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INTRODUCTION

To increase our physical insight into the evolution of stars, we shall, in this
introductory paper, reproduce the basic features of stellar structure (as found from
accurate calculations), by purely analytic considerations. We will, therefore, not
attempt accurate calculations of structures and evolutionary tracks. Rather, we
shall first discuss the general properties of stellar structure and evolution, and then
construct analytic models for the early homogeneous and advanced inhomogeneous
stages of evolution.

EQUATIONS OF STELLAR STRUCTURE

The structure of stars is determined by the conditions of mass conservation,
momentum conservation, energy conservation, and the mode of energy transport
(Schwarzschild, 1958, and Wrubel, 1958). Rotation and magnetic fields will be
neglected so that a star will be spherically symmetric.

Hydrostatic Equilibrium

A star changes very slowly during most of its life and so may be considered in
hydrostatic equilibrium. Two forces balance to keep a nonrotating star in hydro-
static equilibrium: the gravitational force directed inward and the gas and radiation
pressure force directed outward. The equation of hydrostatic equilibrium is

dP _ _GM(r)p

Ly

dr r?
The total pressure is the sum of gas and radiation pressure
P=Pg, +Pu

For an ideal gas

k
=i 1.
w=og?T 12)

where H = 1.67 x 10~ 2% g is the mass of a proton, k = 1.38 x 10~ '6 ergs/deg, and
u is the mean molecular weight.

P

P, = $aT* (1.3)
where a = 7.57 x 10~ '3 ergs/cm>-deg®. M(r) is the mass inside a sphere of radius
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r. The equation of mass conservation is

M _ sy (1.4a)
dr
so that
M) = [ 4nripdr (1.4b)
[

G is the gravitational constant, G = 6.67 x 10~ ® dyn-cm?/g2.

Energy Conservation
The total energy of an element of material is
E=U+Q+K (1.9)

where U is the internal energy of the gas, Q is gravitational potential energy, and K
is the kinetic energy of large-scale mass motion, which we are neglecting here. The
internal energy of a gas plus radiation is

U=—"_nNkT+ Lare
y—1 I

where y is the ratio of specific heats (y = § for a monatomic ideal gas). The sources
and sinks of energy are (1) energy release or absorption by nuclear reactions, and
(2) energy transport into and out of the element of material.
Let & be the net release of energy per gram per second, and F be the energy
flux. The equation of conservation of energy is then
dE dU d4dQ

1.
I=F«fI:J—;dwl’t:rgs/g-sec

The change of gravitational potential energy is
P
dQY= —dW = Pdv = —-?dp

Define the luminosity L, as the total net energy flux through a spherical shell
of radius r, so that

L, = 4nr*F
Then the equation of energy conservation is
dL, P dp dU
— = 4nr? -5 - - — 1.6
ar p[& * p? dt dl] (1.6)

Energy Transport
Energy is transported by radiation and convection, and by conduction when the
electrons are degenerate:

Lr
W=FIM+FCOHV (1.7)
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In the interior of a star, where the radiation is almost isotropic, the force due
to the gradient of the radiation pressure is equal to the momentum absorbed from
the radiation beam in passing through matter:

dPg xp L,

dr c 4nr?

where Py = $aT* is the radiation pressure, (xp)~! is the photon mean free path,
and c is the velocity of light. Thus, in the interior of the star, the radiative energy

flux is p _ _dacT?dr
™7 3 dr

and the temperature gradient necessary to drive the radiation flux is

(1.8)

e e S (1.9)

Convection occurs in those regions of a star where the temperature gradient
is steeper than the adiabatic gradient. The convective flux is (Spiegel, 1965), crudely,
the energy fluctuation (excess or deficiency) of an element of gas times its velocity,
averaged over horizontal directions,

Foouy = pCw0 (1.10)

where w is the radial velocity fluctuation and @ the temperature fluctuations in the
matter. The convective flux depends on the superadiabatic gradient

dT dT
-2 (2))

Because convection is an extremely efficient energy-transport mechanism in the
interior of a star, the superadiabatic gradient is very small and the temperature
gradient will be very nearly equal to the adiabatic gradient:

dT _ (dT\ _I'-1TdP
d \dr), T Pur
where T is the effective ratio of specific heats, including ionization, dissociation,
and radiation. Near the surface, where the photon mean free path is long, there is a

leakage of heat by radiation from the convective elements and the convective tem-
perature gradient is greater than the adiabatic gradient.

(1.12)

Stellar Structure

Order of magnitude estimates of the density, pressure, and temperature of a
star can easily be made from the condition of hydrostatic equilibrium. The mean
density of a star of mass M and radius R is

R M

= }nT

In the equation of hydrostatic equilibrium (1.1), setting
dp % P.— P, ~ P,
dr R

(1.13)
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where P, is the central and P, the surface pressure, gives

GMp GM?
P,z—ﬁz

R R*

(1.14)

Let § = P,../P be the ratio of gas pressure to total pressure and assume that the
material of the star is a perfect gas. Then the central temperature is obtained from
the perfect-gas law (equation 1.2):

(1.15)

For the sun
L = 3.89 x 10°3 ergs/sec
M=19 x 1033g (1.16)
R =695 x 10'°cm

Thus, the internal conditions of stars are of the order of magnitude
- ()
P .~ 11 x lO"’(Mia)z(ERg)‘ dyn/cm?
T.=23x 10’"ﬁ(Mie) (Ekg)ﬂ(

INAYLA
&= 1.9(1—0) (7) ergs/g-sec

as functions of the stars’ mass, radius, and luminosity given in solar units.
For a more detailed account of the restrictions imposed by hydrostatic eqpili-
brium on stellar structure, see Chandrasekhar (1939).
This section is concluded by calculating the gravitational potential energy
of a sphere of uniform density. The gravitational potential energy is

(1.17)

° r

R R
Q= —‘[ CMO) imry = gj' ® dM(r) (1.18)
[

where @ is the gravitational potential. )
For a sphere of uniform density, the equation of hydrostatic equilibrium (1.1) is

1dF_4(0y . 22
pdr dr T dr
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Upon integrating, using the boundary condition that P/p — 0 at the surface, we get

—-0+0,=§ and 0,=-G—’:’—
then

GM (" "p
= —;—S dM(r) — QI ZdaM(n
R J, of

2 R
—i% - }I Panr? dr
()

iGM2+4_1rJ’dP3
R Tela’

—im:z +3Q

Thus, the gravitational potential energy of a sphere of uniform density is

dr

0=-i—¢ (1.19)

The absolute value of the gravitational potential energy in an actual star will be
somewhat larger, but of the same order of magnitude.

STELLAR EVOLUTION

A star is a self-gravitating mass of gas in space. The evolutionary trend of
internal stellar conditions is determined by hydrostatic equilibrium and the loss of
energy by a star due to radiation into space. The life history of a star is the pro-
gressive concentration of its mass toward its center, pulled by its own gravitational
field, which releases gravitational energy, supplies the energy losses, and heats up the
gas. As the gas becomes hotter, thermonuclear reactions among various nuclei
become possible. At certain temperatures, the thermonuclear reactions can supply
the energy losses, the gas and radiation pressure can support the star, and the
gravitational contraction is temporarily halted.

A necessary condition for hydrostatic equilibrium is the virial theorem for a
self-gravitating mass (Chandrasekhar, 1939):

2K+Q=3y-1NU+Q=0 2.1

Here, K is the total thermal energy of the mass, U is its internal energy, and Q is its
gravitational potential energy. The virial theorem requires that the thermal energy
of a star equal half the absolute value of its gravitational potential energy (since Q
is intrinsically negative). As a star contracts and releases gravitational energy,
becomes more negative, and the thermal energy must increase. Half of the gravita-
tional energy that is released is stored as thermal energy, increasing the temperature
in the interior of the star, and half is radiated away.

The mean relation of temperature to density can be derived from the virial
theorem. For a sphere of gas whose internal pressure is given by the perfect gas law
with ratio of specific heats y = 3, the virial theorem (2.1) becomes

W+02=0 22
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For a uniform density distribution, the gravitational energy (equation 1.19) is

GM?
Q= -3 R
and the internal energy is
M
= et 23
U ikTﬂH 23)

where M/uH is the number of particles. Thus,

M
T- *%Gh‘ 24)

The density (equation 1.13) is

-

P~ R

, {
so that 3 2 3 P
16 N R P

Thus, the relation between temperature and density for stars with negligible radia-
tion pressure is

L 3
T=41x 106,;(%) p*°K 2.5)

For nonuniform density distributions, the same relation holds between the local
temperature and density, but with a slightly different numerical coefficient.

The above temperature—density relation does not hold for those stars whose
internal pressures are predominantly governed by radiation pressure. The gas and
radiation pressures contribute equally to the total pressure when

k
4 _ T
faT Tl
or .
T =255 x 107p* (2.6)
This condition occurs at 5.5M . For heavier stars, radiation pressure is predominant.
In such cases, y = $ and the virial theorem gives U = —Q. Thus,
1 GM?
=-aT* =
U pa 3 =
so

20na

R

T= (&)’_M_* 27

¢

Introduction 9

Expressing R in terms of the mean density (1.13), we obtain the temperature-
density relation
4n\ %3G \¢
T=[— bt t,t
(3) (&)

§
=192 x 107(Mi) K

o)

(2.8)

The temperature depends on density as before (to the § power), but the effect of
mass is less pronounced.

The temperature—density relations (2.5) and (2.8) describe the dependence of
the temperature on the density inside a star. They also describe the evolution of
stars, which consists of progressive gravitational contraction, increasing the central
density and temperature according to

T o p?

Some simplified evolutionary tracks for internal stellar conditions are shown in
Figure 1.

When the central density of a star gets very great, the electrons may become
degenerate and the equation of state thus changes. The boundary of degeneracy in
terms of density and temperature has the asymptotic forms for low and high density
(nonrelativistic and relativistic energies):

k]
T=12x lO’(ﬂ) Low density

+
T=149 x 10’(1)
u,

(29)
High density

']
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Simple Evolutionary Tracks
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Figure 1. Simple evolutionary tracks for the internal conditions of stars of
various masses.
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The full boundary curve has been derived by Chandrasekhar (1939). This boundary
is also plotted in Figure 1.

Stars of mass less than about 1.3M o enter the degenerate region. For these
stars, the pressure due to degenerate electrons is so high that further compression
is no longer possible. This is essentially the end-point in the evolution of a star of
small mass. The star becomes a white dwarf, achieving in this process some maxi-
mum temperature which depends specifically on its mass.

The general evolutionary trend of contraction, increasing the central density
and temperature, is interrupted periodically by nuclear burning. The energy-genera-
tion history of a star is a succession of gravitational contractions which raise the
central temperature of the star sufficiently to initiate thermonuclear reactions; the
thermonuclear reactions transform a given type of fuel nuclei into heavier nuclei
and release energy; the supply of the given fuel nuclei becomes exhausted and the
core resumes its gravitational contraction. The order of thermonuclear reactions is
determined by the nuclei present and their charges. The larger the nuclear charge,
the higher its Coulomb barrier and the higher the kinetic energy (temperature) of
the bombarding particles must be to penetrate the barrier and initiate nuclear
reactions. A schematic sketch of the energy history of a star is shown in Figure 2.
During nuclear burning, the temperature is almost constant. During gravitational
contraction, the isotopic composition does not change.

The most abundant element is hydrogen, which also has the lowest charge, 1.
It is transformed into He®, releasing 6 x 10'® erg/g at temperatures above 107 °K
(Reeves, 1965). Helium is transformed into C!2 at temperatures above about 10° °K,
and at slightly higher temperatures carbon reacts with helium to form O'¢. The

as} ] | 1
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6.2 1 1
T 8 9 10
log T :
Figure 2. Energy history of a star (schematic diagram) Nuclear burning
stages and the resulting composition of the core of the star are shown.
Where two curves are drawn, they represent the lower and upper limits of
the range of nuclei produced (Reeves, 1963).
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amounts of carbon and oxygen produced in the core during helium-burning depend
on the central temperature and therefore on the mass of the star. The C and O
curves in Figure 2 are the lower and upper limits, respectively. Carbon reacts with
itself at tem{)eralures above about 7 x 10°® °K ; carbon-burning produces nuclei in
the range O'® to Mg?%. The two curves again are the upper and lower limits. Neon
photodisintegrates and oxygen reacts with itself at still higher temperatures, about
1.4 x 10° °K. Neon-burning produces predominantly O'® and Mg?*. Oxygen
produces isotopes in the mass range 4 = 25 to 32, with a strong peak at Si?®. The
two curves show the lower and upper limits.

The full chain of thermonuclear reactions does not occur in all stars. For a
star of given mass, there is a maximum central temperature attainable in a non-
degenerate core. The exclusion principle requires that the average separation of
particles be greater than the electron wavelength:

_ m\* h
F=(2L) >4 =——-=
( p) 2 OmkTy (2.10)

where 7 is the size of a cube containing one proton and A, = /P and P = 2mkT)}.
Using expressions (1.13) and (2.4) for p and T, we must have

hpt Mo\t (Ro\?

1> —————— =00914p~#=2) (=2
mi@mkT)} # (M ) (R )

Thus, the condition for nondegeneracy requires

R a (M)}
(E;) > 8.36 x 10”3y l(‘ﬁe) .11)

Thq necessary c_cntral temperature for hydrogen-burning is 107 °K, so that mass and
radius must satisfy the condition, from (2.4),

() -
M )\R ) Z 361 x 10° — 16 12

Combining these two requirements, equations (2.11) and (2.12), the minimum mass
of a star that can burn hydrogen is

M

For helium-burning, the central temperature must be 10°® °K. The maximum central
temperature occurs when the hydrogen-burning shell has burnt its way almost to the
surface, so we can treat the core as a homogeneous star. The minimum mass for
helium-burning is thus

M M
; Rkl -
”‘Mo >0.28 or Mo =018 (2.149)

The necessary central temperature for carbon-burning is about 7 x 10® °K, so the
minimum mass for carbon-burning is

M
oz 12 (2.15)
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The necessary central temperature for neon- and oxygen-burning is 1.3 x 10° °K,
so the minimum mass for neon- and oxygen-burning is

M

; Ll
[I,Me =19 (2.16)
Oxygen- and neon-burning are the end point of thermonuclear burning stages.
Nuclear reactions among larger-mass nuclei (further photodisintegrations and re-
combinations) would occur in the temperature range of 2 to 4 x 10° °K. However, at
these temperatures, the rate of energy dissipation by neutrinos (which are produced
in the core and escape directly from the star) is so large that further nuclear reactions
are unable to halt the gravitational contraction, but can merely slow it down.
These reactions can, however, produce nuclei all the way up to Fe*®, and the tem-
perature is high enough to produce statistical equilibrium among the various nuclei.

EARLY STAGES OF EVOLUTION—HOMOGENEOQOUS STARS

Hydrostatic equilibrium and overall energy conservation determine the evolu-
tion of central stellar conditions. For more of the details of evolution, including
the star’s radius and luminosity, the mode of energy transport from the interior to
the surface must also be considered.

The equations of stellar structure—mass conservation, hydrostatic equilibrium,
energy conservation, and energy transport—form a system of nonlinear differential
equations which must be integrated numerically. It is possible, however, to obtain
crude analytic stellar models by separating the condition of hydrostatic equilibrium
from the energy transport. In the previous section, the condition of overall hydro-
static equilibrium was expressed by the virial theorem. Now, since a more detailed
stellar model is desired, we assume an analytic density distribution, namely, that the
density in a star varies linearly from the center to the surface (Cameron, 1963).
It is then possible to integrate the equations of mass conservation, hydrostatic
equilibrium, and energy generation through the star. Hence, together with the
equation of state of an ideal gas, the run of density, mass, pressure, temperature,
and luminosity through the star is determined. Also, the central density, pressure
and temperature, and the total rate of energy generation are determined as a function
of the star’s mass and radius. Finally, the different modes of energy transport—
radiative transport with Kramer's or electron-scattering opacity and convective
transport—are considered. The energy-transport equation can be satisfied at only
one typical point of the star because of the approximation made in assuming a given
density distribution. This gives a mass-luminosity—radius relation which gives the
evolutionary track of the star in the Hertzsprung-Russell diagram.

To summarize: Hydrostatic equilibrium and energy conservation determine the
changes in the central stellar conditions, including the mode of energy transport,
which gives the changes in the surface conditions—the track in the Hertzsprung-
Russell diagram.

Linear Stellar Model
Assume that the density in a star varies linearly from the center to the surface:

o1 = o1 - 7) )

where R is the radius of the star. We call this a “linear star model.” The equations

BT T e L
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of hydrostatic equilibrium and energy generation can now be integrated, but the
energy-transport equation can only be satisfied at one point in the star. The mass
distribution is [from equation (1.4)]

M(r) = j; 4nrip(r) dr
o X r
=3 P (1 = ii)

M(R) = {np R*

3.2)

Hence

Thus, the central density is

M
" 7R3

= S.M(Mﬁo) (R—RQ)J g/cm?

The pressure is obtained from the equation of hydrostatic equilibrium (1.1)

! Pe
3.3

P=P— j‘ GM(r)f(r) dr
0 r

where P, is the pressure at the center. Hence

2n r r?
—p _ 2.3
P_P: 3GPJ' (]_%_.l_i_z)

Applying the boundary condition P(R) = 0, we get

n

P=
36

(3.4a)

Gp’R’(S— 24r*  28r° 9#)

TR OFE
and the central pressure is

Sn

2p2 15 M RO ¥
P, = RGp,R =444 x 10 M, T) dyn/cm? (3.4b)

Assume that the radiation pressure is negligible; the temperature is then given by
the perfect gas law, equation (1.2),

2 3
r_BHP _ = Gu ‘R2(5+57 19r 9r)

= 7" %N = (3.50)

R R'R
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and the central temperature is
Sn GuH 2 M\ (Ro
=—— =962 x 10%u{— |2 )°K 3.5b
=3 % PR x u(Mo R (3.5b)

We now know how the density, temperature, and pressure vary throughout the
interior of this linear star model. We have satisfied the condition of hydrostatic
equilibrium. The run of pressure, temperature, and density through the star is
shown in Figure 3.

We must now consider the condition of energy conservation. The rate of
thermonuclear energy generation can be expressed in the form (Reeves, 1965)

£ = Jop"(l) ergs/g-sec
To

The total net rate of energy generation is equal to the luminosity of the star (equa-
tion 1.6)

R
L= 4npr)er dr
(1)

For a linear density distribution,

T\
L= 4nR’60pf(Fo) I,
_36J G“HL -Mllrl#-
Tn° k T,) R*" "

(3.6)

& - 2 S ; Dory A oy
(e pp, CND S it 2o b
where
e j;xl(; — XPR 4 2x — 18xYdx
is the integral of [p(r)/p(]’?;(r);r‘} \over the star and has values of the order 10~*
or 10”2 Thus,
LLG _ 35.5“01.[01.-:?]-“_(%)"n 1(%)“3: A

Here, Ty, is the temperature in units of 107 °K. The energy generation and lumi-
nosity in a 1M g star are shown in Figure 4.

Radiative Energy Transport

Finally, consider the equation that governs the flow of energy through the
star. First consider radiative energy transport, equation (1.8):

L, e it
" il xp dr

so the temperature gradient necessary to drive the radiative flux through the star is

T T L] T
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We consider two types of opacity (Cameron, 1965, and Cox, 1965):
(1) Kramer's opacity

= -3
x = %opT (8)

xo = 434 x 10”(’%)2(1 + X) + 368 x 10223, {1 + X)(X + Y)

where X, Y, Z are the mass fractions of hydrogen, helium, and all the heavier ele-
ments, respectively. The first term is the bound-free and !hc.second the frecjfree
absorption. We take (t/g,,) = 3 and g,, = 1. Kramer’s opacity is a good approxima-
tion at intermediate internal temperatures.
(2) Electron-scattering opacity
x = %, = 0.20(1 + X) 39
which is dominant at high internal temperatures. We also assume for convenience
that all the energy is generated at the center of the star, so that
L, = L = constant
The temperature gradient for Kramer’s opacity is
dT _ 3x p? L
dr ~ 4ac T3 4nr?
Compare this expression for dT/dr with the radial derivative of T from the linear
model

(3.10)

dT = Gup r r?
<. 8 £ NS | AT R 311
ar 36 kN, R(5 g+ g 210

For our analytic model, these two expressions for the temperature gradient cannot
be equal throughout the star. We determine the luminosity by equating the above
two expressions at r = 0.5R:

dac TS® (dT
= —4nr? 3 (T
L = —4nr; 3% P3 (dr),

where ry = 0.5R

31 _Gpp, ,,
=2 R
T = 288™ %N,
py = 0.5p,
d —29n Gpu
) = T R
(d-:), 144 kN,"
Now
M
Pe = IR3

Thus, when Kramer’s opacity dominates,

29(31\ *ac(GH\™* , ;M**
— (3] () et 3.12
L= 96) x.,( k) HRes 312

or

L _ 0.988 wsf M3 RYOS
Lo {1+ X)[Z+254x 1071 — 2))" (Me) R, (G.13)

Solar matter is approximately two-thirds hydrogen and one-third helium by
weight. The mean molecular weight for twelve nucleons, of which eight are hydrogen
atoms and one a helium atom, is

_ Mass _8x1+1x4
# = Number of particles 8 x2+1x 3
12 . .
=pg = 0632 B kol , Gnbe ~a X&
u’3 =0.0320
Hence, for solar mass and radius, \J/
L _ ‘ 59,
L_o = 0915 =

Thus, the linear star model gives a result which is within 10% of the observed value.
The luminosity increases rapidly with the mass of the star and increases slightly
with decreasing radius.

When electron scattering is the dominant opacity, the temperature gradient
needed to transport the energy flux L is

— = (3.14)

Determining the luminosity by equating this temperature gradient with the expres-
sion for dT/dr obtained in the linear model (3.11) at the midpoint r = 0.5R gives

which is
29 ,(31\*(GH\*ac ,. .
L= ?1( —88> (——k ) ;‘:[l M (3.15)

Hence, when electron scattering dominates,

L 179 (M3
Lo~ T+x* (A—l—) 316
The luminosity is independent of the radius and increases with mass, although less
sensitively than for Kramer's opacity.
Equations (3.13) and (3.16) are the radiative mass—luminosity-radius relations

for Kramer's and electron-scattering opacity. The effective surface temperature is
defined by

e 4
flux = o T g,
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Convective Energy Transport

Convection is an extremely efficient mode of energy transport. Therefore, in a
convectively unstable region the entire energy flux can be transferred with only
negligible adjustment in the super-adiabatic gradient: —[(dT/dr) — (dT/dr),4} The
energy flux is thus determined by the boundary layer of the convective region
(Spiegel, 1965}

If the star has a substantial region with radiative transport, that region will
determine the energy flux. If, however, the stellar interior is completely convective,
the boundary layer determining the flux is the thin radiative photosphere surround-
ing the convective zone, where the energy must be transported by radiation since
the material is becoming optically thin. The luminosity of the star is then determined
by the temperature of the gas at the point from which photons can escape from the

star,

or

3.17)

L = 4nR%T?

where T, is the effective surface temperature of the star.

The depth in the star from which photons can escape nearly coincides with the
transition point between the radiative and convective regions and occurs at an
optical depth of about . The radiative temperature gradient drops rapidly as the
density decreases, so the temperature is practically constant from this point out-
ward. We thus assume an isothermal photosphere and take the effective temperature
as the temperature at the transition point between the convective and radiative
regions (Hoyle and Schwarzschild, 1955, and Hayashi, Hoshi, and Sugimoto, 1962).

We assume an opacity law of the form

x = xoP*T®

Then, since the bottom of the photosphere is at an optical depth %,
T= Im xpdr=%= xoT:r’ Pepdr
Tph fph

and from equation (1.1)

_ e
= g dr
S0
1 LY TDP-+I
T (S,
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where P,, is the pressure at the bottom of the photosphere. Thus, one relation
petween the temperature and pressure (or density) at the bottom of the photosphere
is

. GM
TP =Ha + l)m

This relation is the boundary condition for the star:

(3.18)

P—P,=%a+ ne as T-T,
Xph

This condition is just that the photon mean free path (xp)~! equals the scale height
P/pg at the boundary so that the radiation can escape from the star at the effective

temperature.
A second condition on T, and P,, can be obtained from the condition for the

boundary of the convective zone, namely,
Fc=Fy

In the expression for the convective flux (1.10), approximate the velocity w by half
the sound velocity
_ [¥kT 4
" (uﬂ)

since ¢ is an upper limit to the velocity. Also, approximate pc,0 by y times the
internal energy

p
=#rLt =
U=3 uH 3P
Then the convective flux is

Fc = §pc,wb ~ th

- ﬂ( _k_ *pTQ (3'19)
~ 8 \uH
The radiative flux is
Fp =0T} (3.20)
Thus, equating (3.19) and (3.20), the transition point is given by
8 (uH\*
P, = —|— 3.5
oh 37(7") oT, 3.21)

The conditions (3.18) and (3.21) can be combined to determine the effective
temperature, which is

3')' 1+a G 7k (1+a)/2 _ ; M 116+3.5(1+a)
1: = [i(l + a)(g) 01—4,.70(—’? u 1@z F)] (322)

In the outer layers of stars, the opacity is due primarily to H™ and is an increasing
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function of pressure and temperature, so a, b > 0. The H™ opacity is very tempera-
ture sensitive, so b is large. Thus, T is nearly constant; it increases slightly with
increasing mass and decreases slightly with increasing radius.

The approximate power law form for the opacity obtained from the detailed
opacity calculations in the region about 3500 °K is as follows:

For population I stars (X = 0.6, Y = 0.38, Z = 0.02)

x =69 x 10726p°-7T3:3
For population II stars (X =09, Y = 0.099, Z = 0.001)
x = 6.1 x 10740po-sT%-4

where X, Y, Z are the mass fractions of hydrogen, helium, and all the heavier ele-
ments, respectively. The luminosity is found by inverting equation (3.17):

L 4nR%T? T, Y RY)?
LW - 5) (= (3:23)
P Lo 576 x 10°) \R,

Then the effective temperature and luminosity are:

For population 1
0.089 -0.178
T,=175x 103(i> (i)
Mo, Ro

0.356 1.288
L e MY (R
Lo Mo, Ro
For population I1

e B4 lo!(ﬂ_)o.osso(i -0.133
€ = M, Ro,

L 0.2665 1.466
e 1_34(14_) (L
Lo~ WMo \Ro

The effective temperature is less sensitive to the radius for population II than for
population I stars because the opacity is more sensitive to temperature. In popula-
tion II stars, there are fewer metals with low ionization potentials to provide electrons
to form H-. The electrons must now come partly from the ionization of hydrogen
which has a high ionization potential, so the electron pressure will be very tempera-
ture sensitive.

In stars with high surface density, the relation (3.21) between the pressure and
temperature at the bottom of the photosphere is not valid, because in deriving it
from the boundary condition F. = Fg we evaluated the convective flux by assum-
ing that the temperature fluctuation is of the order of magnitude of the temperature
itself. This assumption is valid only in stars where convection is inefficient near
the surface due to low density and large radiative losses from the convective ele-
ments. In stars with high surface density, convection is very efficient and the tempera-
ture gradient in the convective region is nearly adiabatic throughout. In this case,
the temperature fluctuations are much smaller than the order of magnitude of the
temperature itself.

(3.24a)

(3.24b)
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For stars with high surface density, we therefore go to the opposite extreme
| from the low surface density case and assume that the temperature gradient is
adiabatic throughout the convective zone. We may then use the adiabatic relation
between pressure and temperature. In the interior

P=KTVo-» - KT

since (neglecting radiation pressure) y = %, except in the hydrogen-ionization zone.
For a fully convective star

<

K = constant =

' TS
‘ From the linear model (3.4) and (3.5)
_som
€ 4n R*
_S5GuH M
712 kK R

thus

5/12 2.5 k 2.5
K== BB -1.5p¢-05p-1.5
ls) () oo
-0.5 -1.5
=1.53 x 1072~ 23 i L
Mo Ro

In particular, the above relation holds at the bottom of the hydrogen-ionization
zone.

If we neglect the effect of hydrogen ionization, which reduces y, then at the
boundary between the convective zone and the photosphere

Py = KT23

with }he same K as for the interior. This relation, combined with the optical depth
condition from equation (3.18), gives the effective temperature

11b+2.5(1+a)]
L= [%(1 +a) GMZK““"]
»xoR

| 1+ af4n(S\*3(H\**]'*e
i e 1 N e )

}Illl+ 2.5(1+a))

X #ZAS(I+l)Ml.500.S|RL5l—0.S

T = 218 x 103(—hi)o.194(£.)o.0576
Mg Ro,
_L_ _ 0.02(%)0.775(5)1.23
Lo [} Ro,

For population I
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For population II

M 0.1718 R 0.0298
- M o
e (2)

0.686 2.119
- (2)
Lo Mo Ro

The hydrogen ionization can, however, be treated exactly and we can relate
K, = P,/T?* at the top of the hydrogen-ionization zone to

K = PJT}3 = P/T?®
at its bottom. The effect of the ionization zone is to decrease

dinT I -1

dmP T

so that the temperature will decrease less than the pressure going outward through
the ionization zone. Then K, < K and T, will be increased. Since the temperature
varies adiabatically through the ionization zone, the entropy is constant across it.
The entropy per unit mass is

s _—[i(l +x+ 6)+— + ln(ZZIH) éIn (8:?)

(3.26)

hz

*T)H1 + x + 5)]
P

)
+xln(2 m‘) +(1+x+d)n

where y is the ionization energy of hydrogen, § = Y/4X, and x is the fraction of
hydrogen ionized. Evaluating s = constant above and below the hydrogen-ionization
zone, that is, for x = 0 and x = 1, respectively, gives

P 21tm REICRL VAN e )(200)/(145)
7is = K '“”’[( ) ('“’] (2+6

Thus, the effective temperature is

2\4 1(1+8) 4n(2 S $|(2+8)/(1+d)|1+a
= [ () o] 2 ()]

x Gl - 1.5(1+al(2 +8)/(1 00)]"2.5(1 +a)(2+3/1 #l)]Ml +0.5(1+al(2+)/1+3)]

1b+2.5(1 +a) (3.27)
x R1-S(+aN2+a0(1+8)-2 .

Again, in the high surface density as in the low surface density case, the effective
temperature is very insensitive to mass and radius.
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For population I
0.27 0.288
T, =5.65 x lO’(ﬁ) (—R—)
Mo Ro

L M 108/ R \313 (3.28a)
—~ =09 —
s 3(“0) (Re)

For population 11

M \ 01925/ R\ 0.204
=4, 103 — —
m=aa o)™ ()

0.77 2.816
L _oafM R
Ls Mo, Ro

The evolutionary tracks of stars in the Hertzsprung-Russell diagram depend
on the mode of energy transport, which determines the mass-luminosity-radius
relation. For fully convective stars, the luminosity is determined by the surface
condition. Since the opacity is very temperature sensitive, the effective temperature
is nearly constant, independent of the radius, and the track in the Hertzsprung-
Russell diagram is a nearly vertical line. The mass—luminosity-radius relations for a
fully convective star are given by equations (3.24) and (3.28), so the track in the H-R
diagram will be:

(3.28b)

Evolutionary Tracks

For population I (X = 0.6, Y = 0.38, Z = 0.02)

L T, M .
log(l_e;) = —-17.236 log(m—) + log( M e) (Low surface density)
(3.29a)

L T, M
log(L—e) = 10.94 log(m) 1.874 Iog(M ) (High surface density)

For population I (X = 0.6, Y = 0.38, Z = 0.02)

L T, M
log(L—e) =-11 Iog<6——.19 ” 10’) + log(xf—a)

L T, M
log(—) = 13. e ) _ M
og(Le) 13810g(4.93 = 10’) 1.887 log(Me)

For stars with radiative energy transport, the flux [equation (1.8)] is

(Low surface density)

(3.29b)
(High surface density)

since T?/p is approximately constant. The opacity in the interior of a star is nearly
constant, so the luminosity is approximately proportional to RT,, which is constant,
independent of the radius. Thus the track in the Hertzsprung—Russell diagram is a
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nearly horizontal line. As the temperature rises, Kramer’s opacity
xoc pT™3% oc T7O3
decreases, and the luminosity increases slightly. The mass—luminosity-radius relation

for a radiative star with Kramer’s opacity is given by equation (3.13) and the path
in the H-R diagram is

L T, M
log(L—e) =08 log(m) + 44 log(M—o) + 6logpu

—08log[(1 + X)}{Z + 254 x 10731 — 2)}]  (3.30)

If the central temperature becomes very high and the central density is low, the
dominant opacity is due to electron scattering. Electron-scattering opacity is
independent of temperature and density, so the luminosity is constant. The mass—
luminosity-radius relation is given by equation (3.16):

L _ 119 ‘(i)’
Lo 1+ x"\M,

1R\
T, = 214 x 1041 x X)‘*p(Ml) (:_)
o, [o)

The changes in the stellar radius depend on the sources of energy and the internal
structure of the star.

(3.31)

PRE-MAIN-SEQUENCE CONTRACTION PHASE

The linear stellar model is now applied to the pre-main-sequence contraction
stage of evolution. A star is formed from a condensation of the interstellar gas that
is dense enough to become opaque to its own radiation. Then, as the gas contracts,
its temperature will rise. As the temperature rises, the gas, composed predominantly
of hydrogen and helium, is ionized. Much energy is necessary to ionize the gas,
which means that the temperature cannot rise much above 10* °K until the hydrogen
is ionized. The ionization of the hydrogen and helium leads to gravitational in-
stability, since the energy released by the contraction does not increase the kinetic
energy per particle (the temperature) but goes into the ionization energy of the atoms.
Hence, the contraction of the gas does not raise the pressure sufficiently to permit the
gas to remain in hydrostatic equilibrium; the ratio of specific heats y falls below %,
and the collapse must continue.

A stable star is not formed until its major constituents (hydrogen and helium)
are ionized throughout most of the gas fragment. The energy necessary for ionization
comes from gravitational potential-energy release (Truran, 1964). Let I be the total
dissociation plus ionization energy per gram of stellar material. The gravitational
potential energy is Q ~ —GM?/R. From the virial theorem, half the gravitational
energy released goes into thermal energy. Thus,

GM?
IM =1} R
SO
GM
max = iT

P G7 L Lo cmiso st bk e e G o, AV =14 4R P S - S R O T MM 11510 PN SO L5010 TR SO RIS UOR O
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The dissociation plus ionization energy is
X Y
1= No(ib" + XEy + ZE"')

where Ny = 6.025 x 10?3 is the number of hydrogen atoms per gram; Dy is the
dissociation energy of hydrogen molecules, Dy = 4.476¢eV = 7.16 x 10™ ** ergs;
Ey is the ionization energy of hydrogen, Ey = 13.595eV = 21.75 x 10~ 2 ergs;
Ey. is the ionization energy of helium, Ey, = 24.581 + 54.403 ¢V = 78.984 ¢V =
1.26 x 10" "%ergs. Since Y =1 — X

I =19 x 10'3(1 — 0.3X)ergs/g
The maximum radius of a stable star is thus

R 503 (M
(ﬂ)_. N m(ﬁ;) (332)

Such a marginally stable star is the starting point of stellar evolution.

When a star becomes stable, its internal temperatures are of the order of
10° °K, and the opacity is so high that the radiative transport of energy is impeded.
Further, there are extensive ionization zones which increase the specific heat and
reduce y to less than % throughout large regions of the star. Thus the adiabatic

gradient
("_T) __1-1uH
d’ ad B b 4 k §

will be small and the star will be unstable to convection throughout most of its
interior. Its luminosity will then be determined by the surface conditions. For a
given star, the rate of contraction is limited by the rate at which energy can be
radiated away

aQ GM?*(1 dR
L= -3 —~ — P e,
idt iR Rdt)
SO
_1dR_ IR
Rdt "~ "GM?

where @ = 1. The equilibrium stellar structure is that with the highest contraction
rate, i.e., with the highest luminosity, so the condition for a fully convective star is
that the convective luminosity exceed the radiative luminosity. Initially, stars are
fully convective. The effective temperature and luminosity of a marginally stable
star, as given by the fully convective linear model for low surface density (3.24), are

T, =36 x 103(—1‘1)_0'0"

Mg i
L MY population I
— =571 x 10*| —
Lo M

M -0.0667
-3, (L
T, = 3.52 x 10 (Me)
M 1.733
M_G)

L population II
— =591 x 10’(

Lo

- — ——— a— T
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Schwarzschild, 1958).

These relations give the starting point of a star’s evolutionary track in the Hertz-
sprung-Russell diagram.

As a star contracts, when fully convegtive, the effective temperature is nearly
constant. The tracks in the H-R diagram for fully convective stars follow equation
(3.29). These tracks are shown in Figure 5. The tracks for population II stars are
similar to, but slightly steeper than, those for population I stars.

As a star contracts, its central temperature increases according to (equation
3.9):

The rising temperature increases the emission of radiation and reduces the opacity.
A central core which is in radiative equilibrium will develop. When about half the
star is in radiative equilibrium, it leaves the fully convective path. The luminosity
of a radiative star is necarly constant, and the effective temperature varies as
T, ~ [}R™*. Thus, as the star contracts, the effective temperature rises and the
star moves to the left in the H-R diagram at nearly constant luminosity. The
track in the H-R diagram for a radiative star follows equation (3.30) for Kramer's
opacity and equation (3.31) for clectron-scattering opacity. Typical radiative tracks
in the H-R diagram are shown in Figure 5.

Time Scale of Contraction
The luminosity of a star is the rate of change of total energy
_AE_ a0
T At At

b B ) e TGS QIO T I8 AR

~N-

Introduction 7

The gravitational energy is [from equation (1.19)]

GM?
-Q= R
s0
GM?
L=4{——
iRAt

Thus, the time scale of the contraction phase is

GM?
Ar=dre

_ JSM ’(Re L\
=159 x 10 (M—e) R Ze_; years

Pre-main-sequence contraction times are listed in Table L

(333

CENTRAL HYDROGEN-BURNING

As a star contracts, its central temperature rises until it is high enough for
hydrogen (herm_onuclcar reactions to produce the energy radiated away from the
star. At this point, the contraction stops and the star spends most of its lifetime

Table I. Evolutionary Time Scales (Years)

Mass Populati Pre-main-seq Central Hydrogen Central
(Mo) contraction hydrogen-burning  shell-burning  helium-burning
0.7 1 7 x 10’ 5 x 10'° 8 x 10° 1x 10
| 8 x 10’ 5 x 10'° s x 10° 6 x 107
1 1 2 x 10’ 9 x 10° 4 x 10° S x 107
] 3 x 107 9 x 10° 2 x 10° 4 x 107
2 1 2 x 10° 5 x 10° 6 x 107 2x 10’
| 3 x 10¢ 7 x 10° 2 x 10° 2x 107
5 I 1x 10° 3 x 10’ 4 x 10* 1x 10’
1 4 x10° 8 x 107 1 x 10’ 2 x 10
7 1 6 x 10* 1 x 10’ 2 x 10° 7 x 10¢
1 2 x 10° 4 x 107 7 x 10° 8 x 10*
10 1 3 x 10* 8 x 10* 1 x 10* 3 x 10°
1] 1x 10° 2 x 107 3 x 10* 3 x 10*
15.6 1 1 x 10* 3 x 10° 5 x 10° 1 x 10*
un 6 x 10* 9 x 10* 1 x 10* 1 x 10°
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burning hydrogen into helium. The locus of luminosity versus effective surface
temperature of such stars (burning hydrogen in their cores and still of nearly homo-
geneous composition) defines the main sequence in the Hertzsprung-Russell
diagram.

The luminosity of a star is determined mainly by the thermal conductivity
(radiative) of the stellar material. The central temperature is determined by the
adjustment of the nuclear-energy generation to maintain mechanical and thermal
cquilibrium throughout the star. Nuclear-energy generation processes are very
temperature sensitive, and thus nuclear-energy sources play the role of thermostats.
The radius of the star depends on the temperature and the mass distribution.

The basic features of the structure of homogeneous stars can be determined
by dimensional analysis. The dependence of the central temperature and density on
chemical composition, mass, and radius is determined by the condition of hydro-
static equilibrium and the equation of state [from equations (1.15) and (1.13)]

M
T cupp
(3.34)
M
Pe X g3

The luminosity and radius are then determined by the energy balance. The equation
for radiative energy transport (1.8) is

166 T3 dT
L= —-4n 2—3— o dr
Assuming an opacity law of the form
x = %op°T®
the luminosity is
Loc x5 '(pB)“"M""'R"“ (3.35)

The rate of nuclear-energy generation is [equation (1.6)]
L=4n I &prtdr
Assuming the rate of nuclear-energy generation per gram has the form
& = 8p'T"
the total rate of energy generation is
Loc Ey(up)y"M! ¥R~ 3" (3.36)

When the rate of energy generation equals the rate of energy loss (luminosity),
then the dependence of the radius, luminosity, and effective temperature on the mass
and chemical composition is (Hayashi, Hoshi, and Sugimoto, 1962)

R (Joxo)”‘(llﬁ)(” b— 4)/lM(l +ntatb-2)/1
Lo x; =+ 3!)/'6103.¢l)ll0‘ﬂ,u(‘# la)+ 3M‘—bllllMlql +2a)+k(9— 2b)+ 3a+b)/I (3.37)

T: o ,‘o-(n+ 3k- Z)/l‘(OJIQD— z)ll(“ﬂyﬂl +3a)+3k(4-b)-2b+ OIIIM[-(] +2a)+k(7-2b)+a—-b+ 4/l

(
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where | = n + 3k + 3a + b and b < 0 in the interior. The central temperature and
density are

1; o (50"0)- |/‘(”B)(‘+SR*JI)I|M1“*-* nn
Pe o (&oxo)—lll(ﬂﬂ)— J(l#h-‘)llM—I(r'b-))ll

Thus the radius, luminosity, effective temperature, and central temperature increase
with mass, and the central density increases with mass for the p-p chain, n = 4, but
decreases with mass for the CNO cycle, n ~ 18.
The main sequence is the locus of points in the luminosity—effective temperature
diagram
log(L) _, n3+2a)+k9—2b)+3a+b

(3.38)

log T, + constant

Lo) n(1+20)+k7—-2b)+a—b+4
S5n + 155 5
=43 155 log T, + constant (Kramer’s) 3.39)
3n+9
Y (el N i
P log T, + constant (electron scattering)

The central temperature of a contracting star is

M\(R
— 7 o]
Te =962 x 10 "(Me)(k)

Hydrogen burning starts at about T, = 8 x 10° °K. Thus, a star will start generating
energy by nuclear reactions when its radius is

R M
= 1.2,‘(M—°) (3.40)

Stars of small mass, M < 2M o, burn hydrogen by the p-p chain at a tempera-
ture around 1.5 x 107 °K. The rate of energy generation is approximately

T 4
£=4bw (W) S
8o =X rzi
where X is the mass fraction of hydrogen. Massive stars, M 2 2M ¢, burn hydrogen

by the CNO cycle at a temperature of about 2 x 107 °K. The rate of energy genera-
tion is approximately
T 18
¢ = ‘op(Z_xW) ergs/g-sec
8o = 451Xy X no
where X no is the mass fraction of C + N + O. The energy-generation rates for
the linear model are [from equation (3.7)]

L M\*/Ro g
— = 4. =34 — — i
98 x 1073y (M ) (R) (p-p chain)

16 17
LL = 1.157 x lO“p“(MlQ) (%) (CNO cycle)
)
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The properties of population I stars on the main sequence—burning hydrogen
in their cores—as given by the linear model, are:

For the p-p chain and Kramer’s opacity

0.0769
LI PR
Ro Mo,

L M\
— =491 797
Lo kY (Me)

M 1.058
= 4 ,2.21
T, =218 x 10*u (Me)

(341)
log(—L—) = 5.16log T, — 0.74 log u — 20.7
Lo
M 0.923
T, = 3.05 x 107 p'-34(—
<04 (i)
M 0.769
= 186 1.618)
p.=186p (Me)
For the CNO cycle and Kramer’s opacity
R M 0.697
— = 0451 0.395f "
Ro R (M o)
L M 5.18
= =435 ’-3(—)
Lo~ % WMo
M 0.871
=234 0 ut 83 —
T,=234 x 10°u (Mo)
. (342)
log(L—) =5948log T, — 2.39 log u — 24.36
o,
M 0.364
T = 98 7 ,,0.606]
n =198 x 107 u (Me)
M -0.909
- -o0.4ss] ™
p.=658u (Me)

Stars switch over from the p-p chain to the CNO cycle at a central temperature of
about 2 x 107 °K, which occurs at a mass of about M = 2M . For the CNO cycle

(l.

t

and clectron-scattering opacity,

R M 0.76S
2 _o04 o.sss| 7
Ro Op (Mo)

L JIMY
t;"““(ﬁ;)

T, = 277 x 10* u°-’°°(h—7—)°'m
o,
(3.43)

log(LL) =816log T, — 1.76 log u — 34.15
o,
M 0.235
. 70412 "
T,=212x 10" (Me)

M\~ 1.294
— 6031788
p.=603pu (Mo)

Stars switch over from Kramer's to electron scattering as the dominant opacity
in the deep interior, for mass M > 3M ¢ for population I and M > 2M ¢ for popula-
tion IL
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The evolutionary tracks for different mass stars are shown in Figures 5 through
8. During the pre-main-sequence contraction, the stars contract to release gravita-
tional potential energy to supply the radiative energy losses from the surface of
the star. The radius of the star decreases. The direction of the track is determined
by the mode of energy transport: convection with low surface density, convection
with high surface density, radiation with electron-scattering opacity, or radiation
with Kramer’s opacity. Stars, when they first become stable, are fully convective,
except for very massive stars M > 12M ¢, (population I) and M > 17M , (popula-
tion II). Inclusion of radiation pressure will, however, modify this result by increasing
the convective instability. Stars become radiative when the radiative luminosity is
greater than the fully convective luminosity.

The main-sequence is the region of the H-R diagram where central hydrogen-
burning occurs. Here the central temperature is high enough for the hydrogen
thermonuclear reactions to supply the energy radiated away. There are three sections
of the main sequence with different slopes, depending on the mode of energy
generation and the type of opacity. Because the linear model is not sufficiently
centrally condensed, the radius must shrink in order to raise the central temperature
to high enough values to generate the luminosity, so the main sequence is shifted
to higher effective temperature and slightly higher luminosity than that obtained
from accurate calculations.

IR AN WP IS A Y,
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The equation for the consumption of nuclear fuel is

X & diati

- F (radiative zone)

i ! Ml &dM i

& = T EM, = M) = (r) (convective zone)

where X is the conogmration of fuel nuclei and E is the energy released per gram
gf fugl consumed. This equation can be solved for the time scale of central nuclear-
urning,

M
At = T EAX (344)

where L/M, = &, the mean rate of energy generation; E is the energy release per
gram; and AX = 1. Lifetimes of stars near the main sequence are given in Table 1.

- ———— e v,

e




3 Robert F. Stein

Convective Core

A star which is generating energy at its center by a very temperature- -sensitive
process will have a convective core. The energy-generation region is very small,
so the luminosity increases very rapldly with radius. The flux F = L/4nr? will then
be extremely large, since the radius is very small, which forces the radiative tempera-
ture gradient to become superadiabatic in order to carry the flux. This causes
instability to convection.

The boundary condition for the convective core is

dT dT
(m)M (w) 343

(ﬂ 1 TdP_ 1 T GM(r)p (3.46)
dr)w N+ D)aPdr (N+DaP P :
and
32— 24p — 3p?
= .47
(N + 1), S (347)
where
P
P
ary _ _ 3w L 1 TdP oo
dr ) e 160 T 4nr* (N + 1)q P dr
where
(N + 1)g = 16ncG(1 — pM(r) (3.49)
xL,
where
e yeT*
(- p="mt =y
Thus, the condition for convective instability is
(N + Dg < (N + 1),4 (3.50)
Expressed in another form, the boundary of the convective core will be at
M(r) 3 «xPL,
=N+ Desigrace T M
3.51)

1 L
= (N Ny— —
N+ Duigrce 1 - pM
For a convective core to exist, the effective polytropic index must be N,4
and decreasing inward at some point in the star (Naur and Osterbrock, 1953),
i.c., at the core boundary
din(N + 1),,4

2
dinr 0

Assuming x = »op°T "%, then

dln(N+l),,,,_4dlnT dinM(r) dinP dinx dinL,

dinr - dlnr+ dinr —dlnr—dlnr—dlnr
=[4+b+a_(1 )]dlnP dinM() dinL,
N +1 dinr dinr dinr
4+b+
-[—+ “—(l+a)]v+u-w 352)
N+1

where

e dIn M(r) _ 4nrip

dlInr M,
y_ _dlnP _GM@p
dinr rP
_dinL,
dinr

Expand M(r), P, L,, and T about their central values:

M(r) = $npr?
P = P, — aGplr*
L, =3np8r?
1T

T=T,- —— —AP=T, -

__z
N+1P }nG et

N+l

At the center, U, = 3, ¥, = 0,and W, = 3, so dIn(N + 1),,/dInr = 0 at the center.
Thus, the condition for a convective core

_din(N + 1)q 4+b+a
D= Tiss = (N+l —a—l)V+U—W20
becomes
dD
4_1720

since D, = 0 and V increases outward.
To evaluate dU/dV and dW/dV at the center, we must develop p and M(r) to
higher order, since in lowest order dU = dW = 0.

2
+1C')
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where C = $nG(p?/P,), so

’ 4n N
= 24y = 3 - 2
M(r)—4n.|‘ pridr = 3 P (l §N+1Cr)

o
Then
N 2
U—3(l—§~+lCr)
V = 2Cr?
thus
W __ N
v~ °N+1

Now consider W.

L = 4nJOI; p' T rdr

assuming an energy-generation rate of the form & = &,p?T", and

N 2 _ __N 2
p—p‘(l—N+1Cr) and T—T;(l N+1Cr

Thus
" N(1 + d) v
- 14+dpv _ 2 _ cr?)r2 d
L, = 4né,p,. T,Io[l NET Cr](l 1 r)r r
A ey v+ N1 +4d), .,
__3'—50”: Ttr 1 % N +1 Cr
4n % v+ N1 +d) .,
=gl [‘ R @
Then
d v+ N1 +4d) .,
= - -3 ————C
w 3+dlnr[|n{l 3 N+ 1 r
- _glerl
+1
S0
v+ Nd+1)
dW= —le—l—v—-;l—Crdr
and
dV = 4Crdr

e 1 s & ) s i , - oagicn A e

et ) A I —— D S
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Thus
ﬂ_-iv+N(l+d)
dv N+1
The criterion for the existence of a convective core is thus
dD

1
—_ = N — 5b — ;i
VoSN T 1)(3v+3Nd+5 a+5N—-5-15>0 (3.53)
where
32— 248 — 342
b= T 8-68
& = 8,p°T"

x = %op°T®
Nuclear energy-generation processes have d > 1, so the condition for a convective
core, assuming f§ = 1, is
v>43 (for Kramer’s opacity)
vl (for electron-scattering opacity)

Thus, all central nuclear burning processes, except the equilibrium p-p chain in
stars where Kramer’s opacity dominates at the center, cause convective cores.
The rate of gravitational energy release is &, = — T(ds/dt) oc T, so the condition
for a convective core is

N2>24 or B<0.75 (for electron-scattering opacity)
N>295 or f<032 (for Kramer’s opacity)

Thus, a convective core can exist from gravitational contraction alone in a massive
star. For # = 0, no temperature or density dependence of & is needed in order to
have a convective core.

Assuming the existence of a convective core and L, = L at the core boundary,
its size is given by
_IN+ 1), xL

"="7"8 16ncGM G54

For the linear model with electron-scattering opacity [equation (3.15)}, but including
radiation pressure

(N + 1),y 29n(31\*(GH\*a _, (1 + X, (M)z
% =5 32\m8) \ %) aM\ivx) o g
N+ 1)1 + X, (M)2
o 4 4
=6.8 x 10 ——l—ﬂ T+ X, Bu.) Mo
Assuming f is constant through the star,

1 3P 3k p 3k p,

1—B aT* BapH T®  PapH T3

1

- ——————— - S TYT

o AL Sl Al 2 iaied
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then the size of the convective core is

1+ X .
@ = 0.14(N + ”“(1 : x)(ﬁ") (3.55)

Note that the size of the convective core depends on the mass of the star only through
the radiation pressure.

ADVANCED STAGES OF EVOLUTION—INHOMOGENEOUS STARS

A star spends most of its life burning hydrogen into helium in its core. The
advanced stages of evolution comprise the star’s life after central hydrogen-burning.
When the hydrogen in the core is completely transformed into helium, the core of
the star contracts and heats up. The rising temperature enables hydrogen thermo-
nuclear reactions to occur in a hydrogen-burning shell source surrounding the
core. A star in this stage is composed of a helium core, a hydrogen-burning shell
source, and a hydrogen envelope. If the star is massive enough, the core continues
to contract and heat up, until, at about 10® °K, helium-burning thermonuclear
reactions occur in the core. Depending on its mass, a star may thereafter proceed
to carbon, neon, and oxygen burning

As a star evolves, each nuclear burning process starts first in the core, exhausts
its fuel there, and then burns outward in a shell source as the star heats up. Thus,
a star that has passed through several nuclear burning stages will be composed of
concentric shells of the products of the different processes, with a hydrogen envelope
on the outside and a core of the products of the last nuclear burning stage through
which the star has passed. Figure 9 illustrates the shell structure of a star that has
passed through all the nuclear burning stages.

We first consider some general properties of stars in advanced stages of evolu-
tion. The evolutionary trend of stars is toward greater central condensation. Stars
contract and increase their central density and temperature. This contraction is
occasionally interrupted (but the evolutionary trend is not altered) by nuclear
burning in the core of the star.

The increasing central density as a star evolves, together with the existence of
nuclear burning shell sources, causes the development of large radii and extended
envelopes. The large radii are caused by increasing central condensation, that is,
increasing central density but decreasing envelope density. The degree of central
condensation is measured by

U_dln M(r) _4nr’p 3p(r)
T dlnr M@ T,

where p, is the mean density interior to r. Since

where ¢ = M(r)/M, the radius is

1
InR=“‘ —:7dlnq+lnRI 4.1)

L]
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Figure 9. Schematic shell structure of a massive star at the end of nuclear
bum_ing The star is assumed to have passed through all the nuclear
burning stages and is approaching equilibrium among the nuclei in
the core.

where g, and R, refer to the core-envelope interface. Now, from equation (1.15),

42)

where M, is the mass of the core. Thus, the stellar radius is

1
(7 1 GHM
InR =In[Z ot bl ol |
n n(n)+j Udlnq+ln( . ) 4.3)

The larger the central condensation, the smaller the U near the shell source and the
larger the stellar radius.

The central condensation develops as follows: As the central density increases,
the pressure gradient dP/dr = — pg increases. When a shell source contributes
sngnjﬁcamly to the energy output of a star, the core luminosity is less than the total
luminosity, so the core tends toward an isothermal condition, that is, the temperature

- — ——— e D W
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increases by less than T oc p!. Thus, the density gradient in the core increases,
U, = 3p,/p. decreases, and the stellar radius increases. The composition difference
between the hydrogen envelope and the helium core also increases the central con-
densation. From hydrostatic and thermal equilibrium, the physical variables r,
M(r), P, and T must be continuous throughout a star. A discontinuity in pressure
would entail an infinite acceleration, and a discontinuity in temperature would
entail an infinite energy flux. At a composition discontinuity, then, the density will
be discontinuous, but p/u and U/u will be continuous. The composition discon-
tinuity therefore causes a decrease in p, and so U, by a factor of u/p,, and also
contributes to increasing the stellar radius. All stars in advanced stages of evolution
(until their nuclear fuel has been exhausted) have extended envelopes.

Although stellar radii tend to increase during the advanced stages of evolution,
their actual magnitude depends on the detailed structure of the star. There is a
general empirical rule for determining the variation of a star’s radius: The direction
of expansion or contraction in a star is reversed at every nuclear burning shell source
and unaffected by any inactive shell. The reversal of expansion or contraction at a
nuclear burning shell source is due to the thermostatic nature of an active nuclear-
energy source. A star adjusts itselfl to maintain a constant temperature in the
nuclear-energy source, which causes the radii of the nuclear burning shell sources
to tend to remain nearly constant. The mechanism is similar to that which keeps a
main-sequence star in equilibrium. If the radii and mass fractions of the shell
sources remain constant, the contraction of a zone between two shells, for instance,
means that the density at the inner shell of the zone increases but that the density
at the outer shell must decrease, since the mass and volume of the zone remain
constant. Thus, the density at the inner shell of the next outer zone is decreasing
and that zone is expanding (see Figure 10).

oo

)

Homogeneous Star

Star With Shell Source

Density

Core

Envelope

Radius

Figure 10.
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Consider the zone between two shells of radii R, < R,.

e
R r R,

o —
Let m be the mass of this zone and assume R, » R,. The mean density of the zone is
M, - M, 3m

T WRT-RY) 4R w4
Thus
AR, | Ap
® - 57 4.5)

We also assume the radiation pressure is negligible, so f ~ 1.

Consider what happens when the radius of the inner shell changes. Suppose
R, changlfs by AR,. If 'llhc shell at R, is not nuclear burning, its properties vary in a
manner that preserves hydrostatic equilibrium, that is approximately homol
Then, by equations (1.13) and (1.15), o Yhomlagouly.

1 1
T R p R
)
ATy _AR
To R,
% — 3AR°
s R, (4.6)
AP, AR,
0 _ _ 40
Py R,
Then
AR, _ _Bpo _ AR,
R, Po R,

Thus. when the inner sh;ll is not nuclear burning, the outer shell’s radius changes
in th_e same way as the inner shell’s radius, and the shell has no effect on the ex-
pansion or contraction.

If a shell is nuclear burning, l_lowcver, its structure initially changes homo-
Iogql{sly, but, due to the change in the rate of energy generation, there is an
additional, nognhorpologous change in the structure. The change in the rate of
energy generation is

8y = &olp + Ap)(T + ATY = &, (1 + épf + ,.ATT)

AR
=& 1 - —_9°
“( “*”&)

A, AR
=N 3 —2
En o+ )(Ro)l

so that

Sevalld. A0
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During central hydrogen-burning, the luminosity of a star increases because of
the increasing mean molecular weight as hydrogen is depleted in the core. Assuming
that the homology relations for homogeneous stars are still valid, then in stars of
small mass where Kramer’s opacity is dominant from (3.13) and (3.35)

Loc (up)"? ' 4.9)

while in massive stars where electron scattering is dominant from (3.16) and (3.35)
Loc (up)* (4.10)

The molecular weight in the core increases by about a factor of 2 as hydrogen is
consumed.
The energy-generation rate has the form

T n
€= ‘oxule’(?o)

where X, is X, for the p-p chain and is X yo for the CNO cycle. The temperature
exponent is n = 4 for the p-p chain and n = 18 for the CNO cycle. As the hydrogen
concentration in the core decreases, the central temperature must rise in order to
maintain the rate of energy generation. The radius of the star will therefore tend to
shrink [see equation (4.2)},

R o M/T, @.11)

~ The tendency of the radius to decrease due to the increasing central temperature
is counteracted by the tendency of the radius to increase due to the growing com-
position inhomogeneity which decreases

Uy =

By @.12)
Hi-
at the bottom of the envelope. Here, plus and minus refer to the exterior and interior
sides of the composition discontinuity (core—envelope interface).

The p-p chain is less sensitive to temperature and more sensitive to hydrogen
concentration than the CNO cycle. The central temperature will thus increase much
more in small-mass than in large-mass stars. During central hydrogen-burning in
small-mass stars, the rapidly increasing central temperature nearly balances the
growing composition inhomogeneity and the radius stays nearly constant. In
massive stars, the central temperature rises only slightly and the radius increases
because of the composition inhomogeneity. The evolutionary track of a star in the
H-R diagram during central hydrogen-burning is toward higher luminosity. For
low-mass stars, where the radius is approximately constant, the track is nearly
parallel to the main sequence. For massive stars, where the radius increases, the
track turns off the main sequence to lower effective temperatures.

HYDROGEN SHELL BURNING

As hydrogen is exhausted in the core of a star, the central temperature increases
in order to maintain the rate of energy generation. The temperature farther out
in the star is then increased and the rate of hydrogen-burning outside the core
(where the hydrogen has not been exhausted) is therefore increased. Thus, a shell
burning source is ignited.

¢
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When hydrogen becomes nearly exhausted in small-mass stars generating
energy by the p-p chain, the central temperature has already increased and raised
the temperature in the surrounding regions of higher hydrogen concentration
sufficiently to produce hydrogen thermonuclear reactions there. When hydrogen
becomes nearly exhausted in massive stars, the central temperature has not yet
increased much due to the high temperature sensitivity of the CNO cycle. The energy
requirements of the star must still be met by the core, so the central temperature
must now increase greatly. This causes the radius of the star to contract, and its
track in the H-R diagram swings to higher effective temperatures. Eventually, the
decrease in X, outruns the increase in T; and the rate of nuclear-energy generation
in the core decreases. The core then starts to contract rapidly and release gravita-
tional energy to supplement the decreasing rate of central nuclear-energy generation.
The gravitational contraction raises the central temperature T, oc p} and the shell
temperature, and ignites the shell source. The more massive the star, the larger the
size of the initial convective core and the farther out from the center the hydrogen-
rich regions lie. Therefore, the temperature in the hydrogen-rich shell will be lower,
the ignition of the shell source will be delayed, and gravitational energy release will
supplant nuclear energy generation as the star’s primary energy source. Eventually,
the contraction will raise the temperature enough to ignite the shell source. To
summarize, as hydrogen is exhausted in the core of a star, the temperature increases,
nuclear-energy generation in the core decreases, and a hydrogen-burning shell
source surrounding the core is ignited.

We now consider in greater detail the increase in central condensation that
occurs when a shell source is set up.

It is convenient to discuss the structure of the star in terms of the nondimensional
variables U, V,and N + 1:

din M(r) _4nr’p _ 3@

U=s——=
dinr M(r) P,
_ din P _ GM(r)p _ 3GM(n)r
dinr = P 13p)p @.13)
4
N+l= dinP _ 16mac GM(r)T

dinT 3 PxL(r)

At the center of a star, U - 3, ¥V = 0, and at the surface U —» 0, V — co0. The poly-
tropic index N varies between 1.5 for a convective region and infinity for an iso-
thermal region. Also

dinT vV
dinr - N+1

4.14)
dinp NV

dinr N+1

L
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Thus the r-dependence of the physical variables is given in terms of U, V, N + 1 by
M(r) ~rY
P~r"
T~ - VAN+D

4.15)

p~ r—NV/(N+ n

From the continuity of the physical variables r, M(r), P, T, and p/u, the continuity
conditions on U, ¥, N + 1 are

| 4
-:l -l—‘— xL(N + 1) (continuous) (4.16)
The U - V locus of a star is given by
dinU _ o NV
dinr N+1
4.17)
dinV _ U1+ | 4
dinr N+1

or
dinV _ U+ V/N+1)-1
dinU 3-U-NV/N+1)

The points on the V — U curve with horizontal or vertical tangent are given by

U+V/IN+1)-1=0 (horizontal) .18)
U+ NV|[N+1)—3=0 (vertical) ’
These two lines intersect at the point
N-3 N+1
U—I—v—_—l V—2N_l (4.19)

Thus, for N > 3, the intersection point is in the physical region and there is a loop
point.

Typical U — V curves for homogeneous and inhomogeneous stars are shown
in Figure 12.

A star’s central condensation is increased by the tendency toward isothermality
in the core, when nuclear energy generation there ceases. For an isothermal core,
N = oo, so the U — V curve has a loop point at U = 1, V = 2. The maximum V
thus occurs for U = 1 and is somewhat larger than 2:

Uy, = %u ~ 0.5 (4.20)

However, an isothermal core, if too large, cannot support the weight of the
envelope. The critical size of an isothermal core can be found from the virial
theorem (McCrea, 1957),

y-Y +Q-3PV=0

W

T T ]
Centrally Condensed Envelopes 1
|

Main Sequence Model

Contracting or
Degenerate Core

v
2 s
Isothermal Core
o L '}
[0} | u 2 3
Figure 12.
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where 'U and V are now the internal energy and volume of the isothermal core,
and P is the pressure on its surface. For an isothermal sphere the internal energy is,
from equation (2.3)

-1k
T y—1uH

and for a sphere of uniform density the gravitational energy is, from equation
(1.19)

GM?
Q=-i3

The pressure at the boundary of the isothermal core is therefore

________;chfz
4n uH R3 4n R*

There is a maximum pressure consistent with the equilibrium virial theorem, which
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is given by
P _ 9 kTM 12 GM?

4R~ " anuHR* T 20n RS T

Thus, there is a critical core radius

GuHM
R = 1 ',‘( Tl‘ a.21)

with stability possible only for R, = R,,;,- The maximum possible pressure is

3 [15\}(kT,\* 1
Posi=——(—)1=L) =5 .
e lcn(4) (uﬂ) M} 42
which decreases with increasing core mass. To determine the limiting mass of an

isothermal core, this P,,,, must be compared with the pressure necessary to support
a star. For the linear model, equation (3.4),

p-103(5 GM
~ 350\4n R*
Also for the linear model, equation (3.5),
104 . GuH M
~ T 190 M)
T 175 (” k R

Thus, the condition for a stable star, that an isothermal nondegenerate core can
support the surrounding envelope, is

P2 P

or

M 1 He 2
o S 0.3(1) 4.23)

Accurate calculations (Schénberg and Chandrasekhar, 1942) give q, < 0.37(n/p.)?
with an accuracy of 8 %.

If the mass of the core is below the isothermal core limiting mass (Schénberg—
Chandrasekhar limit), the core becomes isothermal.

In massive stars, the core exceeds the Schonberg-Chandrasekhar limit and
gravitational contraction begins when nuclear-energy generation ceases to support
the star. In small-mass stars, the core is initially below the limiting size, but shell
burning adds material to the core until in this case too the core exceeds the
Schonberg-Chandrasekhar limit, and it contracts. If the core mass is less than the
white-dwarf limiting mass [equation (5.9)], the electrons become degenerate, while
larger cores continue to contract. The pressure gradient needed to support the
envelope is thus supplied by the electron-degeneracy pressure in small-mass stars
and by a combination of the density and temperature gradients in large-mass stars.
The development of a degenerate core greatly increases the central condensation.

We now consider the structure of a stellar envelope with extreme central con-
densation, characterized by U — 0 as r — r,,,. Since r,y,, is very small, the structure
at the base of the envelope will not be too different from that in the limit r — 0.

Introduction )

Since U — 0, M(r) = M, near the shell [equation (4.15)}, that is, as r + 0, p = ©
and M(r) — finite value. Then

Pk d GM,
T pRaP =T

and assuming some polytropic law, p oc TV, gives

aT_ _ Gul M,
dr (N+1kr?
Thus
GuH (M, 1
=—=_|— t o — 4.24
T (N+l)k(r)+conslan o (4.24)

Thus, for an extremely centrally condensed envelope

VoN+1 (4.25)

in the limit as r — O [from equations (4.15) and (4.24)] The loop condition [equat'ion
(4.19)] shows that the limit of extreme central condensation, U — 0 as r — Q, requires
N < 3. The radial dependence of the physical variables is

Pocr WD Tocr! parV (4.26)

For N > 3, the limit as r — 0 is a loop point given by equation (4.19). In this case,
U> 0 and the envelope is not so centrally condensed. The radial dependence of
the physical variables is

P ~ p 2N+ DIN-D) T~ 20N-1 p ~ r-INN=D @27

We now determine the effective polytropic index at the base of a centrally con-
densed envelope. In terms of nondimensional variables,

_ GM?

= PaR®

_ uHGM

T="%
M(r) = gM

r= xR

the hydrostatic equilibrium equations are

dp pq
- =228
dx tx?
(4.28)
dg _x’p g
dx t
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where | = p/u,, and the flux equations are

de 2
o 'Clﬁa.—s (Kramer’s opacity)
(4.29)
ﬂ = —-C P (Electron scatteriﬁ )
dx Ex2 E
For Kramer’s opacity, combining equations (4.28) and (4.29),
dp?> ¢
dr®3 ~ 425C,

so, near the surface and near the shell at the base of the envelope, where U is very
small and the mass fraction q is nearly constant, the polytropic index is

N =325

Thus, at the shell
p~r 3%  (Kramer’s) (4.30)

Similarly, for electron scattering,

dr_ q

dr* 4Cg
so, near the surface and near the shell, the polytropic index is

N=3

Thus, the density distribution at the shell is

p~r~3  (Electron scattering) @&.31)

The only envelope model which can be readily solved analytically is p(r) ~ r 3.

This, as was just shown, corresponds to the limiting case of extreme central con-
densation for both Kramer’s and electron-scattering opacity. The internal structure
will be well represented by such a model, but, because it is too centrally condensed,
the stellar radii will be much too large. To calculate the radii, account must be taken
of the fact that the mean polytropic index of the envelope is less than 3.

Inhomogeneous Analytic Stellar Model

We now construct an analytic model of a star with one shell using a linear
density distribution in the core and an r™~ 3 density distribution in the envelope.
1. Core. In the core assume a linear density distribution:

o) = pe — (p. — p1)— @32)

R,

where p, is the central density and p, the density at the shell. Then the mass distribu-
tion in the core is, by equation (1.4),

M(r) = j; 4np(ryr? dr

L = gL
=t [p, p. ”')R.] (4.33)
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and the mass of the core is
n
M, = in(pt + 3py) (4.34)

This relation can be turned around to give the radius of the core:

ﬁ_(we)‘(&)’( 43k )‘*
Ro  \nRo%) Mo \P< ™ 7). P
M, \* u =3
=1.78(—') (,+3—‘ _)
MO b Mvpl

The pressure in the core is determined by hydrostatic equilibrium, equation

(1.1,

P(r)=P, - GJ. Mo
0 &

2n P\ r 2\ 2
=P - ZGprt|1 = 21 - o\ L _,Pi-  Pi\T
<3 pr[ z( o Rl+il Zpt+p3 &

Applying the boundary condition that P = P, at the core boundary r = R,, we
find that the pressure in the core is

(4.35)

2
Pr)=P, + %Gp}k} [5 + 102 4 9p‘,‘

< (3

2 i\ r? P PP \r*
e 081 2N gy e gl PN
kTt ( ’. )Re = )R:] (4.36)

and the central pressure is

5n

P.=P
< I+36

2
Gp?R? (1 5 222 1.8’:{) @37

c (3

For a perfect gas, with negligible radiation pressure, the temperature is, by
equation (1.2),

_ uH PO
Tk pr)

T(r)

TR T ey Y

e
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Thus, the temperature in the core is

-1
Pr-\T Pi- n GuH z{ Pi-
=11=-{l-—)= T, + — Ri<S + 10—
T(r) [ ( p,)R,] [p, 1+ 3 PR e

Pl- p-\" P1- pl_
98- g 28( )———9(1 L = )—}]
ol R} e/ R} p. pPlJRY (4.38)

and the central temperature is

M Py,  SmGuH _, ( pi- pi-)
= L et tond ) 2/ + 18
L u.p‘T' % & el . ;

R 2 .2
=Hlrir 4017 x '01“‘(12 )p,(1+2""“+1 “‘,”—;)

e Fe Pe He He Pc (4-39)

However, when degenerate, the core is assumed to be isothermal, so T, = T,.
2. Envelope. In the envelope assume an r~ 3 density distribution:

R 3
plr) = ”'(Tl) (4.40)

Notice that in this model the density does not go to zero at the surface of the star.
The mass distribution is, from equation (1.4),

" d
M) =M, + 4up,R'}j 7'

R,
=M, + 4np,R} In—
R,

where M, is the mass inside the shell. The mass of the envelope is
vi.. R
M — M, = 4np,Riln o~ 441)
1

The pressure is determined by hydrostatic equilibrium, equation (1.1),

"M
P() =P, — GJ‘ ('),”(') dr
R, T
s AL
=P, — Gp,R} M, + 4np,RiIn— )< dr
- R,)r

Pt) = P, - mp,;'_l'[l - (%)‘] - 2GoiR} + nGpiRS (} + lnRL')
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The boundary condition P(R) = 0 determines P,, and we get

Pi) = wﬂn%[(RT) - (RF)]
gonl(3) - () () i oW nE] ey

and the pressure at the shell is

M, (R,)‘] n ., ,[ (R,)‘] . z(R,)‘ R
= - (2 ZGpiR3|1 = () |- 2GpRY ) In— (443
iGPle[ R * 4 0rifh R repIRY R an (443)

The temperature in the envelope, given by the equation of state with negligible
radiation pressure (1.2), is

Gu H 3 3
o= {‘T[g‘{k_ - R?(E) } * ""'”{RT' -3 (E)
R, r Ry/r\* R
“7'“?.“‘?(5) In x—}] (4.44)

Note that the temperature is proportional to r~!, except near the surface. The
temperature at the shell is

Gu H R\* 2 R,\* R
Tl _—4k [Rl {l (F) +nR|p, 1 i 1 +4II‘|E"
M,\/R R,\?
=~ 0.577 "u (=2 )52 ) Tu (2
0.577 x 10 “'(Me)(kl) + 0.3066 x 10 ”‘(Re) A 4.45)

The stellar radius is extremely sensitive to the degree of central condensation.
For our envelope density distribution p ~ r~3, the radius is obtained from the

mass relation (4.41):
M-M, _
R=R, cxp(—mlkl ’)

— Q1P | M
- R‘CXP[ 124, ( * 3#.)] (4.46)

Thus, the radius depends exponentially on p /p,. This leads to extremely large
radii, much larger than are observed. This is to be expected, since this envelope
corresponds to the maximum degree of central condensation.

T T
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Consider now less centrally condensed envelopes with density distributions
R L]
p(r) = p,(T') (1LS5<n<3) (4.47)
The mass distribution in the envelope is then ’

M() = M, + dnp,R3 [ P ~"dr

R,

fd = -n
=M, + 37— pRY(P T — RY™)

3
and

4n
3—-n

M=M, + PRYR*™™ —R}™

Thus, the radius is

R B, [(3 — (M - M.)]”""’ (448)

“3-n 4np,RY

The dependence of the radius on p /p, varies from exponential for n = 3 to
almost constant for n = 1.5. Thus, the radius of the star depends sensitively on the
precise degree of central condensation. It is reasonable to treat the internal envelope !
structure and the radius using different effective polytropic indices n, because the
internal properties of the envelope are determined by the behavior near the shell I
where n = 3, while the radius is determined by the entire envelope in which the i
polytropic index is less than 3 over large regions. In the radiative region near the
shell n = 3 and the mass |

M(r)oc In RL,

increases very slowly with radius, while in a convective region n = 1.5 and the
mass

M(r) oc r?

increases much faster with radius. As a rough approximation for all stars, we
choose i1 = 2.4. Then

R _.R, 3M0>4<M i R |
Re"§R0+(20nRz, Mmg) 1~ g,) # |

. A _— (4.49)
= M- and(Re) -
o ()

The internal structure of a typical inhomogeneous model is shown in Figure 13.
Figure 14 shows the tremendous degree of central condensation of the mass as
compared with the homogeneous model.

We now turn from the hydrostatics to the energy balance in the envelope.
The rate of thermonuclear-energy generation in the shell is, from equation (1.6),

R T\*
L= 4n60“- pz(?) rtdr
R, 0,

PN

1=-M, /M

log P(dynes/cm?)

log plg/em®) log T(°K)

3 R

T T T =T

Hydrogen Shell Burning

Core

Envelope

Tempereture

4 6
M, /M
Figure 13.

Homogeneous Star

Inhomogeneous Stars

] 6
r/Radivs
Figure 14.
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where we have assumed that the composition in the shell source is the unevolved
envelope composition and that the nuclear-energy-generation rate per gram has

the form
T n
£ = —
4 oP(To)

L= 4mxop,( l)) R“"J' r""
_ 4R} T, R\"*?
Tn+ 3‘° (T) [l - (?)

Thus, the rate of thermonuclear-energy release from a shell source is

4nR} T\
L= an
n+ 3‘°"‘(T.,)

L & (R, T,

— =112 :

i ] "’(To) .
The energy generation is confined to an extremely thin shell source as shown in

Figure 15.
The luminosity for radiative energy transport is

160 T3>~*dT

L= —dxr—2
3o p'*° dr

Then

or

Hydrogen Shell Burning

T i { ad i { ™ 10
14 |
: M =|Me
2 ] Tonen = 5.79%10"
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g} i T bt
" (ll
o
S 8r {53
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L 6t
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assuming an opacity law of the form
x = %op"T®
The temperature gradient given by the analytic model [equation (4.44)] is

dT R
i

Thus, the radiative luminosity is
3-»

no T
L= %!x_oRlnF

Evaluating it at the shell gives

K]
=%—R,—  (Kramer’s) 4.51)
o T .
=% _R,—!  (Electron scattering)
0

Thus, the radiative luminosity of the envelope is, for population I (X = 0.6, Y = 0.38,
Z = 0.02),

425 x lO’(R )T’”’ (Kramer's)

L Ro) ot
== ' 452)
Lo 3 Tm, .
2,18 x 10 R » (Electron scattering)
1

and for population II (X = 09, Y = 0.099, Z = 0.001),

227 x 10‘( Q)T"" (Kramer's)
L PH
—= 4.53)

L
® |184 x lO’(R )T'"’ (Electron scattering)
o

P

The effective temperature is given by equation (3.17).

For a fully convective envelope, the luminosity and effective temperature are
determined by the surface condition, equations (3.24) and (3.28). The track is the
same as for pre-main sequence fully convective contraction, but traversed in the
opposite direction.

The time scale of evolution is determined by the rate of release of energy:

dE AE
P il - 4.54
L= 5 so At 3 4.59)
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The time scale during stages of core contraction is determined by the gravitational
energy release:

2
E Y55

where the faf:tor $ arifscs in evaluating Q using the linear model. The luminosity of
the contracting core is determined by the rate at which material is added to the
core by the hydrogen-burning shell source :
dM,

dt

G 2
AE = i]m' = i?% (_ AR, AM:)

L"=°¢'

where @, is the gravitational potential at the core surface

GM,
Q. = 2
(3 R‘
and
d_A_'_l_c = L-hell
de EyX

yvhere Eyis thg energy released per gram of hydrogen consumed. Thus the contract-
ing core’s luminosity is

GM, L

R, EgX

L _ GM, 1 (M \(Ro
Lo EugRo X \My/\R,
= 3.18 x 10'41 M-MRe L
X\WMo/\R./\L,,
The time scale for contraction of the core is

At = gEnXM(,AM, AR,
2L \"M, T R

M L\ '( AR AM
=431 x 10'°x (—;)(——-) (— < <
)\ R +2 M, years
Tl}e amount of material added to the core by the hydrogen burning shell during
this time is

(4.55)

AtL
Enxe

AM, =

MoE X

AM L Mg L
! ( 2 ) © = At (4.56)

Ag, = — = el e
9, M L,

] (
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Evolution During the Hydrogen Shell-Burning Phase

! Evolution during the hydrogen shell-burning phase is toward greater central
density and temperature and larger central condensation. The evolution of the
shell structure can be expressed in terms of the central condensation U,, the core
mass M, and the ratio g, = P,,/P, (Hayashi, Hoshi, and Sugimoto, 1962). From
the definitions (4.13) of U, V, and (N + 1)

j R, = OB H M,

| TV T,

: 1 MU,
Pn'—‘j‘—n R}

1k _yTviu,
" 4n\Gup,H M}

_ 16mcG(1 — M,
T (N + )y

The rate of energy generation in the shell, equation (4.50), is
4nR}
Lypen = n+—;6 oPiT}

Thus, if the energy release in the core is negligible, the shell temperature is
Gup,H ’(" + 3\ (1 — M}
n+3 __ 2
T e ‘G( k) & /iU + 1),

We have seen that for a centrally condensed envelope with electron-scattering
opacity dominant V; = (N + 1); = 4. Thus, the shell structure is

R. = Gu HB M,
! 4kT,

_g( k \’Tiu,
b= 7 \GuH) BiM?

457)

Tres o ® o (CrHY n + 3 A1 - BMY
! 4 k Eoxy U?
L= 41:ch1

31
As hydrogen shell-burning proceeds, the core contracts, U, decreases, and M,
grows. The shell temperature T, increases, but only slightly, due to the high tempera-
ture sensitivity of nuclear reactions. The shell radius R, is approximately constant;
it may increase slightly in the late red-giant phase, where the core mass increases
rapidly, and it may decrease slightly in massive stars. The shell density p, decreases.
The luminosity L is approximately constant, except in low-mass stars where

B, = 1,s0
Lz(ﬂ'ﬂ)‘ﬂ?Mf
48 G U,

(=B = 5
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increases substantially, and

n? (GuH)‘B}M?

k » U,

The stellar structure can be expressed as an explicit function of p,, q,, and M,
using our analytic core and envelope models when p, > p, and R, < R. The central
density p, is chosen as the parameter labeling the course of evolution, since p, in-
creases monotonically during the contraction of the helium core. A sequence of
models with increasing p, describes the course of evolution. It is necessary to choose
an initial core size to start the sequence, since the details of the setting up of a shell
source cannot be followed analytically.

The core radius is, from equation (4.35),

4 -4
1%; = 0.178(:—;) (l‘(’)‘,) (4.58)
so R, shrinks with increasing p..

The central temperature for a nondegenerate core is found by substituting
this expression for R, in the equation for T; (4.39) and omitting the first term, which

is negligible,
% +
T, =54 x 10’,‘,(%) (]’3,) (4.59)
o)

The shell temperature is found by substituting equation (4.58) for R, in the equation
for T, (4.45) and neglecting the second term, which is small,

M \? ¥
T, = 3.24 x lo’p,(M—;) (%) (4.60)

For a nondegenerate core

T. u
£ = 1.67=
T, He

In small-mass stars, M < 3M,, the core is degenerate and isothermal, so instead of
equation (4.59),
=T
Thus, the core and shell temperatures increase during hydrogen shell-burning as
+

3.
The shell density is determined by the energy balance: luminosity = energy-
generation rate. The energy-generation rate per gram is assumed to be of the form

T L]
*=u(7)
0,

and all constants are evaluated for the CNO cycle at T, = 3 x 107 °K, so
&0 = 3.87 x 10° Xy Xy and n = 16. The total energy generation rate is given by
equation (4.50). The luminosity depends on the opacity and the energy-transport
mechanism, and two cases are considered : Radiative transfer with electron-scatter-
ing opacity, equation (4.51), and convective transport with low surface density,
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equation (3.23) with equation (3.22). For electron scattering

M -2(n—-3)/9 3 = (n-6)/9
pr= C'(ﬁ) (%) 461a)

{217 (population I)
1583 (population I1)

where

For a convective envelope

M\~ HI2n+ 1)A-41(24-5)
Pr= CI(M—O) (0 = q‘)}ludmu—suql—muunu—:zl/(u—s)l
(4.61b)

p. - #lm—11)A+32]024-S)
(3
(10’)

where A = b + 3.5(a + 1) for an H™ opacity law of the form x = x,P*T*,
{ll (population I)
15 (population II)

31.6
C,=
63.5
The radius of the star depends on the mean polytropic index of the envelope.

It is given by substituting equation (4.58) for R, and equation (4.61) for p, in the
equation for the radius (4.49) and omitting the small first term. For electron scatter-

ing
M \10n-21027 _ \(5n 627
Ri = CJ(F) (1 — g,)iqyonmoon? % (4.62a)

° o,

ankd (population I)

(population II)

where
1.54 x 1072 (population I)
2T {197 x 10~ (population II)
For a convective envelope
R ‘( M )lluon 21)A- 60)/24(24~ sn(l B ql)iW‘“‘ .

Ro ™ Mo

X q) 03

10°

(I(Sn+9)AV24(24- 3
(10n-9)4y24(24- S [ Pe
(4.62b)

where

{0.383 (population I)
0.120 (population 1I)

Thus, the stellar radius increases with increasing central density.

T

oy
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The luminosity of the star is given by substituting equation (4.58) for R,,
equation (4.61) for p,, and equation (4.60) for T, in the equation for the energy
generation (4.50). For electron scattering

nt 21 L]
Lie _ C,(E’M—;)u )/9(%)( +3)9 —
where
c, = {39.5 (population I)
5.01 (population II)

For a convective envelope

([(10m+21)A - 40n— 48)/12(24 - 5))
Li = 6('131) - ql)ﬂu—h/(u-sbl
[] o,

x q L

(((Sn+9)A - 4)/12(24- S)
1(10n- 944 - 41224~ sn| Pe
10°

(4.63b)

where
c {0.835 (population I)
¢ 100594 (population II)

The effective temperature of the star is found from equation (3.17) with equations
(4.63) and (4.62). For electron scattering

M - 7(2n—15)/108
L= C’(M_)
0,

where

(1 — q,)" tqytaan-1951108) P —(Tn+3)/108
1) "4 5 e}

{1416 x 10  (population I)
C, =

1.58 x 10  (population II)

For a convective envelope
M )—I(IO-— 3)/12(24-95))

T, = C'(M—e - ql)-llll(lﬂ—i)l

—[(5n+9)/12(24-9))
—ton-9y12(24- s Pe

X q, 10° (4.64b)
where
8.89 x 10°  (population I)
# T {8.22 x 10° (population II)

For radiative envelopes, the luminosity increases (~ p?), and the effective tempera-
ture decreases (~p, '), with increasing central density. For convective envelopes,
the luminosity increases rapidly (~p2), and the effective temperature decreases
slowly (~p%*), with increasing central density. The mode of energy transport

¢
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in the envelope switches from radiative to convective when the convective flux
becomes larger than the radiative flux.

All of these relations simplify when the core is degenerate, for then the central
density is a function of the core mass.

The tip of the red-giant sequence occurring in small-mass stars is determined
by the onset of helium-burning in the center of a star when T, =~ 10® °K. In small-
mass stars with isothermal degenerate cores,

M\ s 4
T.=T, =324 x 107p,(ﬁé) (1‘;) 3) (4.60)

so the central density at the start of helium-burning is

Pc LY 2
=294, —

- m (i)

Thus, the maximum luminosity at the tip of the red-giant branch, where the
envelope is convective, is, from equation (4.63b),

L M \[A+8)424-5N /1 _ H(A-4)(24-95)]
(). ~edae) )
O /max o] qy

At T, =95 x 107
M \-278[(1 — 1.033
1.485 x IOS(M—) [(——3%] (population 1)
o q:

L
(E L M1 — gyt (4.65b)
L35 % IOS(M—) i (population II)
o} 1

The maximum luminosity is insensitive to the mass of the star and is much higher
than obtained from accurate calculations (see Figure 20). The mean envelope index
fi = 2.4 is much greater than the value n = 1.5 appropriate for a convective envelope.
Therefore, in this model, the radius and luminosity are much too large. )

The evolutionary changes in the central conditions are shown in Figure 16.
For low-mass stars (M < 3 M), the core is isothermal during hydrogen shell-
burning; the central density increases with nearly constant central temperature and
the electrons in the core become degenerate. The increasing luminosity along the
red-giant branch eventually causes the shell temperature, and therefore the central
temperature, to rise much more rapidly than o} until it approaches 10® °K and
helium is ignited. In massive stars, an isothermal condition does not develop. The
core contraction provides an appreciable part of the star’s luminosity from the begin-
ning of hydrogen shell-burning. The central temperature and density increase, with
T, increasing only slightly less rapidly than ot

The evolutionary tracks of stars in the H-R diagram during hydrogen shell-
burning are shown in Figure 17 to 21. At the beginning of hydrogen shell-burning,
the luminosity, except for very small mass population I stars, is much too low
because we have taken the most centrally condensed model throughout and have
not allowed the degree of central condensation of the envelope solutions to increase
gradually. The temperature falls off extremely rapidly outside the shell and the

b AIN 4

Lo o 0
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hydrogen shell-burning region is therefore very thin, covering about 1% instead
of an initial 109 of the mass, as found in accurate calculations. The total amount
of energy generated is therefore too small. Since the thickness of the shell is constant,
the rising shell-temperature during hydrogen shell-burning raises the luminosity
in our models. Accurate calculations show, however, that the shells are originally
much thicker than ours and the narrowing of the shells, due to the steepening temp-
erature gradient on their outside and the exhaustion of fuel on their inside, counter-
acts the rising shell-temperature and the luminosity stays fairly constant unless a
fully convective envelope is developed.

As stars evolve, their radii increase and they move to the right in the H-R
diagram. The tracks depend in their grossest features on whether or not the star
is small enough to develop a degenerate core. Those stars that develop isothermal
degenerate cores must evolve to much higher central densities and much greater
central condensation than those that do not. Thus, very small mass stars develop
quite extensive envelopes, which are fully convective and very luminous. These
form the red-giant branch (Figure 20). Intermediate mass stars develop fully con-
vective but not so extensive envelopes, and their luminosity does not greatly increase
(Figure 21). The very massive stars do not develop a very great central condensa-
tion before their central temperature has reached 10® °K, so they do not develop

b sr - 4
. o7 Helum Fiash
] , k7 T S
st
'} 4
- Centrat 1
i Helium —=}
E. Burning \
- Core el
o Contraction AL
2 3 Hydrogen S

/
Shell Burning i

Figure 16. Evol of central conditi

during pre-main sequence contraction,
central hydrogen-burning, helium core
contraction, and central helium-burning.

The solid lines and shaded regions are

from the analytic models, the dashed-dot
lines are interpolations. The dashed lines

arc from Hayashi, Hoshi, and Sugimoto
(1962).

8s

30
log Te

Figure 17. Evolutionary tracks of stars in H-R diagram during hydrogen-
shell burning with helium core contraction. The nature of the energy-

p in the lope, which determines the slopes of
the tracks, is shown. The shaded a

rea is the region where stars have just
started to bum helium in their cores. The large extent of the central

helium-burning region for low-mass stars that have passed through the
red-giant phase is due to uncertainty in the mass of the helium core.
The uncertainty in position of a given star is roughly paralid to the
shading.

convective envelopes before helium-burning, and their luminosity increases only
slightly.

The time scales for evolution during the hydrogen shell-burning—contracting
helium-core stage are given in Table 1.

To summarize: The cause of the extended envelopes of hydrogen-shell burning
stars is their central condensation; the cause of their central condensation is as
follows: When the core hydrogen is exhausted and the thermonuclear energy
generation occurs in the shell, the core tends toward an isothermal state, that is,
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as the core contracts the density rises by more than T>. Thus, the density gradient
in the core increases, which increases the star’s central condensation. As a star’s
central d_ensity rises, its shell temperature tends to rise, since T, oc p} for homologous
contraction (equation 4.60). If the shell were not nuclear burning, its density would
also rise. If, however, the shell is nuclear burning, the shell density must be low in
order to keep down the rate of thermonuclear energy generation and increase the
gnvelopc’s transparency, i.€., to bring the rate of energy generation and luminosity
into balance. That is, the temperature sensitivity of the nuclear burning process
keeps the shell temperature and radius nearly constant, so the shell density falls
as the cel.ural. density rises, in order to conserve mass. Thus, the star’s central
condensation increases. The greater the central density, the smaller the core radius;
the higher the shell temperature, the lower the shell density [for nuclear buminé

processes with temperature sensitivity n = d(In &)/d(In T) > 9], and the larger
the envelope.
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CENTRAL HELIUM-BURNING

When the central temperature of the helium core is raised to about 10 °K,
helium will begin to burn at the center of the star. In small-mass stars with degener-
ate cores, a helium flash occurs. The pressure of degenerate matter depends only
on the density, not the temperature, so that the energy released by the onset of
helium-burning increases the temperature without a corresponding increase in
pressure. The increased temperature speeds up the helium reactions, which further
increases the temperature, until the temperature is high enough (kT in the central
degenerate region rises above the Fermi level) for the matter to become non-
degenerate and the perfect gas law again holds. In nondegenerate material, increas-
ing the temperature increases the pressure, which causes the core to expand, thereby
reducing the density and temperature and damping the reaction. The core settles
down to burning helium at a much lower density and slightly higher temperature
than at the onset of the flash. In large-mass stars with nondegenerate cores, the
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pressure adjusts the structure to the increase in temperature and there is a slight
decrease in central density.

A star burning helium at its center will be much more centrally condensed
than a main sequence hydrogen-burning star. The density at the shell where the
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Figure 21. Evolutionary track in H-R diagram of TM star. Solid lines are from analytic
model for pre-main-sequence contraction (PMSC), central hydrogen-burning (H), hydrogen
shgll burning (HSB), and central helium-burning (He). The dashed curve is from Hofmeister,
Kippenhahn, and Weigert (1965).
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composition discontinuity, and possibly hydrogen-burning, occurs is much less
than the central density. Thus the core by itself may be treated as a star with the
density, but not the temperature, going to zero at its surface. The luminosity of the
core is determined by the balance between the radiative energy transport and the
helium energy-generation rate. This energy balance determines the central tempera-
ture, which together with hydrostatic equilibrium determines the central density.
The radius of the core is determined by the density distribution, which we assume
is linear. Thus, for the model of a star burning helium at its center, assume a linear
density distribution in its core, a p ~ r~? density distribution in its envelope,
and treat the core by itself as a star.
The helium energy-generation rate is
Ercn = 60p1<1) (4.66)
T
for
Ty~ 1 (n=41,&, = 44 x 107X},

Tg~2 (n=19,8,=15X})
The total helium-burning energy-generation rate is
L= 4nR}8,p2T2, (4.67)

where
J. =]' x2(1 — P31 + 2x — 18x?)dx
0

is the integral of [p(r)/p.P[T(r)/T.I' over the star. Then

L M, \"*3(Ro\"* (9.6 x 10%\"

— = 20180J el — — _— 4.68

Lo °""“(Me> R, T, (4.68)
The luminosity with electron-scattering opacity is given by equation (3.16). The
central temperature and density are, from equations (3.6) and (3.3),

M R
=962 6, (M1)(Re
Eiaasbes “‘(M°)<Rn)

e (M (Ro)?
ro=365(302) (&)

The core structure, for T, ~ 1 x 10® °K, is

M 0.128
T, = 1.16 x 1080213 =L
;= 116 x 0% 20

_ M -1.62
pe =99 x 10%; 1-3°(M—;)

Rl M 0.872
= 8-27 -2,0.787 1
Ro 107 (Me)

L M,\?
€ — 17944 —L
Ly L (Ma)

(4.69)
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The density and temperature at the shell are determined by the conditions of
hydrostatic equilibrium and energy conservation. The shell temperature is given
by equation (4.45) with the small second term neglected and equation (4.69) for R,

M 0.128
T, = 697 x 1o’<;§;ﬁ) (M—;) 4.70)

The shell density is the solution of
Luminosity = L . + L,y 4.71)

where L. is the core luminosity, equation (4.69); L,,.,, is the shell energy-genera-
tion rate, equation (4.50); and the luminosity is given by equations (4.51), (3.24),
or (3.28). Once p, is known, the luminosity is found from equation (4.71). The effec-
tive temperature is given by equation (3.17), and the radius is given by equation
(4.49) as in the case of hydrogen-shell burning.

The locus of points in the H-R diagram where initial central helium-burning
occurs is shown as the shaded regions in Figures 17 to 19. The relative contributions
of hydrogen- and helium-burning to the luminosity are found to be initially:
Ly > Ly, for population I stars, while L, < Ly, for population II stars. The con-
tribution of the hydrogen shell source decreases in massive stars. We see that small-
mass population II stars lie at the onset of central helium-burning in a strip of nearly
constant luminosity, but with varying effective temperature depending on the mass;
the smaller the mass, the higher the effective temperature. The time scales for evolu-
tion during the central helium-burning stage are given in Table I.

In the more advanced stages of evolution—helium-burning, carbon-burning,
neon- and oxygen-burning—the core of the star continues to become denser and
hotter, a complicated shell structure develops, with some shells active and others
inactive, and the radius continues to grow. A schematic picture of the stages of
central nuclear burning and shell formation is given in Figure 5 of Hayashi (1965).
How far a star progresses through these stages of nuclear burning depends, as we
have shown, on its mass.

FINAL STAGES OF EVOLUTION

After a star has exhausted all the nuclear fuels it is capable of burning, its only
remaining sources of energy are its gravitational potential energy, which it can
release by contracting, and its thermal energy, which it can release by cooling.
Such a star will contract, increasing its central density and temperature. The core
will, however, tend to be cooled off by energy losses from neutrino emission. The
rate of emission of neutrinos increases with temperature, and since their mean free
pathiis larger than the radius of the star they remove energy from the star. If neutrino
emission is intense, all stars in the stage of gravitational contraction after the
exhaustion of nuclear fuel will develop degenerate cores.

If the central density resulting from the gravitational contraction is low, only
electrons, not nucleons, are degenerate and supply the pressure to support the star.
There is a maximum density possible for a stable star supported by degenerate
electron pressure. At higher densities, the electrons are forced onto the protons,

(
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creating neutrons. This process is a phase change and absorl_:s a great deal of
energy, causing instability. The gravitational collapse of massive stars produces
cores with densities above the critical density. The core of such a star will be com-
posed of free degenerate neutrons and other baryons. If the mass of the remnant
from the collapse is small enough, it can be supported by the pressure of the
degenerate neutrons and a stable neutron star will be fqnncd. If the mass is too
large, the gravitational force, augmented by the relativistic effect that the pressure
contributes to the effective mass, overwhelms the nuclear forces and~ the star
collapses indefinitely. What happens to such core remnants remains to be discovered.

Structure of White Dwarfs

White dwarfs are stars whose support is provided by the pressure of degenerate
electrons (only electrons, not nucleons, are degenerate) throughout most of the mass
of the star. We assume that the electrons are completely degenerate throughout lh.c
star. This is, of course, not really possible, since the density in the surface layers is
very low and the electrons are nondegenerate. However, the surface layers are

extremely thin. ) ) ]
The equation of state of a degenerate gas is a complicated function

P = P(p)
approaching the limiting forms

o\
P=K,;pt =991 x 10'?| — (5.1)
at low density, where the electrons are nonrelativistic (p < m.c, where p is the
electron Fermi momentum), and
4
P =Kt =123 x 10"(5) .2)

e,

at high density where the electrons are relativistic, (p > m.c). Thus, the temperature
disappears from the equation of state, and the internal structure of a white dwarf
is independent of the temperature. ) ) o )

Applying dimensional analysis to the equation of hydrostatic equilibrium gives,
for a nonrelativistic degenerate gas (Osterbrock, 1963),

M
‘ P X F
2
P.oc gpR o g
M3
o K,p} oc r
Thus, for a nonrelativistic degenerate gas
Roc M~}
I (5.3
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There is thus a definite relation between the mass and radius of a white dwarf—the
larger the mass, the smaller the radius. Since the central density increases with mass,
for large-mass white dwarfs the electrons become relativistic. For an extreme
relativistic degenerate gas, the pressure force is

dP _pt M?
ar "R R
and the gravitational force is
GM(r) M?

EpXTa P X RS

Thus, the pressure force and the gravitational force depend on the radius in the
same way, but depend differently on the mass, so the two forces will be in balance
for only one mass, the limiting mass of a white-dwarf star. For larger masses, the
gravitational force always exceeds the pressure force.

The mass-radius relation for a white dwarf can be obtained from the virial
theorem (Salpeter, 1964):

y-1nN€W+0Q=0 2.1
where Q is the gravitational potential energy, given by equation (1.19),
GM?
R
and the internal energy U is the electron kinetic energy
U = NK,

Here N is the number of electrons and K, is the kinetic energy per electron. The mass
of the star is

Q~ -

M = Num,
where m, is the proton mass and g, is the molecular weight per electron

Y z|?
He = [xxl + —4—(V| + 2y)) + 5]

whgre Xy, y, are the fractions of singly and y, of doubly ionized hydrogen and
hl:-.hum, respectively. y, = 2 for a fully ionized gas if X = 0. Thus from the virial
theorem

Gm?uiN
WP, LS (54)
3y - DR
The electron kinetic energy is related to its momentum by
pl
(J
K! = ﬁ‘ Pe < m.c

K.=pc  p.>mgc

{,ﬂ
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The average electron momentum p, is related to the average interelectron spacing
r. by the uncertainty principle :
repe2h

Using the equality sign gives for the kinetic energy

P i)
Ku = 2"" - '}M,C (f.) [pa < m,c] (5 5)
K, =pc= M.C’(:—") [pe » m.c]

where ro = h/m,c is the electron Compton wavelength.
These two limiting equations can be combined in the interpolation formula

(Wheeler, 1964)
1

where s = r,/ro. This formula is accurate to within 8%,. The radius of the star is
expressed in terms of r, by

R = N*r, (5.7)

Equating the expressions (5.4) and (5.6) for the electron kinetic energy gives the
relation

1+2= [__—3(7 = ”’°""‘1]N—*

Gm2p?
3 — D(No\! _ 3y — D(Mo)?
w \N/ ~ u M

2]-1
[Eﬂ] =22 x 10%
hc

(5.8)

where

No

.
My = (%) m;2 = Nom, = 3.7 x 103 g

=185M,

For a nonrelativistic electron gas y = %, and for an extreme relativistic electron
gas y = %, 50 3(y — 1) varies between 1 and 2. We use the interpolation formula

1+2s
1+s

which has a maximum error of 30% (Schatzman, 1958). Thus

L]
L4s= ‘-“;(ﬂ) (58)

Ww-1D=

PO o . SR SAJEE 1 N RN
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First note that the minimum value of the left-hand side of the above relation
is 1, so there is 2 maximum mass for a white dwarf

1.85M
2 (59)

e

Mouy = 1 Mo =

However, long before the density becomes infinite, inverse f-reactions will occur,
and the above analysis will cease to apply. The increasing density causes instability
of the white dwarf before the singularity is reached.

Second, the relation (5.8') can be written as a mass-radius relation

M\ ¢ 4
() ()] e

Ro = N§ro =5 x 105cm

where

Thus, the radius of a white dwarf is very small, and it decreases as the mass increases.
The mean density of a white dwarf is

..
@R

SMO”z -4 M\~ } -3
= 3 |He |37 =
4nRy M,
M\ % -3
= 7.06 x 10%, “H— -
x M.[ﬂ. (Mo) l]

Since a white dwarf has a very thin nondegenerate surface layer, we may approximate
such a star by a homogeneous model with a linear density distribution. Then the

central density is
M\~ -3
p.=4p =283 x 107y, u,"(——-) -1 (5.11)
M,

There is a maximum density possible for a stable white dwarf. As the density
increases, the electron Fermi energy increases. An electron with energy greater than
the B-decay energy for electron emission from a nucleus (Z — 1, 4) will produce
inverse f-reactions

p=

e +(Z, A= Z-1L,A)+v

This process increases the value of y, in the interior, and thus the maximum stable
mass is reduced. The predominant nuclei under white-dwarf conditions are elements
in the range neon to iron, for which inverse f-decay will occur at densities of about
10° g/cm®. Thus, the critical density for a white dwarf is about 10° g/cm®. The
relation between central density and mass for a white dwarf is shown in Figure 22,
from Wheeler (1964). The stable configurations shown at higher densities are the
neutron stars.

The degenerate interior of a white dwarf is practically isothermal because heat
conduction by degenerate electrons is very efficient. This isothermal interior is
blanketed by a nondegenerate surface layer, which is very thin and contains only

Introduction YA
20 i o s i S o o o Sl T s L o
L 4
L 0-v 4
15— =1
I’ -
§ Unstable 1]
- s 1 4
"e i
10— P
L /
Z" I ~CH
Q | 4
3
o | 4
o
3 -
"/
L / 4
../ J
[ J
Figure 22. Schematic mass-density | |
relation for white dwarfs and denser 1 L
configurations from Wheeler (1964), o Lt L Akt et
calculated for cold catalyzed matter. as L 15
M/Mg

a minute fraction of the mass of the star. The small extent of the surface layer is
easily seen by considering the scale height:
P RT

Pg K8

The temperature at the transition layer is of the order of a million degrees, but
g = GM/R? is extremely large because R is very small. Assuming M ~ Mo, R = Ro,
and T~ 10° then g~ S x 10® and |~ 10°cm = 10km. The density in the
surface layer is less than about 10% g/cm?, since it is nondegenerate. Again assuming
T ~ 109, the mass of the surface layer will be

M, = 4nR*pAR ~ n10?” =~ 10"*M ¢,

Therefore, the equations for the surface layers may be integrated explicitly, since
g. M, and L are practically constant.

The surface layer is in hydrostatic equilibrium, and energy transport is by
radiation. We will assume Kramer's opacity (equation 3.8), with the quantum
mechanical correction factor (t/g) = 10. Then the equations for the structure of the
envelope are (Schwarzschild, 1958, and Chandrasckhar, 1939)

ar__m
dar P
dT 3 xp L
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SO
d_P _ 64ncGM T3
dT 3xL
64noGM  k
i _P—l 7:3
3xoL uH T

Thus, the pressure and density are related to the temperature by
_ (i MnaGMk)’
8.5 3xoLuH
p = (& SoMuH)' 1o
8.5  3xoLk
The radial dependence of T'can be found from the equation of hydrostatic equilibrium
dP P uH 1

TLIS

(5.12)

&= T oMz
and from equation (5.12)
dP dT
= 4.257
Thus
_ L pH_ (1 1
T=i5 1M (F B E) (1)

Ehcsc equations for T, P, and p can be used throughout the nondegenerate surface
yer.

The properties of the transition layer between the degenerate interior and the
nondegenerate surface layer can be found as a function of the luminosity of the
white dwarf (Schwarzschild, 1958). The isothermal nature of the interior gives a
relation between interior temperature and the luminosity, which is constant through
the surface layers, as follows:

Le s —— (5.14)

Apply this to the transition layer. The boundary condition is the equality of the
electron pressures in the two regions:

kT, \¢
P = u(—') =24 x 10-%, T} (5.15)
1
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Then the luminosity and internal temperature, T, = T,,, are related by

2 64r0GM (H\* pu
j i o] ool —T"’
85 3xgK] (k) Tl

- w5(UB)\ B M 1ss
=57 x 10 (Z)ﬂf M@T‘m (5.16)
The internal temperature, transition density, and extent of surface layer as a function
of luminosity are shown in Table II for a 1 solar mass star with composition X = 0,
Y=09,Z=01

The source of energy for white dwarfs is the thermal energy of the nondegenerate
nuclei. The energy source cannot be nuclear reactions. At the high densities found
in white-dwarf interiors, the Coulomb barriers of nuclei are reduced. At densities
greater than about 5 x 10* g/cm®, hydrogen reactions occur, and at densities
greater than about 5 x 10® g/cm?, helium reactions occur. However, during a star’s
evolution before becoming a white dwarf, all the hydrogen in its core will have been
exhausted, while white dwarfs with central densities great enough for helium
reactions are massive enough to have exhausted the helium in their cores. In the
surface layer, where hydrogen might be abundant, nuclear reactions would cause
instability because of their temperature sensitivity. During a contraction, the rate
of energy generation would increase above its equilibrium value, and during an
expansion, it would decrease below its equilibrium value, thus feeding energy into
the pulsations. The energy source cannot be gravitational, because a star’s radius
is fixed by the mass—radius relation after it has become almost completely degenerate,
and no further contraction is possible. The energy source cannot be the thermal
energy of the electrons, because they are degenerate and most are already in their
lowest possible energy state.

The evolution of a white dwarf is a continual slow cooling at constant radius;
its luminosity and eflective temperature decrease in time. Evolutionary paths in
the H-R diagram are shown for several masses in Figure 23.

The luminosity of a white dwarf is the rate of change of the thermal energy of
the nondegenerate nuclei:

d M
L= - @ (ikTm) .17

where p, is the molecular weight of the nuclei, u; ' = X + }Y. This equation can
be integrated to obtain the cooling time of a white dwarf (Schwarzschild, 1958.

Table IT
R-r,
LiLo T(10° °K) log p,, =R
102 17 35 0011
1072 9 31 0.006
10°4 4 26 0.003

This table is taken from Schwarzschild (1958), Structure
and Evolution of Stars, p. 238.
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Figure 23. Evolutionary tracks of white dwarfs in the H-R diagram. Solid
curves arc from analytic expression (5.10); the dashed curve is from
Schwarzschild (1958).

and Savedoff, 1965). Using the expression for the luminosity, equation (5.16),

L= K(u, M)T?*3
gives
dT .
a CT

w.hcrc. n =35 and C = —{Ku,H/kM). Integration gives the cooling time from
“]nﬁmtc" temperature, setting the integration constant equal to zero, which is the
time scale of evolution of white dwarfs

kT
. (3;«71“)
(2.5L)

" |
=173 x m“(-zf)(ﬁ“'
/g Uy

Z\Yu\t 1 (M} -4
= 892 x 10’(7 ("—') —(M—) (L) years
K] HBa o/ \Lo

)T,}-,z," years (5.18)
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