Supplementary material

This material contains an extended discussion of the energetics (Sec. 2) and tables containing data in support of the Figures.

Notes on Sec. 2

Earth's climate system is highly complex, but for the purpose of answering rather general questions based on conservation of energy it may be described as follows. It lies between two concentric spheres, an outer one that surrounds the whole system at an altitude of 20 km and an inner one that is beneath the deepest ocean (11 km). It may be divided into four broadly homogeneous components, the atmosphere (A), the land and shelves (L), the upper ocean (O), and the deep ocean (O'), shown schematically in Figure S-1. (Figures and Tables in this Material are designated S-1, S-2, etc.) The average ocean depth is 3800 m.

The principle of conservation of energy provides a strong connection between the energy fluxes through the two spheres and the rate of change of total energy within the CS. The connection reveals a remarkably high correlation between the variations of solar irradiance and the upper ocean heat content on annual to decadal time scales ([1], Chap. 13; [8]). To appreciate this correlation we must spell out the principle as it applies to the whole CS:

(S-1)

where the two area (A) integrals cover the two enclosing spheres and the energy fluxes F_{TOA} and F_{geo} are respectively the net radiative and the geothermal fluxes in W/m², both defined as positive inward. The four volume (V) integrals represent the total internal energy of the four components described above.

Three of the volume integrals may be dropped in a first look at the problem. As Pielke [2] points out, in regard to the volume integral, the thermal reservoir of the ocean is much larger than that of the atmosphere and of the land and that other heat reservoirs such as sea and continental ice are inconsequential. The Intergovernmental Panel on Climate Change (IPCC) report [9] agrees; it states that the oceans are the dominant portion of the global energy budget of the earth's climate system, accounting for more than 90% of the total. For example, the atmosphere's heat capacity is equivalent to that of about 2.4 m of sea water [10]. While these are true, it is the rate of change of the energy content that concerns us, so that some care must be taken.

The land is less easily dismissed than the atmosphere. It has a large heat capacity but only a thin layer has much time dependence because of the small rate of heat diffusion into the ground. Yet less easily dismissed is the deep ocean O', which stores a substantial amount of thermal energy on long time scales, but our distinction between O and O' rules out O' by definition, namely, O is that part of the ocean that has an appreciable time dependence on the annual-to-decadal scale. The depth of O is subject to various estimates, as discussed in Sec. 3.

Under the assumption that the three terms are negligible, Eq. (1) reduces to

(S-2)

where H_O is the heat content of O. A further assumption is made here, namely, that the kinetic energy of O is negligible; see [1], pp. 204-206.

Let's now consider the flux integrals. The geothermal contribution is constant, but cannot be ignored because it contributes directly. The flux into the ocean and trenches averages $101 \pm 2.2 \text{ mW/m}^2$ and that into the land and shelves averages $65 \pm 1.6 \text{ mW/m}^2$ (globally averaged, $87 \pm 2.0 \text{ mW/m}^2$) [11]. Some fraction of the entire 87 mW/m^2 , called F_g , contributes to dH_O/dt . The land and shelves component, measured at the surface, heats the atmosphere and is disposed of the same way as the radiative input is (some out the top as part of F_{rad} , some to O). The ocean floor component, measured at the ocean floor, heats both O and O'. It is possible, therefore, that as little as 30 mW/m^2 contributes to O.

 F_{TOA} , which is the net radiative flux at the outer surface, called top-of-atmosphere (TOA), has two sources, solar and terrestrial. It will be taken here as a measured quantity. The net inward solar part is 70% of the incident solar flux; of this, roughly 28% is absorbed by the atmosphere and 72% by the surface. Of the latter, 71% is incident upon O and 29% upon L. Therefore (0.72)*(0.71) = 51% of the absorbed solar contributes directly to dH_O/dt . Although the other 49% absorbed by A and L is largely reradiated as the (negative) terrestrial contribution to F_{TOA} , it contributes indirectly through coupling to L and A and, in principle, carries some additional time delay. The outgoing thermal radiation from A, L, and O originates primarily in A and is therefore only indirectly associated with dH_O/dt . These statements are qualitative and refer to global averages.

We cannot address time delays for those parts of F_{TOA} that are indirectly coupled to dH_O/dt without a specific model of the interactions among the components of the CS. However, as is known [8, 12, 13], and as is seen in the text, there is almost no effective time delay on an annual scale, from which we conclude that either the time constants for energy transfer among O, L, and

A are short compared with one year or that negligible overall transfer takes place. The latter is inconsistent with the magnitude of transfer actually seen to occur.

Working with global averages, we may divide each term of Eq. (S-2) by the area of Earth, since this is negligibly different from the area of the outer and inner spherical surfaces being considered. Thus

(S-3)

In the literature one generally finds the total ocean heat content expressed in units of 10^{22} J = 10 ZJ and time scales in years. When dH_O/dt is evaluated in these units, we have, in W/m²,

.

(S-4)

Figure S-1. Schematic of the climate system and its four homogeneous components as related to overall energetics. A = atmosphere, L = land, O = upper ocean whose energy content is variable on short time scales, O' = deeper ocean with constant or slowly varying energy content. The varying total energy input, given by the sum of the three fluxes shown with arrows, causes variations in the energy content of O (light blue shading), as discussed in the text. F_{geo1} and F_{geo2} are the partitions of F_g discussed qualitatively at the end of Sec. 2.

References for Supplementary material

Numbers/references are identical to those in the main text.

- [1] J. P. Peixoto, A. H. Oort, Physics of Climate, American Institute of Physics, New York (1992).
- [2] R. A. Pielke Sr., Bull. Amer. Meteorol. Soc. 84 (2003) 331.
- [8] J. S. Ellis, T. H. Vonder Haar, S. Levitus, A. H. Oort, J. Geophys. Res. 83 (1978) 1958.
- [9] N. L. Bindoff *et al.* (2007), in S. Solomon *et al.* (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, Chap. 5, 2007, pp. 385–432.
- [10] B. Hartmann, G. Wendler, J. Climate 18 (2005) 4824. doi:10.1175/JCLI3532.1
- [11] H. Pollack, S. Hurter, J. Johnson, Rev. Geophys. 31 (1993) 267.
- [12] R. A. Pielke Sr., Physics Today 61, no. 11 (2008) 54.
- [13] J. Willis, D. Roemmich, B. Cornuelle, J. Geophys. Res. C 109, C12036, (2004) doi:10.1029/2003JC002260.
- [14] C. M. Domingues, J. A. Church, N. J. White, P. J. Gleckler, S. E. Wijffels, P. M. Barker, J. R. Dunn, Nature 453 (2008) 1090, doi:10.1038/nature07080.
- [15] C. M. Domingues, private communication (2008).
- [16] S. Levitus, J. Antonov, T. Boyer, Geophys. Res. Lett. 32 (2005) L02604, doi:10.1029/2004GL021592
- [18] S. Levitus, J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, A. V. Mishonov, *Geophys. Res. Lett.* (2009), doi:10.1029/2008GL037155
- [19] J. Willis J., private communication (2008). Values after January 2008 are considered preliminary.
- [22] N. Loeb and seven others, J. Climate 22 (2009) 748. Doi: 10.1175/2008JCLI2637.1
- [24] T. Wong, private communication. (2008).
- [26] C. Loehle. Energy and Environment 20 (2009) 99.
- [28] J. Hansen and 14 others, Science 308 (2005) 1431. doi:10.1126/science.1110252.

vari	ous source	es as discu	ssed in Sec	. 4	, and F_{TOA}	
	CERES	CERES	CERES		ARGO	
	month	year	Net (W/m ²)		month	
	mar	2000	6.425		jul	

Table S-1. Ocean heat content (H_O), from various sources as discussed in Sec. 4, and F_{TOA} from CERES

Domingues	Domingues	CERES	CERES	CERES	ARGO	ARGO	ARGO
Domingues	Domingues	CERES	CERES	CERES	AKUU	AKUU	AKUU
year	$H_O \ (10^{22} \text{ J})$	month	year	(W/m^2)	month	year	OHC (10 ²² J)
1950.5	-6.3	mar	2000	6.425	jul	2003	-0.867
1951.5	1.8	apr		1.951	aug		-3.165
1952.5	-4.3	may		-5.451	sep		-4.183
1953.5	-4.3	jun		-9.676	oct		-3.194
1954.5	2.1	jul		-8.167	nov		0.191
1955.5	-1	aug		-4.720	dec		0.243
1956.5	1	sep		-1.178	jan	2004	-0.334
1957.5	-0.1	oct		1.635	feb		1.334
1958.5	10.6	nov		4.264	mar		3.463
1959.5	0.7	dec		6.225	apr		3.896
1960.5	1	jan	2001	9.629	may		3.306
1961.5	0	feb		8.715	jun		2.857
1962.5	3.7	mar		7.595	jul		-0.652
1963.5	1.3	apr		1.552	aug		-1.615
1964.5	-1.4	may		-5.728	sep		-1.993
1965.5	-2.3	jun		-8.426	oct		-3.164
1966.5	3.2	jul		-8.089	nov		-3.581
1967.5	2.1	aug		-5.471	dec		-2.418
1968.5	-2.3	sep		0.066	jan	2005	-1.515
1969.5	-3	oct		1.584	feb		1.819
1970.5	-2.3	nov		4.737	mar		1.836
1971.5	1.8	dec		6.009	apr		1.889
1972.5	-0.1	jan	2002	8.508	may		1.775
1973.5	0.5	feb		8.920	jun		-1.316
			1			1	1

1974.5	0.3	mar		7.475	jul		-3.785
1975.5	-0.3	apr		1.291	aug		-3.968
1976.5	-2.3	may		-5.103	sep		-2.887
1977.5	2.4	jun		-9.641	oct		-2.109
1978.5	0	jul		-9.444	nov		-2.846
1979.5	0.5	aug		-6.183	dec		1.604
1980.5	7.4	sep		-1.222	jan	2006	1.682
1981.5	3	oct		2.691	feb		1.722
1982.5	3	nov		4.381	mar		2.502
1983.5	3.9	dec		6.333	apr		1.755
1984.5	3.3	jan	2003	7.975	may		2.090
1985.5	1.7	feb		9.120	jun		1.570
1986.5	4.9	mar		6.989	jul		-2.162
1987.5	6.1	apr		1.974	aug		-3.420
1988.5	7.3	may		-5.697	sep		-3.344
1989.5	9.2	jun		-8.929	oct		-2.117
1990.5	7.1	jul		-8.340	nov		-2.482
1991.5	8.5	aug		-4.313	dec		-0.650
1992.5	6	sep		-0.725	jan	2007	-0.691
1993.5	7.7	oct		2.049	feb		0.087
1994.5	8.6	nov		4.440	mar		0.612
1995.5	8.2	dec		6.047	apr		0.393
1996.5	11.2	jan	2004	9.117	may		0.162
1997.5	11.6	feb		9.721	jun		-1.586
1998.5	7.9	mar		5.973	jul		-1.642
1999.5	7.8	apr		2.840	aug		-5.994
2000.5	9.1	may		-5.952	sep		-4.272
2001.5	10.4	jun		-9.928	oct		-3.422
2002.5	13.5	jul		-7.360	nov		0.003
2003.5	11.8	aug		-4.507	dec		-0.204
		sep		-0.207	jan	2008	0.742

oct		2.036	feb	4.926
nov		4.901	mar	3.466
dec		7.728	apr	4.837
jan	2005	8.736	may	3.339
feb		8.615	jun	0.967
mar		7.210		
apr		1.988		
may		-3.631		
jun		-9.083		
jul		-8.982		
aug		-5.188		
sep		-0.431		
oct		2.039		

	CERES [24] Mar 2000 to oct 2005	Argo [19] Jul 2003 to jun 2008	Solar eccentricity effect	Comment
Mean of F_{TOA}	-0.303±0.187 Systematic error = 4.3 [22]. Adjust to mean of Argo in overlap period	-0.244±0.990 [includes -0.087 from interior heat of earth]	0	
Slope of F_{TOA}	-0.485 (W/m ²)/yr	0.001 ± large (end effects)		Solar is in decreasing part of 11 year cycle -0.055(W/m ²)/yr 2001 to 2007
peak-to-peak span of F_{TOA}	18.7 ±0.7 Depends on instrument calibration	17.3±2 Depends on instrument calibration and 0.62.	22.7 Depends on S_0 ; No uncertainty	All in phase. Max near January. CERES≈Argo;
Slope of peak-to-peak of F_{TOA}	-0.016 ±0.86 W/m ² /year Expect 0 from eccentricity effect	-1.16±3.19	0	CERES and ARGO consistent with zero

Table S-2. Properties of the top-of-atmosphere radiation balance during 2000-2008 as measured (CERES) and as implied by ocean heat content variation (Argo), compared with the principal forcing (solar eccentricity effect). F_{TOA} values are in W/m².

Table S-3. Summary of implied and measured values of F_{TOA} . Values in the fourth column that are derived from the third column are reduced by $F_g = 0.087 \text{ W/m}^2$ because of the geothermal energy contribution.

Source	Time period	<i>dH_O/dt</i> in flux units (W/m ²)	Implied or measured F _{TOA} (W/m ²)	Comment
Levitus	1955–1998	+0.20	+0.113	0 to 3000m
<i>et al</i> . [16]				ΔH_O data
Levitus et al. [18]	1969-2003	0.198±0.03	0.111±0.03	
Levitus et al. [18]	2004-2007	0±0.03	-0.087±0.03	
IPCC [9] chap 5,	1961-2003	+0.21±0.04	+0.123±0.04	0 to 3000m
page 387				Based on [16]
Domingues et al.	1961-2003	$+0.23\pm0.04$	$+0.143\pm0.04$	0 to 700m
[14]				ΔH_O data
Domingues [15];	1960–1975	-0.06±0.11	-0.15±0.11	0 to 700m
this paper				ΔH_O data
Domingues [15];	1975-2000	$+0.24\pm0.07$	+0.15±0.07	0 to 700m
this paper				ΔH_O data
Argo [13]; this	2003.7-	-0.153±0.99	-0.240±0.99	0 to 750m
paper	2008.5			ΔH_O data
CERES [24]; this	2000.5-		-0.303±0.19	Mean from Argo
paper	2005.5			TOA matched
				2003-2005
Hansen <i>et al.</i> [28]	value at 2003		$+0.85\pm0.15$	Model calculation
IPCC 2007,	value at		+1.6 (0.6 to 2.4)	Differs from IPCC
Fig SPM.2, page 5	2005			[9]
Argo [26]	2003–2008	-0.22 ± 0.3	-0.31±0.2	