Today in Physics 217: electrostatic £ as a vector field

dE

* |ts divergence, and Gauss’s Law \/
* |Its curl, and the electric potential V

2|0
* Use of integral form of Gauss’s Law to

calculate E
%
dq

Gravity and Gauss’s Law




Divergence of E, and Gauss’s Law

* E for an arbitrary, static 3-D charge distribution occupying volume V is given by Coulomb’s Law as:
2 2N g
E(r)= j—qu = J—zp(r )dt’ , so
2 D

V-E=V-[ % p(r)de
V¢

* The gradient, which only has derivatives with respect to components of r (not r’) can be taken inside the integral:

N

V-E:J(V-iz)p(r’)dr’

2

* Change of variables for the gradient: call the Cartesian components of 2 =¥ — 7' X,Y,Z as those of r are x,,z. Then



Divergence of E, and Gauss’s Law (continued)
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and V-E=J(V,L -%)p(r’)dr' )
v
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which as we saw last weekis WV -E= j4n6(4)p(r')dr' - I4n6(r—r’)p(r’)dr' :
1% V

V-E=4np(r) . Gauss’s Law

* Integrate this over volume, and use the divergence theorem, for a familiar result:

IV-Edr=4nJ'p(r)dr Surface S bounds volume V

% V
CJ.DE-da =4nQanclosed Gauss’s Law, integral form
S




Curl of £ and electric potential

2

* Now for the curl of a field given by Coulomb’s Law: V xE =V x Iip(r’)dr’ = J(Vx%jp(r’)dr’
v? 1% r

é\ ! !
Change variables as before: = J.(V,, X—sz(f )dt’ .
S, 2

* Call the spherical components of 2 2,0, and ¢, then, because the latter two components are zero,
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Curl of £(continued)

* Thus, as we saw last week, and discussed in this week’s homework, Theorem 2 applies to E derived from Coulomb’s
Law:

E is the gradient of a scalar potential: E=-V V. Electric potential

b
IE-dﬁ is independent of path, given a and b.

a

<.[>E-d£=o



Summary of electrostatics, so far

Expressed in the language of field theory, with all the empirical facts (like Coulomb’s Law) built in:

V-E=4mp =p/eg in S|
@E'da =4nQanclosed = Qenclosed/"50 in S
S

VxE=0

<_f>E-d£:O

E=-VV



Use of Gauss’s Law in integral form

As you know well: the integral form of Gauss’s Law provides a much easier way than Coulomb’s Law to calculate E for
symmetrical charge distributions.

Calculate the electric field from an infinite plane, parallel to x-y, with uniform charge per unit area o; first, with
Coulomb’s Law, and second, with Gauss’ Law. The answer, as you may remember, is E=12m0z. (+ above the plane, -
below.)

With Coulomb’s Law:

dE
* Break the plane into annuli with radius s and width ds, \/
and break the annuli into segments of width sde.
The charge of each segment is dqg = osdsde
2|10
* Horizontal components of field from segments at @
and ¢ + it cancel, and their vertical components 3

add, so above the plane, we have ... dg




Use of Gauss’s Law in integral form (continued)

dE:Zd—gcosﬁfzz 95 £

2 22+52\[22_|_52

dsdpz

E= 2022!d<pj s(s2 + 22) ds =mnozz I u_3/2du =1ozz
0 0 22 ~1/2 2

With Gauss’s Law:

* E must point perpendicular to, and away from,
the plane, since the plane is infinite and there’s
no difference between the view to the right and
the view to the left.

* Draw a cylinder, bisected by the plane, and
calculate the flux of E through the cylinder.

n o ..
=2nmoz ——2Zin Sl
280




Use of Gauss’s Law in integral form (continued)

* By symmetry, E is perpendicular to the area element vectors on the cylinder walls, parallel to those on the circular
faces, and constant on those faces, so

(ﬁE .da =2Ens® = AntQenclosed = 4n’s%o, or

E =+2mroz.

Conceptually harder setup — finding and exploiting symmetry — but easier math.




Use of Gauss’s Law in integral form (continued)

Show that the electric field E outside a uniformly-charged
spherical shell — radius R, density o —is the same as that
from a point charge of the same magnitude, the same A
distance away as the sphere’s center, and that E inside a
uniformly-charged spherical shell is zero. Also show that
the same result is obtained using Coulomb’s Law or Gauss’s
Law.

With Coulomb’s Law:

* We use the spherical-coordinate infinitesimal area
element introduced last Tuesday, da’ = R? sin®'dd'de'r, \J
to construct the charge element dg =odd’.

dqg = odd’
da’ = R?sin9'dd’dof



Use of Gauss’s Law in integral form (continued)

* Aview to the plane at azimuth ¢’ shows more easily that dE
22 =R?sin? 1?’+(z—Rcosﬁ’)2
=R?sin’ 9" + z° + R cos®> &' —2Rzcos®’

—R% + 72 —2Rzcos &

* Consider two area elements at azimuth ¢’ and ¢’ +7: as
before, the horizontal components of their contribution to E
cancel, and the vertical components add.




Use of Gauss’s Law in integral form (continued)

2 H ! ! ! ] . ' ,
~ U'(z—Rcosv
* So dE=22d—gcosa:22 oR”sinv dY d¢ Z—Rcosy _s0r2 2" (2=Rcos?)

2 2 '
2 R™+z _ZRZCOSI? \/R2+22_2cho50’ (R2+22_2RZC056,)

570900

sind’(z—Rcost’)

do' .
)3/2

TT JT
E= 220szd¢’J
0 O(R2 + 7% —2Rzcos

The first integral is trivial: it just comes out to .

-
* For the second, substitute w =cos®’, dw =+#sinddd’, w=1-54-1:

(z—Rw)

1
E = 32110R? j dw

-1 (Rz + z2 —2Rzw

)3/2



Use of Gauss’s Law in integral form (continued)

-
* In this integral’s first term, substitute u= R% +2° —2Rzw, du=+/2Rzdw, u= R% + 2% +2Rz 5 R% +2% —2Rz:

4

1
R’ 2R
j 1 dw 1 jR +z +2Rzu_3/2 1 [ _1/2:| +2°+2Rz 1|: 1 - 1

3/2 _ 2n
—1(R2 +z2 —2sz) / ZR Ri+2 —2Re R®+2°-2Rz \/R2 +z2 —2Rz \/R2 +z2 + 2Rz

* The second term needs to be integrated by parts, to get rid of the factor of w in the integrand’s numerator. Take

—Rdw

3/2
(Rz +z2 —2sz) /

du=dw v:1 1

z\/Rz +22 —2Rzw




Use of Gauss’s Law in integral form (continued)

* Then stuff these into the usual formula for integration by parts,_[udv = uv\c —Jvdu:
C C

1 1

1 —Rw 1 w 1 dw
I dw =— +—

3/2
—1(R2 4 72 —2sz) / z\/R2 +2% —2Rzw|_4 Z_l\/Rz +2% —2Rzw

F
* In the second term, use (again) u= R% + 72 —2Rzw, du=#2Rzdw, u = R% + 7% + 2Rz .S R% + 7 —2Rz,
and it turns into

1  (R*+2%+2Rz _
—j I u Y2y =
+ 22 —2Rzw ZRZ

R%+72-2Rz 2R22
1
:—2(\/R2 22 4 2R7 R 1 22 —2Rz)
Rz

|:2\/—:|R +2°+2Rz

R?>+2z? 2Rz




Use of Gauss’s Law in integral form (continued)

* So, putting all these terms together, and factoring out 1/22 as we do, we get

E_EZHGRZ{ZZL 1 1 }H[ 1 1 J
S _ _
22 | RUJR21+22_2Rs R2+ 272 +2R2 JR2+72—2Rz RZ+7%+2Rz

—%(\/Rz +z2 +2Rz—\/R2 +z2 —2Rzﬂ

* It will save writing, and possibly be a little clearer, if we express the terms under the square roots as

2,2 2
\/R +2z°+2Rz = (Z+R) =‘Z+R‘ , We need the positive roots, since
they represent the length of 2,
which is always positive.

\/R2 +72 2Rz = (z—R)2 =|z—-R| .



Use of Gauss’s Law in integral form (continued)

* This gives us

1 1
‘z R‘ ‘z+R‘ ‘z R ‘z+R‘

1 1
\z R\ \z+R\ \z R| \z+R\
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Coulomb’s Law example: field from a uniformly-charged spherical shell

(continued)

* The two cases to consider: z larger than, or smaller than,
R. (P outside, inside)

* 2> R (outside):

Z—R Z+R A4n0R2
=1= = |E=2
z—R| Zz+R| 72

,Q
22

so the spherical shell behaves to the outside world
as though its charge is concentrated at the sphere’s
center.

* z<R (inside) means |z—R|=R-z, so

z—R+z+R
R—z z+R

=-1+1=0 = | E=0

dE \:
p

dqg =odad’
da’ = R? sind'd9®'der



Use of Gauss’s Law in integral form (continued)

And now with Gauss’s Law, as you did in PHYS 122 or 142:

* First note that the field must be spherically symmetric
because the charges are, and it must point radially
outward or inward —that is, E is perpendicular to all
sphere’s centered at the same point as the charged
sphere. So draw two Gaussian spheres, one inside and
one outside the charged shell:

CﬁE -da = 4nQanclosed

r>R:

(E)(4nr2) - 4n(4nR20) —4nQ = E= fr%

r<R:

(E)(4nr2) 0 = E=0



Gauss’ Law for gravity

Newton was the first to realize these results, in the context of the other 1/r? force, gravity. He convinced himself by use
of a proof similar to our Coulomb’s law demonstration, Gauss still not having been born by then. We could have saved
Newton a lot of trouble by pointing out the following.
GmM |

22 *

* The force of gravity on a mass M fromamassmis F=

* Gravitational forces superpose: the force on M from N charges is

N
GmM | GmM
Fr)= 3 e =ML = Mg (1
4l ¢2 =1 %

* For a continuous distribution of mass (density p(r)), the gravitational field g is obtained by letting N — oo:

= Gj%p r)dt
v



Gauss’ Law for gravity (continued)

* Take the divergence of both sides, and carry out the resulting integral on the RHS, as we did on pages 2-3, and we get

V.g=4nGp(r) Gauss’s Law for gravity

* Now integrate this result over volume, and use the divergence theorem, as we also did on pages 2-3:

Cﬁg -da =4nGMgpciosed
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