Today in Physics 217: electric potential
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Electric potential

* Because V xE =0 in electrostatics, we can express E as the gradient of a scalar function:
E=-VV
where of course V is called the electric scalar potential.

* By the gradient theorem, we can write

b b
-[£-de=[(Vv)-de=v(b)-V(a)

* Suppose we have agreed upon a standard reference point, O; then

b b O
~[E-de=[(VV)-de+ [(VV)-ae
O a

a



Electric potential (continued)
* This leads us to an integral definition of V:
P
V(P)=-[E-de

O

* Properties of the electric potential:

 Arbitrariness. An arbitrary constant can be added to the potential without changing the field — which, after all, is
the fundamental quantity.

To each constant corresponds a potential reference point. Thus there is always a large selection of appropriate
reference points in any electrostatics problem.



Electric potential (continued)

» Convention: take O to lie at infinity, unless the charge distribution itself extends to infinity.

Just remember that you can actually put the reference point anywhere that doesn’t lead to an infinite result for
the potential; sometimes you will find reference points not at infinity that will be more convenient for your
calculation.

* Significance. The magnitude of the electric potential therefore has no physical significance; only differences in
potential do.

* Superposition. The electric potential superposes. If E= E; +E, +..., then

P P
V=—[E -dl-[Ey-dl—. =V +Vs+...
% %

This may seem automatic and trivial until we find, next week, that the closely-related electrostatic potential
energy does not superpose.



Electric potential (continued)

* From point charges and superposition we obtain the potential from a continuous charge distribution:

P r N
\/,:—jE~d£—>—jEdr'=& ; V(P)zzﬁ > |
O 00

O—wx r ~ ;N

dynecm erg

* Units. In Gaussian CGS, it’s the statvolt: statvolt =
esu esu

Ntm joule

In SI, it’s the volt: volt=
coul coul

* Correspondence: 1 statvolt <> 299.792458 volts

The two “correspond” because the potential has different dimensions in the two systems, as charge does.



Electric potential (continued)

 What it’s good for. It’s often easier to calculate V, and take its gradient to find E, than to calculate E directly.
Reasons:

* Vis a scalar; no vector addition to get it.
» Derivatives are always easier to calculate than integrals.

* Sometimes it allows avoidance of integrals altogether: if you set up an integral to give V, intending then to
take its gradient to find E: look first to see whether the gradient theorem — or even the scalar version of the
fundamental theorem of calculus — will give you E without even carrying out the integration. (See problem 8
on Homework #3.)

e There are many situations in nature in which V can be regarded as uniform over a region in space near where
one would like to know E. The solution of V for space between the uniform-V (“equipotential”) locations and
the reference point — the process of which is called a boundary-value problem — can be shown to be unique.

* Finding V by boundary-value solution, and then calculating E, is in these cases usually much easier than
calculating E directly.



Electric potential examples

One of these is an impossible electrostatic field. Which one?

a. E= k:(xy))“(+(2yz))7 +(3xz)2]

b. E=k (yz))“(+(2xy+zz)}7+(2yz)2J

Here, k is a constant with the appropriate units. For the possible one, find the potential, using the origin as your
reference point. Check your answer by computing —VV.

* To find the impossible one, take the curl of each function.

0

0. vx£= 2 32)- 2 ) 1k 2 m)- L (300 )5

oy 0z z OX

0 0 . . A s Can’t be an
' k(&(Zyz) —a(xy)jz =k(-2y% =37y _XZ)E electrostatic field.




Electric potential examples (continued)

b. VxE = k((%(Zyz) —%(ny + 22 )jf(+k(g(y2)—a%(2yz))ﬁ + k(%(ny + zz)—a—ay(y2 )jf =0 OK.

* Integrate E to get V: start at origin, choose path for convenience since the result is path-independent.

(0,0,0)—>(x,0,0) > (x,y,0)—>(x,y,2)

E-df=ky’dx=0 E'dE:k(nyJrzz)dy:kaydy E-dl=2k(yz)dz
( 0 0) = = (x,y,2) z
X
"~ E.de=0 by 0 Ly Y 2 e de=|"2k(yz)dz = kyz?
-[(0,0,0) j(x,0,0) E-df¢= Io 2kxydy = kxy L x.y.0) Io ( )

. V(x,y,2)=0 —kxy? —kyz® + —k(xy2 + yzz) .

ov. oV, oV. 2 . 2\ ~ n
—VV=-—x- — z:k( X+(2xy+2z +(2yz z):E v
o oy otV ( y )y (2y2)




Electric potential examples (continued)

Calculate the electric potential V a distance z away from
the center of a spherical shell with radius R and uniform
surface charge density o. Check by calculating E=-VV, A
and comparing with Tuesday’s results.

* As before, the distance between dg and P is
22 =R? + 72 —2Rzcos ¥’ , SO

odd’ R?sin®’

V(z)= =0 | do dg' .
j I\/R + 2% —2Rzcos¥’ Y

j2

dqg = odd’
da' = R? sin®'dd'dyp’

\\
%




Electric potential examples (continued)

z
* The first integral is trivial. For the second, substitute A
w=cos®, dw=4,sind'dd, w=1-A-1: A P
dqg = odd’
V(z)= > GR2 J‘ \/ dw | da' = R?sind'd9'de’
R™ +z~ —2Rzw
Z ? V4 \\\

4

N

* Then substitute o ‘
9.
u=R%+2>—2Rzw, du=—72Rzdw, v ,

-
U=R%>+2>+2Rz AR*+2° —2Rz ,




Electric potential examples (continued)

to give

TTOR R?>+2z%+2Rz 1TOR R?>+z?+2Rz A
v(z)="221" u ™ du="""[2Ju] ,
z JR*+7° ZRZ z R?+2> 2Rz

— ZHGR(\/RZ + 24 2R7 R 1 22 —2sz

4

2Rz iz

4

Y
£ (e vRl—|z A

4

2802(‘2+R‘ |z— RD in Sl.

dqg = odd’
da' = R? sin®'dd'dyp’
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Electric potential examples (continued)

* Two cases, as before: z larger than, or smaller than, R. (P
outside, inside)

* Larger (outside): /
V(z):ZHZGR(Z+R—Z+R)=4HZRZG=g . z

* Smaller (inside): this means |z—R|=R -z, so
2rtoR Y

(z+R—R+z):4nRo:ﬂ .
Z R

V(z)=

Uniform, nonzero V inside shell.

AN

dqg = odd’
da' = R? sin®'dd'dyp’

\\
\\%
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Electric potential examples (continued)

* Check with E:

q ,Z>R A
21toR z
V(2)= " (2 +Rl-[z )=
q ,Z>R
LR Z
399_9; ,5p .
0zz 2
E(z)=-VV = vv
Y
399_¢ ,5g
. OzR

Same result as Tuesday, of course.

4

dqg = odd’
da' = R? sin®'dd'dyp’
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Work done in motion of a test charge

Move a test charge Q around in vicinity of other charges. How much work is done moving
itfromatohb?

* The force exerted on Q by those charges’ fields is F = QE; the force we need to exert, by
Newton’s third law, is - QE. So the work we do is

W = ]"F-dﬂ = —szE-df :Q[V(b)—V(a)] ’

independent of path because the path integral of electrostatic E is path-independent.

* Corollary: the work required for us to bring charge Q to point P from infinity is

w=q[v(P)-V(x)]=av(P)



Electrostatic potential energy

To obtain the potential energy of an assembly of charges, bring them from infinity in one by one, and calculate the
work you do. That work W is the potential energy.

Consider assembling the charge distribution above: a bunch of point charges, g..

* Bring in the first one: W; =0
L _ a1
* Bring in the second one: W5 =q5| —
"2
a1 9
* And the third one: Wy =gs| " +-%
3 723

_ d3
And the fourth: Wy =0, +—+
M4 M4 734



Electrostatic potential energy (continued)

* So far, for the first four charges, the total work is

W=q,| 1 |+q5| L +92 |1q,[ T 92,9
"2 M3 723 M4 M4 134

_MNG9 9193 D93 | 9194 9294 9394
2 M3 M3 M4 M4 34

gqg: 1N, N 1N
* Evidently, for N charges, we'd get W = Z Z —L= Z Z —ZCI,-V(P,)
i=1j=i+1 Lij :1 j=1 ij 2':1

| \

Count each pair of charges just once



Electrostatic potential energy (continued)

* If the collection of charges is finite and continuous (N — ), this becomes

W:%jqu=§Ider .
Y V

* As usual, we’d also have w :EJ.ana , and w =%IAVd€ ,
2
S C

for surface- and line-charge distributions.



Electrostatic potential energy (continued)

Find the electrostatic potential energy for a sphere with radius R and uniform
charge density p: total charge g :4npR3 3.

* Envision building the sphere one infinitesimal shell at a time, and observe the
process in the middle at first, when a charge ¢’ =4npr3 3 is already there.

* To bring in the next shell, with charge dq’ = 4npr2dr, we have to work against
the electric field of the inner spherical charge:

3
E(r)=2"P

3 =dq'V(r)
b r 37 2 25 r 2 2 4
dw' = [dF’-de = —dg'[ E'(r')-(7dr") = ~4mpr?dr 7" | AN dr{—l’} _lomptr
a o or 3 r'lo 3

W =

2
167%0> Tr4 16707 R _ 3 (ampR® | _3q7
3 3 5 5B 3 5R



The energy density of the electrostatic field in free space

1 1
* Now back to W :Ejdqv :EJ.der. Eliminate density and potential from these expressions, in favor of the
V V

electric field, by using p=4iV-E, VV=—-E,and V-(fA)=(V-A)f+A-(Vf):
s

W—Slnj(V-E)Vdr—;}_J[V-(VE)—E-VV]dT—;TJ[V-(VE)+E2Jdr—81]_[[("‘>VE-da+J.E2dr}
v v v S v

Divergence theorem

* If we extend the integration region V to include all of space, and the charge distribution is finite in extent, then E and
V approach zero at the surface S (which “surrounds infinity”). Note that

1 1 1
lim Eoc—2 , limVo= , I|lim Acr? = lim QVE-daoc—=0
r—»o0 r r—»o0 r r—»o0 r—)ooS r



The energy density of the electrostatic field in free space

* Doing so, we get

1
w=— [ E2qr =% j E2dr inSl
8 2
all all
space space

* So E fields themselves store energy. One often sees this expressed as an energy density, u:

p 2
E enE
= . =0 in Sl.




1
Caveats regarding W =— F2dt

871

1. Consider a point charge, for which the charge density is p :q53(r). How much work is involved in assembly of this
charge distribution? On the one hand,

W= %Jder = gJ.(53 (r)%r2 sinddrddde = anz_(‘;é(r)rdr =0

0.0)
1
but on the other, w=—"[E%dr :q?_[—zlrzdr =———| —w
0

The reason for the difference is related to the troublesome divergence of F/rz, as seen in Griffiths problems 1.16
and 1.39. Inconsistency is avoided by restoring the surface integral to the expression of potential energy in terms of
field:



1

Caveats regarding W = — F2dt (continued)
31
For our point charge,
19(2q9q). 9 qz@(lj > q° q° 2
VA(VE)+E? == 2| P22 |3 1 2= =— =0 W=||V-(VE)+E? |dr=0
( )+ rzﬁf(r fr2J+r4 r2or\r +r4 r4+r4 - '[[ ( )+ }T

1
Not, therefore, inconsistent. But use W :EIEzdr with care, keeping that surface integral in mind.

2. As you know, forces, electric fields, and electric potentials obey the principle of superposition. Potential energy does
not. Consider:

1 ¢ 1
W=—~ I\ Edt=—|(E, +E,+...)-(E;{ +E5 +...)dT
L JEdr= (B +E e ) (Er+Ey+)
1 o
¢8— (Ef+E§+...)dr:W1+W2+... )
n.

1 1 ,
because cross terms such as 8—j2E1 -E»dt and 8—j2E1 -E3dt are not necessarily zero.
T T
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