto the x-y 
plane of the position vector P and the x axis. Same as the spherical 
coordinate of the same name.

• The z coordinate: component of the position vector P along the z axis. 
Same as the Cartesian z.
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Cylindrical coordinates (continued)

• The Cartesian coordinates of P are related to the cylindrical coordinates 
by

• Like those of spherical coordinates, the unit vectors of cylindrical-
coordinate systems are not uniform; their direction changes when the 
position of point P moves.
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Cylindrical coordinates (continued)

In cylindrical coordinates, as can be shown in the same pattern as spherical 
coordinates:

• Unit vectors

• Infinitesimal displacement

• Infinitesimal volume element

• Infinitesimal area element
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Cylindrical coordinates (continued)

• The more common vector derivatives
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The Dirac delta function

• In problem 1.16, on this week’s homework, you will show that the vector function

has divergence that is zero except at the origin, where it’s infinite. 

• However, you will also show in problem 1.39 that the integral of the divergence of this function, over any sphere 
centered at the origin, is neither zero nor infinity, but instead is

• This turns out to be an extremely useful set of characteristics, so we frequently use the divergence of this function, 
and give it a special name:
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The Dirac delta function (continued)

• With this definition, the delta function             is zero everywhere except r = 0, at which it is infinite, and the integral 
over any volume V that contains the origin is unity:

Because the integral is dimensionless,             itself has dimensions of (1/length)3. 

• The one-dimensional analogue of this function is also called a delta function:

It has dimensions 1/length, and is related to the other one by
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The Dirac delta function (continued)

Why is the delta function useful?

• It’s a nice way mathematically to express compact entities such as point charges, when we have to describe them 
with differential equations. For instance, the charge density – electric charge per unit volume – of a point charge q 
can be written as (Problem 1.47a):

• It’s absurdly easy to integrate expressions containing delta functions, because the integrand is zero everywhere 
except on the delta function’s “spike:”
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The Dirac delta function (continued)

• Examples, from Griffiths problem 1.44 and 1.49.
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Curl, divergence, fields and potentials

• As you saw in last week’s homework: if a vector field F has zero curl, then it is the gradient of a scalar potential U, a 
function like the electrostatic potential V you have seen in PHYS 122 or 142.

• F does not uniquely specify U; any scalar independent of x, y, z could be added to U and its gradient would not 
change. But any among this family of functions specifies the field F uniquely.

• Similarly, as you also showed: if a vector field F has zero divergence, then it is the curl of a vector potential, W.

W would be like the magnetic vector potential A, which is not usually introduced in PHYS 122 or 142, but will appear 
in association with the magnetic field B when we get to magnetostatics. 

• Again F does not uniquely specify W, as any gradient could be added to it without changing its curl. But any among 
this family of functions specify F uniquely. 
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Curl, divergence, fields and potentials (continued)

We mention potentials now because div, curl, fields and potentials are linked in three theorems we can use this 
semester, the first practically right away:

• You will demonstrate the equivalence of 1-2 a-d in workshop this week, in the form of Griffiths problems 1.51 and 
1.52.

• It will be quicker for us to prove the Helmholtz theorem later this semester, after more experience with potentials.
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