
Today in Physics 217: electrostatic E as a vector field

• Its divergence, and Gauss’s Law 

• Its curl, and the electric potential V

• Use of integral form of Gauss’s Law to 
calculate E

• Gravity and Gauss’s Law
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Divergence of E, and Gauss’s Law

• E for an arbitrary, static 3-D charge distribution occupying volume      is given by Coulomb’s Law as:

• The gradient, which only has derivatives with respect to components of r (not    ) can be taken inside the integral:

• Change of variables for the gradient: call the Cartesian components of                    X,Y,Z, as those of r are x,y,z. Then
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Divergence of E, and Gauss’s Law (continued)

and

which as we saw last week is 

• Integrate this over volume, and use the divergence theorem, for a familiar result:
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Curl of E, and electric potential

• Now for the curl of a field given by Coulomb’s Law:

Change variables as before:

• Call the spherical components of 
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Curl of E (continued)

• Thus, as we saw last week, and discussed in this week’s homework, Theorem 2 applies to E derived from Coulomb’s 
Law:
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Summary of electrostatics, so far

Expressed in the language of field theory, with all the empirical facts (like Coulomb’s Law) built in:
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Use of Gauss’s Law in integral form

As you know well: the integral form of Gauss’s Law provides a much easier way than Coulomb’s Law to calculate E for 
symmetrical charge distributions. 

Calculate the electric field from an infinite plane, parallel to x-y, with uniform charge per unit area σ; first, with 
Coulomb’s Law, and second, with Gauss’ Law. The answer, as you may remember, is                      (+ above the plane, - 
below.)

With Coulomb’s Law: 

• Break the plane into annuli with radius s and width ds, 
and break the annuli into segments of width 
The charge of each segment is

• Horizontal components of field from segments at φ 
and φ + π cancel, and their vertical components 
add, so above the plane, we have …
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Use of Gauss’s Law in integral form (continued)

With Gauss’s Law:

• E must point perpendicular to, and away from, 
the plane, since the plane is infinite and there’s 
no difference between the view to the right and 
the view to the left.

• Draw a cylinder, bisected by the plane, and 
calculate the flux of E through the cylinder.
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Use of Gauss’s Law in integral form (continued)

• By symmetry, E is perpendicular to the area element vectors on the cylinder walls, parallel to those on the circular 
faces, and constant on those faces, so

Conceptually harder setup – finding and exploiting symmetry – but easier math.
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Use of Gauss’s Law in integral form (continued)

Show that the electric field E outside a uniformly-charged 
spherical shell – radius R, density σ – is the same as that 
from a point charge of the same magnitude, the same 
distance away as the sphere’s center, and that E inside a 
uniformly-charged spherical shell is zero. Also show that 
the same result is obtained using Coulomb’s Law or Gauss’s 
Law.

With Coulomb’s Law:

• We use the spherical-coordinate infinitesimal area 
element introduced last Tuesday,
to construct the charge element y
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Use of Gauss’s Law in integral form (continued)

• A view to the plane at azimuth      shows more easily that

• Consider two area elements at azimuth      and as 
before, the horizontal components of their contribution to E 
cancel, and the vertical components add.

9 September 2025 Physics 217, Fall 2025, Lecture 5 11

( )′ ′= + −

′ ′ ′= + + −

′= + −

22 2 2

2 2 2 2 2

2 2

sin cos

sin cos 2 cos

2 cos .

R θ z R θ

R θ z R θ Rz θ

R z Rz θ

r

′θ

′sinR θ

′cosR θ

′ at dq φ′ + at dq φ π

α

R

dE

( )′d φE ( )′ +d φ πE

r

′φ

′φ ′ + :φ π



9 September 2025 Physics 217, Fall 2025, Lecture 5 12

Use of Gauss’s Law in integral form (continued)

• So

The first integral is trivial: it just comes out to π.

• For the second, substitute
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Use of Gauss’s Law in integral form (continued)

• In this integral’s first term, substitute

• The second term needs to be integrated by parts, to get rid of the factor of w in the integrand’s numerator. Take
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Use of Gauss’s Law in integral form (continued)

• Then stuff these into the usual formula for integration by parts, 

• In the second term, use (again)
and it turns into
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Use of Gauss’s Law in integral form (continued)

• So, putting all these terms together, and factoring out          as we do, we get

• It will save writing, and possibly be a little clearer, if we express the terms under the square roots as
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Use of Gauss’s Law in integral form (continued)

• This gives us 
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Coulomb’s Law example: field from a uniformly-charged spherical shell 
(continued)

• The two cases to consider: z larger than, or smaller than, 
R. (P outside, inside)

• z > R (outside):

so the spherical shell behaves to the outside world 
as though its charge is concentrated at the sphere’s 
center. 

• z < R (inside) means                          so
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Use of Gauss’s Law in integral form (continued)

And now with Gauss’s Law, as you did in PHYS 122 or 142:

• First note that the field must be spherically symmetric 
because the charges are, and it must point radially 
outward or inward – that is, E is perpendicular to all 
sphere’s centered at the same point as the charged 
sphere. So draw two Gaussian spheres, one inside and 
one outside the charged shell:
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Gauss’ Law for gravity

Newton was the first to realize these results, in the context of the other 1/r2 force, gravity. He convinced himself by use 
of a proof similar to our Coulomb’s law demonstration, Gauss still not having been born by then. We could have saved 
Newton a lot of trouble by pointing out the following.

• The force of gravity on a mass M from a mass m is

• Gravitational forces superpose: the force on M from N charges is  

• For a continuous distribution of mass (density         ), the gravitational field g is obtained by letting

= 2 ˆ
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Gauss’ Law for gravity (continued)

• Take the divergence of both sides, and carry out the resulting integral on the RHS, as we did on pages 2-3, and we get

• Now integrate this result over volume, and use the divergence theorem, as we also did on pages 2-3:

( )⋅ =∇ 4πGρg r

⋅ =∫ enclosed4d πGMg a

Gauss’s Law for gravity
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