
Today in Physics 217: solution of 
the Laplace equation by 
separation of variables

• Introduction to the method, in Cartesian 
coordinates.

• Example solution of the Laplace equation for 
the potential in an infinite slot, arbitrary V at 
the bottom, in which we introduce two 
common features of separation solutions:

• Completeness and orthogonality of 
sines.

• Fourier’s trick.
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Introduction to separation of variables

Separation of variables is the easiest direct solution technique. It works best with conducting boundaries for which the 
surfaces are well behaved – planes, spheres, cylinders, etc. – but it’s OK with any boundary conditions on V or 

Here’s how it works, in Cartesian coordinates, in which the Laplace equation is 

which can’t be integrated directly like the 1-D case.

• Consider solutions of the form

• This makes the Laplace equation

or, dividing through by XYZ,
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Introduction to separation of variables (continued)

• This is of the form                                          The only way for it to be true for all x,y,z is for each term to be a constant, 
and for the three constants to add up to zero:

• thus to separate the original partial differential equation (PDE) into three ordinary ones (ODEs): 

• If the equation separates into simple ODEs, as it did here, then the PDE’s solution is straightforward.
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Introduction to separation of variables (continued)

• Nothing guarantees that V will always factor into functions of x, y, and z alone. In fact, there are certainly many 
solutions to the Laplace equation which are not of this form. 

However,

• there are in fact lots of electrostatic problems for which the boundary conditions are specified on well-behaved 
surfaces, and do turn out to have solutions of this form, and

• the solutions to electrostatics problems are unique, so if separation of variables yields a solution, it’s guaranteed 
to be the correct one.

• And if the PDE does not separate cleanly like this one did into easily-solved ODEs, then try one of the other 
techniques we will learn/have learned. 

• Separation of variables is also a very useful PDE solution technique in quantum mechanics, where one finds many 
problems in which the boundary conditions are specified on regular, well-behaved surfaces.
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Introductory example: the infinite conducting slot

Griffiths, example 3.3: Two infinite, grounded, metal plates lie parallel 
to the x-z plane, one at y = 0, the other at y = a.  The end at x = 0 is 
closed off with an infinite strip insulated from the two plates and 
maintained at a specified potential              Find the potential V inside 
this slot.

• Only a section of the arrangement appears at right, so we can see 
inside. The plates stretch to  

• The slot is infinite in both directions along z, so the solution can’t 
depend upon z; we write the Laplace equation as              
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The infinite slot (continued)

• Suppose                                                the PDE separates into 

• We chose      rather than, say, A, to indicate that this constant is 
non-negative, and that the other one           is non-positive. 

• Also with hindsight, as                     turns out to be useful.
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The infinite slot (continued)

• Boundary conditions:

• Solutions: I’m sure you know equations I and II very well from 
MATH 165/174 and PHYS 122-123/143-142. But the means by 
which they’re solved is too useful to forget, so I’ll remind you, 
first, with I:

• Let                     and multiply through by 
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The infinite slot (continued)

• Integrate over x; invoke the chain rule

• Both X and dX/dx must be zero for all x at y = 0 and a, so the 
integration constant S = 0, and

• Separate and integrate:
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The infinite slot (continued)

for two particular solutions to ODE I. Here A and B are just 
integration constants. 

• Any linear combination of the particular solutions is also a solution 
to ODE I, and would be more general, so we take

• Similarly, for ODE II,                                 and a more general solution 
is

• Or, using Euler’s formula,
we have 
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The infinite slot (continued)

so

• Apply the boundary conditions:
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The infinite slot (continued)

• The remaining boundary condition (4) needs to be used to 
determine the Gn. 

• Note first that this solution won’t work unless V0 itself is 
sinusoidal. 

• BUT, if the                are all solutions, then a linear combination 
of them is a solution too:   
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The infinite slot (continued)

• And an über-general solution can match arbitrary functions V0(y) 
at x = 0 (boundary condition 4), because the linear combination of 
all of them,

is a Fourier sine series representation of V0(y). 

• In MATH 281 you have learned, or will learn, that the sines form a 
complete set of functions, for which any arbitrary function of of y 
can be expressed as a series like this. 

• Thus this solution works for any specified V0(y), and all we have 
left to do is to determine the Fourier coefficients Gn, via boundary 
condition 4. 
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The infinite slot (continued)

• We do this with Fourier’s trick: multiply both sides of the equation 
by                                             (note the different index m):

• Then integrate both sides over y, from zero to a:

• This is a Fourier transform of both sides. Now focus on the integral 
within the sum.
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The infinite slot (continued)

• Integrate by parts twice:

  

to obtain

• There are two possibilities; either m = n or               If the latter is the 
case, then
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The infinite slot (continued)

• If on the other hand m = n, then
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The infinite slot (continued)

• Now back to boundary condition 4 to finish evaluating the Fourier 
coefficients Gn:

• And we’re done: the complete solution is
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That the solution in Cartesian coordinates comes out as a sine 
series is why mathematicians often refer to Laplace-equation 
solutions as “harmonic.”



Two concrete examples for the infinite slot

The strip at x = 0 is held at a uniform potential                Calculate               
inside the slot.

• First the Fourier coefficients:
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Two concrete examples for the infinite slot (continued)
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• Plug in:

  

• A filled contour plot of                 with the x – y plane in the same 
orientation as the diagram, and V along z.
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Two concrete examples of the infinite slot (continued)

Now suppose that the nonzero-potential strip has uniform potential 
V0 from y = 0 to y = a/2, and –V0 from y = a/2 to y = a. Once again, 
calculate V in the slot.

• G:

23 September 2025 Physics 217, Fall 2025, lecture 9 19

y

z

x

0V =

0V =

0V a
0V−

a/2
( )

( )

2
0 0

0 0 2

2
0 0

0 2

0

0

0

:   the even integ1 ers not di

2 22 sin sin sin

2 2cos cos

2 1 cos 2cos
2

8 , 2,6,10, 4,...

8 , 0,1,2,...

visib b

4

le  

2

y 4;

aa a

n
a

a a

a

V Vnπy nπy nπyG V y dy dy dy
a a a a a a

V Vnπy nπy
nπ a nπ a

V nπnπ
nπ

V n
nπ

V m
m π

= = −

= − +

 = + − 
 

= =

= =
+

∫ ∫ ∫



Two concrete examples of the infinite slot (continued)

• Plug the Gs into the general solution:

• Plot:
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