L0V L dwarf standard stars (optical) were first defined in Kirkpatrick99, and near-IR standards were defined in Kirkpatrick10. Kirkpatrick99 standard: 2MASP J0345432+254023 - L0 Hawley02 standard: 2MASS J0345+2540 - L0 Kirkpatrick05 standard: 2MASP J0345432+254023 - L0 ("optical anchor") Reid08 standard: 2MASS J03454316+2540233 - L0 (pri. stan.) 2MASS J17312974+2721233 (LSPM J1731+2721) - L0 (sec. stan.) Kirkpatrick09(GrayCorbally): 2MASS J03454316+2540233 - L0 (primary optical standard) Kirkpatrick10 standard: 2MASS J03454316+2540233 - L0 (near-IR standard) Teff(L0V) = 2329 K ; Dupuy17(Lyon model scale) Teff(L0V) = 2299 K ; Dupuy17(SaumonMarley08 scale) Teff(L0V) = 2299 K ; Rad vs. logL for BT-Settl 3Gyr [M/H]=0 isochrone for LogL=-3.616 Teff(L0V) = 2275 K ; Cifuentes20 for CARMENES L0V(N=13) Teff(L0V) = 2249 K ; Filippazzo15 calibration (M6V-T9V) Teff(L0V) = 2238 K ; Kirkpatrick20 Table 13 polynomial => adopt Teff(L0V) = 2300 K (logT = 3.362) [updated 1/15/2021] (V-Ks)(L0V) = 5.71 ; 2MASS_J10130734-1356204 usdL0 (Dahn17) (V-Ks)(L0V) = 9.25 ; DEN0652-2534 (V-Ks)(L0V) = 9.33 ; 2MASS_J02281101+2537380 L0 (Dahn17) (V-Ks)(L0V) = 9.34 ; pri. stan. 2MASS_J03454316+2540233 L0 (Dahn17) pri. stan. (V-Ks)(L0V) = 9.44 ; smoothed fit to Dieterich SpT vs V-Ks (V-Ks)(L0V) = 9.45 ; trend fit to Dahn17 for L0V (V-Ks)(L0V) = 9.49 ; smoothed trend among L-type Dieterich14 objects (V-Ks)(L0V) = 9.58 ; 2MA0746+2000AB => adopt (V-Ks)(L0V) = 9.40 [updated 8/17/2020] (G-Ks)(L0V) = 6.1167 ; pri. stan. 2MASS_J03454316+2540233 => adopt (G-Ks)(L0V) = 6.12 [updated 12/26/2020] Rc-Ic(L0V) = 1.895 ; 2M23101846-1759090 Liebert07 (V-I)(L0V) = 4.85 ; trend Dieterich14 SpT vs. V-I (V-I)(L0V) = 4.92 ; DENIS J0652-2534 (Dieterich14) => adopt (V-I)(L0V) = 4.85 [updated 7/4/2020] (J-H)(L0V) = 0.74 (+-0.16 rms) ; Schmidt14 (J-H)(M9.5V) = 0.74 ; adopted (J-H)(L0V) = 0.748 (+-0.14 rms) ; SIMBAD d<30pc trend for Ldwarfs (J-H)(L0V) = 0.77 (+-0.06 rms) ; West08 (J-H)(L0.5V) = 0.78 ; adopted (J-H)(L0V) = 0.843 (+-0.033 sem,+-0.046 stdev) ; N=2 L0V Cruz03 => adopt (J-H)(L0V) = 0.76 [updated 1/15/2021] (H-Ks)(L0V) = 0.539 (+-0.001 sem,+-0.004 stdev) ; N=2 L0V Cruz03 (H-Ks)(L0V) = 0.519 ; trend of Dieterich14 for V-Ks=9.45 (H-Ks)(L0V) = 0.505 (+-0.09 rms); trend SIMBAD d<30pc L dwarfs (H-Ks)(L0V) = 0.50 (+-0.04 rms); West08 => adopt (H-Ks)(L0V) = 0.51 [last updated 8/6/2020] (J-Ks)(L0V) = 1.382 (+-0.032 sem,+-0.045 stdev) ; N=2 L0V Cruz03 (J-Ks)(L0V) = 1.31 ; Faherty09 (J-Ks)(L0V) = 1.20 (+-0.17 rms) ; Schmidt14 (r-i)(L0V) = 2.49 (+-0.09 rms) ; West08 (i-z)(L0V) = 1.84 (+-0.06 rms) ; West08 (i-z)(L0V) = 1.82 (+-0.10 rms) ; Schmidt14 (i-J)(L0V) = 4.22 (+-0.21 rms) ; Schmidt14 (i-Ks)(L0V) = 5.44 (+-0.29 rms) ; Schmidt14 (z-J)(L0V) = 2.45 (+-0.11 rms) ; West08 (z-J)(L0V) = 2.37 (+-0.15 rms) ; Schmidt14 (H-Ks)(L0V) = 0.46 (+-0.16 rms) ; Schmidt (Ks-W1)(L0V) = 0.32 (+-0.14 rms) ; Schmidt14 (Ks-W1)(L0V) = 0.366 ; Dupuy12 trend => adopt (Ks-W1)(L0V) = 0.36 [updated 12/28/2019] (W1-W2)(L0V) = 0.27 (+-0.07 rms) ; Schmidt14 (W2-W3)(L0V) = 0.44 (+-0.11 rms) ; Schmidt14 M_J(L0V) = 11.542 ; Reyle18 polynomial M_J(L0V) = 11.761 ; EEM fit to L/T dwarfs d<25pc => adopt M_J(L0V) = 11.76 [updated 12/30/2020] M_H(L0V) = 10.783 ; Reyle18 polynomial (Bp-Rp)(L0V) = 4.0183 ; pri. stan. 2M 0345+2540 (G-Rp)(L0V) = 1.67 ; Kiman19 (G-Rp)(L0V) = 1.648 ; Reyle18 polynomial (G-Rp)(L0V) = 1.636 ; M6.5-L2 color trend (G-Rp)(L0V) = 1.6099 ; pri. stan. 2M 0345+2540 => adopt (G-Rp)(L0V) = 1.64 [updated 11/18/2020] (Bp-G)(L0V) = 2.4084 ; pri. stan. 2M 0345+2540 (G-J)(L0V) = 4.683 ; Reyle18 polynomial (J-Ks)(L0V) = 1.197 ; Reyle18 polynomial M_G(L0V) = 15.1141 ; G 239-25B M_G(L0V) = 16.11 ; Kiman19 M_G(L0V) = 15.6406 ; 2MUCD 20333 M_G(L0V) = 16.148 ; Reyle18 polynomial M_G(L0V) = 16.41 ; trend for d<20pc late Ms & early Ls M_G(L0V) = 16.4187 ; LSPM J1731+2721 M_G(L0V) = 16.4461 ; 2MASS J15485834-1636018 M_G(L0V) = 16.5574 ; 2MASS J17565620-4805096 M_G(L0V) = 16.5614 ; 2MASS J03140344+1603056 M_G(L0V) = 16.6702 ; 2MASS J08593854+6341355 M_G(L0V) = 16.6798 ; Cl* Melotte 22 KPNO 2 M_G(L0V) = 16.68 ; pri. stan. 2M 0345+2540 (see below) M_G(L0V) = 16.6975 ; 2MASS J12043036+3212595 M_G(L0V) = 16.966 ; 2MASS J15525906+2948485 => adopt M_G(L0V) = 16.6 [adopted 7/6/2020] Mv(L0V) = 20.00 ; EEM fit to Dieterich14 data (V-Ks=9.45) Mv(L0V) = 19.97 ; M_Ks=10.57, V-Ks=9.4 Mv(L0V) = 19.88 ; pri. stan. 2M 0345+2540 (see below) Mv(L0V) = 19.79 ; DEN0652-2534 (Dieterich14) Mv(L0V) = 19.61 ; 2MA0746+2000AB (Dieterich14) => adopt Mv(L0V) = 19.97 [updated 1/15/2021; V-Ks=9.4, M_Ks=10.57] (G-V)(L0V) = -3.1984 ; pri. stan. 2M 0345+2540 (G-V)(L0V) = -3.37 ; M_G - Mv = 16.57 - 20.0 => adopt (G-V)(L0V) = -3.37 [updated 1/15/2021] M_Ks(L0V) = 7.87 ; Gaia_1831-0732 calc using Kirkpatrick20 M_Ks(L0V) = 9.76 ; 2MUCD 20333 M_Ks(L0V) = 10.03 ; 2MA0746+2000AB (Dieterich14) M_Ks(L0V) = 10.11 ; G 239-25B M_Ks(L0V) = 10.28 ; Reyle18 polynomial M_Ks(L0V) = 10.30 ; LSPM_1735+2634B calc using Kirkpatrick20 M_Ks(L0V) = 10.44 ; trend to L/T dwarfs in notes (1/2021) M_Ks(L0V) = 10.47 ; 2MASS J15525906+2948485 M_Ks(L0V) = 10.53 ; fit to SIMBAD L/T dwarfs d<25pc (12/2020) M_Ks(L0V) = 10.53 ; LSPM J1731+2721 M_Ks(L0V) = 10.54 ; DEN0652-2534 (Dieterich14) M_Ks(L0V) = 10.55 ; EEM fit to Dieterich14 data (V-Ks=9.45) M_Ks(L0V) = 10.56 ; 2MASS J17565620-4805096 M_Ks(L0V) = 10.57 ; 2MASS J03140344+1603056 M_Ks(L0V) = 10.57 ; pri. stan. 2MASS J03454316+2540233 M_Ks(L0V) = 10.59 ; 2MASS J12043036+3212595 M_Ks(L0V) = 10.63 ; Dieterich14 calib (V-Ks=9.45) M_Ks(L0V) = 10.66 ; 2MASS J08593854+6341355 => adopt M_Ks(L0V) = 10.57 [updated 1/15/2021; V-Ks=9.40, Mv=19.90] M_K(MKO)(L0V)=10.1066 ; G_239-25B calc using Kirkpatrick20 M_K(MKO)(L0V)=10.2806 ; LSPM_1735+2634B calc using Kirkpatrick20 M_K(MKO)(L0V)= 8.8118 ; Gaia_1831-0732 calc using Kirkpatrick20 BC_Ks(L0V) = 3.157 mag ; Filipazzo15 (field) BC_Ks(L0V) = 3.198 mag ; interp M6V-L1V for V-Ks=9.45 BC_K(L0V) = 3.205 mag ; Golimowski04 BC_Ks(L0V) = 3.221 mag ; Looper08 BC_Ks(L0V) = 3.26 mag ; Schmidt14 (rms = 0.15) => adopt BC_Ks(L0V) = 3.21 [updated 1/15/2021] logL(L0V) = -3.616 dex ; M_Ks=10.57, BC_Ks=3.21 => Mbol=13.780 => adopt logL(L0V) = -3.616 [updated 1/15/2021] => adopt Mbol(L0V) = 13.780 [updated 1/15/2021] Mass(L0V) = 0.0772 Msun ; Mann18 calib for M_Ks=10.57 => adopt Mass(L0V) = 0.077 Msun [updated 11/15/2021] Rad(L0V) = 0.0980 Rsun ; logL=-3.616, Teff=2300K => adopt Rad(L0V) = 0.0980 Rsun [updated 1/15/2021] # Standards 2MASS J03454316+2540233 = 2M 0345+2540 = 2MASP J0345432+254023 = V1226 Tau = Cl* Melotte 22 KPNO 2 >M10V: Kirkpatrick97 *L0V: Hawley02(stan),Kirkpatrick05(opt.anchor),Schneider14(near-IR) L1:: Geballe02 "coolest isolated dwarf yet discovered" as of Kirkpatrick97, and was assigned >M10V - then assigned L0 and considered the optical anchor standard. Hyad at d=27pc? pm = -94, -42 mas/yr. V=22.01+-0.08(Dahn02), I=17.36(2006IBVS.5721....1K), K=12.62+-0.02(Dahn02), V-K=9.39, J=13.997+-0.027(2MASS), H=13.211+-0.030(2MASS), Ks=12.672+-0.024(2MASS), V-Ks = 22.01 - 12.672 = 9.338. G =18.8116+-0.0040(GaiaDR2), Bp = 21.2200+-0.3426(GaiaDR2), Rp = 17.2017+-0.0096(GaiaDR2), E(BR/RP)=1.956, Bp-Rp=4.0183, Bp-G=2.4084, G-Rp=1.6099. G-V = 18.8116 - 22.01 = -3.1984. plx = 37.4595 0.4188 mas (GaiaDR2). GaiaEDR3: plx=37.8948+-0.2637mas, G=18.788708+-0.004105, E(BP/RP)=1.895, Bp-Rp=3.629707, Bp-G=2.060488, G-Rp=1.569220. Mv = 19.878+-0.084(Dahn02,DR2), M_G = 16.679 0.025 (GaiaDR2). Calc using GaiaEDR3: (G-Ks)=6.1167, M_G=16.682+-0.015, M_Ks=10.565+-0.028. # General Notes on L Dwarfs Note that early Ls appear to be rare among the nearest hundreds of objects. Remarkably, the Kirkpatrick12 8pc sample has NO objects between M9V (LP 944-20, GJ 2005C) and L5 (2MASSW J1507476-162738). I fit the following rough linear trend in V-K vs. spectral type using VK photometry from Dahn02 (bracketed to V-K colors for M8 and M9 dwarfs): V-K = 9.2680143e0 + 2.9292857*(SpT_Ltype) Where M9=-1, L0=0. Range M8 to L3. L0: V-K=9.27 L0.5: V-K=9.41 L1: V-K=9.56 L1.5: V-K=9.71 L2: V-K=9.85 L2.5: V-K=10.00 L3: V-K=10.15 Should round these to ~0.1 mag precision. For the BT-SETTL isochrones, the radii of L dwarfs at age 3 Gyr vary little: https://phoenix.ens-lyon.fr/Grids/BT-Settl/CIFIST2011_2015/ M/Ms Teff logL log(g) R(Gcm) M_J M_H M_Ks Rsun logRsun logT logM 0.060 1313 -4.70 5.33 6.07 14.513 13.539 13.340 0.0872503 -1.05923 3.11826 -1.22185 0.070 1650 -4.27 5.37 6.30 14.039 12.824 12.006 0.0905563 -1.04308 3.21748 -1.1549 0.072 1793 -4.11 5.37 6.38 13.233 12.266 11.652 0.0917062 -1.0376 3.25358 -1.14267 0.090 2644 -3.25 5.28 7.90 10.755 10.168 9.881 0.113555 -0.944795 3.42226 -1.04576 0.100 2810 -3.06 5.24 8.72 10.340 9.747 9.460 0.125341 -0.901906 3.44871 -1.00000 0.200 3261 -2.32 5.06 15.23 8.659 8.065 7.811 0.218916 -0.659722 3.51335 -0.69897 0.300 3416 -1.97 4.97 20.70 7.854 7.249 7.005 0.297542 -0.526452 3.53352 -0.522879 0.400 3520 -1.71 4.88 26.32 7.235 6.617 6.380 0.378324 -0.422136 3.54654 -0.39794 0.500 3679 -1.45 4.80 32.56 6.630 5.987 5.763 0.468018 -0.329738 3.56573 -0.30103 0.600 3974 -1.15 4.71 39.21 5.997 5.312 5.128 0.563605 -0.249025 3.59923 -0.221849 0.700 4407 -0.85 4.66 45.13 5.365 4.712 4.581 0.648699 -0.187957 3.64414 -0.154902 0.800 4859 -0.57 4.61 51.25 4.794 4.273 4.169 0.736668 -0.132728 3.68655 -0.09691 0.900 5270 -0.31 4.54 58.79 4.271 3.853 3.766 0.845048 -0.0731185 3.72181 -0.0457575 1.000 5661 -0.06 4.46 67.79 3.778 3.439 3.366 0.974414 -0.0112564 3.75289 0.000000 1.100 5974 0.17 4.36 80.15 3.284 3.003 2.935 1.15208 0.0614815 3.77627 0.0413927 1.200 6191 0.39 4.24 95.81 2.815 2.568 2.504 1.37717 0.138989 3.79176 0.0791812 1.300 6177 0.56 4.10 117.25 2.383 2.136 2.071 1.68535 0.226691 3.79078 0.113943 For 1313K-2644K (across L type range) log(R/Rsun) = 1.1915407022689783d-02 + 4.4366281505955235d-1*logL + 4.5924490307723498d-02*(logL)^2 (G-Ks) = Gaia G (DR2) and 2MASS Ks - CMD for SIMBAD d<25pc entries: (G-Ks) M_Ks 5.002 10.1121 L0 G_239-25B 5.89 10.5287 L0 LSPM_J1731+2721 5.994 10.5674 L0 2MASS_J03140344+1603056 6.109 10.0077 L0 +L1.5 LSPM_J0746+2000 5.947 11.1866 L1 2MASS_J09211410-2104446 6.205 10.7751 L1 2MASS_J18071593+5015316 6.391 10.5276 L1 V LSPM_J0602+3910 6.083 10.8876 L1.5 2MASS_J16452211-1319516 5.909 10.7789 L1.6 V 2MASS_J15551573-0956055 5.857 10.901 L1.7 V 2MASSI_J1300425+191235 6.185 11.0981 L2 e 2MASS_J11553952-3727350 6.306 10.9578 L2 SSSPM_J0829-1309 6.419 11.1085 L2.5 2MASS_J05233822-1403022 6.628 11.4029 L3 2MASSW_J1506544+132106 6.65 11.3403 L3 2MASS_J04013766+2849529 6.762 11.0463 L3 +L6.5 2MASS_J07003664+3157266 6.958 11.2936 L3 2MASS_J10132597-7842551 6.461 11.3505 L3.5 LSPM_J0036+1821 6.691 11.5685 L3.5 DENIS_J145407.8-660447 7.128 11.8948 L3.5 +L6.5 2MASS_J06523073+4710348 6.862 11.4721 L4 pec 2MASS_J05002100+0330501 7.175 11.4398 L4 2MASS_J14252798-3650229 6.635 11.5207 L4.5 2MASS_J18000116-1559235 6.765 12.3528 L4.5 2MASS_J04390101-2353083 7.347 11.7101 L4.5 V 2MASSW_J2224438-015852 6.219 12.2723 L5 2MASS_J14162408+1348263 6.651 12.0022 L5 V 2MASS_J05395200-0059019 6.657 11.9674 L5 V 2MASSW_J1507476-162738 6.683 11.6141 L5 .0V 2MASS_J12035812+0015500 6.957 10.9675 L5 +L5 L_362-29 7.034 11.7943 L5 2MASS_J18212815+1414010 8.057 11.726 L5 gamma 2MASS_J03552337+1133437 6.445 12.0215 L5.5 2MASS_J17502484-0016151 7.152 11.9469 L5.5 2MASS_J14482563+1031590 7.079 12.9612 L6 2MASSW_J1036530-344138 7.126 12.0871 L6.5 +T2 2MASSI_J0423485-041403 7.247 12.154 L6.5 2MASS_J06244595-4521548 7.327 11.845 L6.5 2MASS_J08354256-0819237 7.366 11.757 L6.5 2MASS_J01443536-0716142 7.101 12.6903 L7 2MASS_J19251275+0700362 7.137 13.0744 L7 :: 2MASS_J03400942-6724051 7.46 12.8206 L7 2MASSI_J0318540-342129 7.504 12.2253 L7 V 2MASS_J08575849+5708514 8.058 12.2195 L7 2MASSW_J2148162+400359 7.131 12.9477 L7.5 WISEP_J180026.60+013453.1 7.42 12.8521 L7.5 V 2MASSI_J0825196+211552 6.85 12.8523 L8 2MASS_J09083803+5032088 7.204 12.915 L8 2MASSI_J2325453+425148 7.286 12.9147 L8 2MASS_J14053729+8350248 7.066 12.9309 L8.5 2MASS_J02572581-3105523 7.052 13.1203 L9 DENIS_J025503.3-470049 7.096 13.1517 L9 2MASS_J06073908+2429574 ### Using SIMBAD L/T dwarfs d<25pc (12/30/2020), I fit the following polynomial M_J(2MASS) = sum(a_n * x^n) where x is L subtype (L0 = 0, T9.5=19.5) rms=0.37mag a0 = 1.1761438561818357e+001 a1 = 2.6942341651479301e-001 a2 = 1.7037640702527501e-001 a3 = -1.0858200912647488e-001 a4 = 2.9319638924181272e-002 a5 = -3.8854023394830758e-003 a6 = 2.6468821031881370e-004 a7 = -8.9323184102355968e-006 a8 = 1.1872145888484479e-007 (note that for each bright outlier at a given type, the faintest outlier was also clipped, but only 0 or 1 each) While I looked at the trend between L0 and T2, the completeness of photometric data and parallaxes appears to be affecting the trend fainter than ~T3. M_Ks(2MASS) = sum(a_n * x^n) where x is L subtype (L0 = 0, T7.5=27.5) rms=0.28mag (between L0-T7.5) a0= 1.0528564772733834e+001 a1= 2.5159895651814790e-001 a2= -2.2881611648565864e-002 a3= 9.3804973640946483e-003 a4= -1.0079605466415120e-003 a5= 3.2481502407196869e-005