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Abstract

Throughout this paper, I will describe how one can use simple first
order differential equations to model the relationship between a predator
and its prey. Beginning with the simplest model, representing the growth
of one species, I will add layers of complexity until we have a proper
model representing the interaction of two species. The classical mechanical
applications result from the oscillatory nature of interacting species. Also,
because we can use first order differential equations to model the species,
we can use the concepts taught in PHY 235W to analyze these equations
without ever having to solve them, through phase diagrams and logistic
maps. Finally, I will discuss the stability of each equation’s equilibria,
and different methods of determining each equilibrium’s type of stability.

1 Introduction

In order to analyze any differential equation, one must solve it with an appro-
priate number of initial conditions. Yet, some equations, especially ones that are
nonlinear, are very difficult to solve with traditional methods. The equations we
will look at describe dynamic systems, meaning systems of elements that change
over time. This class of equations gave rise to a class of theories, Dynamic Sys-
tems Theories, which provide ”theoretical principles that aim to conceptualize,
operationalize, and formalize these complex interrelations of time!.”

The equations we will go through all model the rate of change of populations
with respect to time. The common connection between all models is that each
model has at least one equilibrium point, which we will call N*, where the rate of
change of that population is equal to zero. One of the principal goals of Dynam-
ical Systems Theory is to gain insight into the stability of equilibrium points for
various Ordinary Differential Equations, without directly solving them, through
various graphical and numerical methods. This aspect of Dynamical Systems
Theory is what will be discussed most when we go through all of my popula-
tion models, as it is the strongest tie between population models and Classical
Mechanics.
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First, I will qualitatively define what it means for an equilibrium point to
be stable. Aleksandr Mikhailovich Lyapunov, a Russian mathematician, says
that for a given dynamical system, “if the rate of change following a small dis-
placement from equilibrium is always negative or zero, then the equilibrium is
stable?.” So that, by his definition, an equilibrium N* is stable if starting close
enough to the equilibrium point guarantees you stay close to that point®. We will
use this definition in our discussion of equilibrium. It allows for small deviations
around the equilibrium point, yet some applications require all small deviations
to eventually die out. When an equilibrium point models this behavior, we
call it asymptotically stable*. In general, the behavior of first-order differential
equations is dominated by their equilibria, with solutions either staying at the
equilibria, moving monotonically towards or away from their equilibria, or go-
ing off monotonically to infinity®. For each model, I will discuss how we can
determine the equilibrium points, and the stability of each point.

The definitions above will be sufficient for our first two, single-species models,
yet for our third model, representing the interaction between two species, we
will need a more quantitative way to determine stability. I will now describe
how one can learn the stability of any coupled, two species model of the form:

nen =% pey=-2 1)

Through a method called Linear Stability Analysis®. First, I will define equi-

librium points (x,y) = (z*,y*) to be any points that satisfy the relation:
fi(@®,y") = fa(2a™,y") =0 (2)

Next, we determine the Jacobian Matrix, J, by calculating all relevant partial
derivatives, which for this general example would look like:

ox oy

Then, we calculate the Jacobian at the equilibrium points”, which we will notate
as J*, and assume is now of the form:

a1 a12]

a1 a2

The final step in this analysis is to find the roots of the characteristic equation
given by solving det(J* — IoA)=0, which results in a characteristic equation of
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the form:®
A — (@11 + ag) A + (a11a22 — agzas;) =0 (3)

which is easily rewritten as®:

M—pA+qg=0 (4)

The significance of p and q is twofold. First, it tells us information about J*,
namely p=Trace(J*) and g=Determinant(J*). Secondly, and most importantly,
it gives us a relatively easy way to determine not only if an equilibrium is stable,
but also what kind of stability it possesses. I will not explicitly go through how
one can determine this, instead, I will refer to Fig. 1.10

Fig. 1. Classification of Equilibria
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2 Models for Single Species
2.1 Model 1: Exponential Model

The most basic way to model populations is a directly proportional relation-
ship between the rate of change of the population, %, and the population’s size,
N(t). In this model, we will use r as the proportionality constant, where r=(rate
of births)-(rate of deaths)=intrinsic rate of growth''. The assumption in this
model is that each additional member of the population adds an undiminished
contribution to the growth rate, so r=constant.

AN
—— =rN
praiakd ()

This is a linear, first-order differential equation, so it can be easily integrated.
Because our domain is only limited to time ¢ > 0, we must know the population
at time ¢ = 0, which we will notate with N (¢ = 0) = Ny. Knowing this condition
allows us to integrate to find how the population changes with time, yielding
the exponential equation:

N(t) = Nge™ (6)

Now we can see explicitly that this model grows exponentially for posi-
tive intrinsic growth rates (r > 0), decreases exponentially for negative intrin-
sic growth rates (r < 0), and stays constant at the initial population if the
amount of births (b) equals the amount of deaths (d), resulting in r = 0.12

The phase diagram of this ODE shown in

Fig. 2 and Fig. 3 best demonstrates its ex- Fig. 2. r>0=+0.6
ponential nature without the need to specify  ropuaton )

initial conditions or even solve the equation.

For each time (t) and population (N), it plots 4“ f : j : : f r f z I
an arrow representing Cfi—]:. So, by beginning 4: A t :tr A 44 2 :
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Because we defined equilibria in equations 4‘ A‘ } } 4 44 AA 4‘ A JA 4‘
(1) and (2) to be any value of N that when ;4 'y fA / 444 / ; 1
plugged in, results in ‘% = 0, we see this /// / / I/ / 1 l‘
model has only one equilibrium point, N* = 244 ,4///11/’4/)/_/{4; -
0. For positive r, as shown in Fig. 2, this equi- \
librium is unstable. Beginning at the equilib-
rium, the arrows all point away, so any small Fig. 3. r<0=-0.6
displacement from zero population results in  Populaton (N)
an exponentially increasing population away
from the equilibrium N* = 0. For negative r, i x : z t i x i x u x
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from zero population results in a negative rate of change, and an exponentially
decreasing population back to its equilibrium point N* = 0, thus for negative
r, N* =0 is asymptotically stable'>.

2.2 Model 2: Logistic Model

There are two big problems with the exponential model which we will aim to
alleviate in the Logistic Model.

1. The undiminished contribution that each additional member of the popu-
lation adds results in limitless growth, and ignores overpopulation. Mean-
ing the per capita growth rate, defined as %%, is constant.

2. Because of this constant growth rate, the model does not depend on the

past. It instead responds instantaneously to any change in the population
.14
size**.

In our study of nonlinear differential equations, we came across a technique
called mapping, which describes the progression of a nonlinear system by look-
ing at how the (n+1)th state depends on the nth state, by defining a relationship
with the form z,+1 = f(a,x,), where f(a,x,) is called a difference equation,
and « is a model-dependent parameter. This function acts recursively, by con-
tinually generating values of x,,41 from z,. This collection of points is called
a map of the function itself. This technique can be very helpful in describing
the evolution of a system in which the future depends on the immediate past®®.
The most used representation of this is called the logistic equation, which has
the iterative form:

Tpt1 = axn (1l — x,) (7)

This equation was developed by Bessoir and Wolf in their study of population
models on the ground that it depended on the immediate past'®, so it solves
our second problem with Model 1. It also eliminates the possibility of limitless
growth by including a variable K, which they defined as the maximum occupancy
without overcrowding, so it also solves our first problem with Model 1. A way
to analyze such an equation by graphical means is by using a logistic map. The
differential form of the logistic equation that we will use in this section is:'”

dN N
ar rN(1 - E) (8)

For simplicity, K will be set constant in value. When the population N is
equal to the carrying capacity K, the terms in the parenthesis sum to 0, resulting
in a zero growth rate. Also, if the population is ever 0, the terms outside the
parenthesis, rN, is equal to zero, which also results in a zero growth rate. Thus,
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it is easily shown, just by observing the equation, that it has two equilibria,
N* =0 and N* = K. This is confirmed quantitatively by setting < dN = 0,
resulting in a quadratic polynomial, which has the two solutions of 0 and K'8.
I will first discuss how we can learn more about this equation and its equi-
libria without solving it or graphing it. We see that when N is small, the
terms in the parenthesis are negligible, so that with small N this model be-
haves exactly like the exponential model discussed in 2.1, so N(t) = Npe.
So that assuming r > 0, small deviations from N=0 result in exponential
growth away from it, thus we can say that N* = 0 is an unstable equilibrium?!®.
Now we turn our attention to the sec-

Fig. 4. r > 0= +0.6 ond equilibrium, N* = K. To investigate

Population (N) its behavior, we first introduce a variable
that will measure the deviation of N from

‘ ‘ t ‘ ‘ “‘“ ‘ K, which we will define as:?°
RARMANMAA

Vi

r=N-K. (9)

K—/" g ot
1 /; // //; . The first thing to notice i AN _ do
; 4 g to notice is that %5 = 57,
j / _4 4 / 4 because as we said above, K=constant.
[7-7‘“ y 114 We then use the relation N = K + z, to
* 1/ 4 change the variables of equation (8) into

\

/////f/’ the form:2!

Time (t)

dz r

i il o (10)
Fig. 5. r <0=-0.6 Because we know that for small values of
Population (N) x, * >> 2%, we see that for small x =
YRRy [ 4 deviation of population from its equilib-
Lpadiifd i - ; 22
4 /)‘/4/ /;44/4 4 / //14 /4 ; rium, the equation reduces to:
AL AA LA A
K‘\*\?\f\’\x \\\\:\\?\ dj ~ —rr (11)
AR \ \\ \‘\ dt
\ \\1 \ \ *\ \‘ \ \ ** And because we have defined an equilib-
; ;---\--\;*\-tﬂ;ﬂ*” "*;'V rium to be stable ”if the rate of change
CLLLL L followi i f
ARV \ \ \ \ ollowing a small displacement from [that]
\\\\\\ N \\ \\\‘ equilibrium is always negative or zero”,
RS
e S mime () we have proved, without graphical meth-

ods and without even solving the equa-
tion, that if r > 0, N* = K is stable. Furthermore, because all small deviations
will die out, if » > 0, N* = K is asymptotically stable?>. Vice-versa, by the
same logic, if » < 0, then N* = 0 is asymptotically stable, and N* = K is
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unstable. The results of this analysis can be confirmed graphically by looking
at the phase diagrams for the logistic model shown in Fig. 4 and Fig. 5.

What else can we find out about this equation? Well, we would need an
initial condition if we wanted to integrate it to find the equation N(t), say
N(t = 0) = Np. This would result in the equation:?*

- K
L+ (g — e

N(t)

(12)

Which is pretty useless because it only tells us information about one possible
trajectory, beginning at Ny. So we lose information by integrating, so let’s
derive the ODE and see what we get:2°

d*N 2N dN
e =K 13)

By setting % = 0, we see that this is only possible if N = % Thus, we know
there must be an inflection point at N = %, where the curve flips its concavity,
resulting in an ”S” shaped curve. This observation is confirmed in the phase
diagrams shown in Fig. 4, Fig. 5, and Fig. 6b, by the black dotted line placed at
N = % This ”S” shaped curve is one of the defining traits of the Logistic Equa-
tion.

Now, to bring our discussion of Fig. 6. r>0=.6, No =200, K = 1000
the logistic equation back where we
began it, we will need to find a way to
convert the form of our logistic equa-
tion from a differential one to an it-
erative one. Doing so will give us an-
other method to determine informa-
tion about it and give us another re- -
lation of population models to classi-
cal mechanics by giving us the abil-
ity to produce a map of our logistic
equation. We will use a method de-
veloped by the Swiss mathematician
Leonhard Euler to do this.

This method lets us find out infor- e w e wm w0
mation about the solution of an ODE
without solving it, but instead by be-
ginning at an initial condition, and
then ”stepping” in the direction given  PopuatonN®
by the arrow on that location in the
phase diagram. The arrows at each

(a)Map of Logistic Equation (13)
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4% at that specific point (¢, N(t)). This method does not aim to find exact
solutions, rather, it tries to approximate the solution, with increasing precision
corresponding to decreasing step size. Formally, the general theorem for Euler’s

Method is:26

Theorem 1 (Euler’s Method) Approzimate values for the solution of the
initial value problem % = F(z,y), y(xo) = yo, with step size h, alt x,y1 =
T, + h, are

Ynt1 = Yn + RE(Tn, Yn) n=1,273,.. (14)

So, applying this theorem to our logistic equation (8) yields the iterative form
of the equation:

han)
K

Npt1 =Ny + h(rN,(1 - %)) = N,(1+ hr — n=1,23,.. (15)
Now, to map this equation, I will

Fig. 7. r <0=.6, No = 200, K = 1000 choose my step size to be constant
Lopstc sauaon map at h=1, for simplicity. Choosing an
initial condition and carrying capac-
ity is the only thing left to do if
we want to map this equation. We
choose Ny = 200, and K = 1000.
For a positive rate (r > 0), the re-
sulting plots are in Fig. 6, and for
negative rates (r < 0), the result-
- ing plots are in Fig. 7. The behav-
ior seen is exactly what we would ex-
pect from our previous analysis. In
Fig. 6a, we see initially each step has
an almost constant magnitude, corre-
v sponding to the almost constant in-
trinsic rate of growth for small N’s.

100

(a)Map of Logistic Equation (13) As the population (N) approaches
the carrying capacity (K=1000), the

Population N(t) magnitude of each step decreases ex-
200 ponentially, unil finally, N = K =
150 1000, and the rate of growth drops to

zero. The same situation is mapped
in Fig. 7a, yet the rate is » < 0, con-
firming our observation that a nega-
0 JTime () tive rate results in N* = 0 being an
asymptotically stable equilibrium.

(b) Plot Of N(t) In Fig. 6b, we see the character-
istic ”7S” shaped curve. Additionally,
we can see that our calculated inflection point is correct, shown by the dotted

100

50
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line at N = % = 500. The two plots in Fig. 6 and Fig. 7 show two different
ways to model a differential equation that depends on the past, given an initial
condition.

2.3 Model 3: Predator Prey Equation

Now that we have a satisfactory equation for the population growth of one
species, the next step is formulate two equations that model the interaction
of a species of predators interacting with a species of prey. For example, a
population of wolves (predator) interacting with a population of rabbits (prey).
We will build our equations around this example, and then change variables for
the analysis. So, to begin, we will use W(t) to represent the amount of Wolves,
and R(t) to represent the amount of Rabbits. Beginning with our method
in Model 1, if there are no wolves, we expect the rabbit population to increase
exponentially at a rate proportional to the current amount of rabbits, we will use
r as our proportionality constant, as we did in Model 1. Vice-versa, without any
rabbits, the wolf population will decrease exponentially, at a rate proportional to
the current amount of wolves., we will use m as our proportionality constant?’.

dR aw
-’ g = —mW, r & m are positive constants (16)

Now, we add the aspects of interaction by making assumptions about each
species. We assume that the interaction of the two species is directly propor-
tional to the size of each population, so we will notate the size of the wolf/rabbit
combined population as RW. Next, we assume that the main cause of death
among rabbits is being eaten by wolves, so that interaction between species will
deplete the number of rabbits. Thus we add the term —aRW to the equation %
to show this, where a is a positive constant representing the amount of rabbits
that are eaten during each interaction with the wolves. Vice-versa, we assume
that the survival rates of the Wolves depend on their available food supply,
which are rabbits, thus we add the term +bRW to the equation ‘Z—Vf to show
this, where b is a positive constant representing the amount of lethal interac-
tions with rabbits?®. In terms of the logistic equation of Model 2, equations

(16) become:

dR w

o R ) (17)
daw R
= 7(m/b)) (18)

Thus, we can use the same methods of analysis that we used on equation (8)
from Model 2, with the important difference that the location of K in Model 2 is
now occupied by an equilibrium point of the opposite species. This is realized by

the fact that if you set ‘fi—}f =0, the R’s will cancel, leaving only a W. Thus, the

27 James, pg 627
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nontrivial equilibrium points for % is W* = Z, and for % it is R* = 7. The
trivial equilibrium will be the same as in Model 2, so that W* = 0 and R* = 0.
This is also a great demonstration of the coupled nature of the two equations.
They are explicitly dependent on each other, so you physically cannot solve only
one of the equations. I will now discuss how we can learn about these kinds of
equations, without ever solving them.

Now, to generalize our equation to the interaction of any predator vs prey,
we use a technique called nondimensionalization. The purpose of this technique
is to simplify the equations (17) and (18) by applying a change of variables, it
will also have the effect of rescaling our equilibrium to (1,1), assuming we pick
an appropriate change of variables®”, and it will let us learn about the system
using the techniques spoke about in the introduction. The change of variables
we will use are:3°

T

3=

R = Prey, y= YW = Predators (19)
r

So our equilibria now become:

b bm ar

* L pk o :17 *:*W*: -1 20

* m m b Y r ra (20)

From equation (19), we see that R = (%4)x, and that W = (Z)y. Also, because
r, a, m, and b are constant, we see that ‘fi—}f = (%)‘fi—f, and % = (2)%

Plugging these relations into equations (17) and (18) yields the much simplified
Predator-Prey equations:3!

i rz(l—vy) (21)
% =-—my(l —x) (22)

Where the only constants that have not been eliminated are r and m, which cor-
respond to the intrinsic rate of growths of the prey and predators, respectively.
Now I can begin the analysis that I spoke about in the introduction. First,
I specify again that:
dx dy

= — = —= 23
fl(w7y) dt’ fQ(CU?y) dt7 ( )
I have already found my equilibria, so I now I will determine the Jacobian for

this system of equations, which is:

% % r—ry —rx
ox Jy

my m—mz

29Kot, pg 109
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I must analyze each pair of equilibria separately, so I begin with the nontrivial

equilibria (z*,y*) = (1,1

a1

a21

JWLU:[

So, we see that at this equilibria:

p=ai +ap =0

Fig. 8. Phase Diagrams for Nontrivial
Equilibrium (z*,y*) = (1,1)
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b)yr=—-m=.6

q = a11a22 — a12021 = —Trm

p=ai1t+ax=r—m

). The Jacobian evaluated at that point becomes:
ai2 0 -r
a2 N m 0

g = a11Q22 — 12021 = TM

(24)

(25)

From Fig. 1, assuming that r, m
are positive constants, we see that the
resulting phase diagram should have
a center at (x,y) = (1,1), so that all
trajectories form near-circular paths
around that point. This is exactly
what is shown in Fig. 8a. Where the
dotted lines represent the values of
x =y = 1, and the color correspond-
ing to the magnitude of the slope at
that point.

To further our trust in this dia-
gram, we look at the hypothetical sit-
uation that arises when r = .6, and
m = —.6. We see from equation (24)
and (25) that p stays at zero, yet q be-
comes a negative value. So, by look-
ing at Fig. 1, we would expect to see
a saddle point where the center was
prior. This is exactly what is shown
in Fig. 8b.

Now, we turn our attention to the
trivial equilibria (z*,y*) = (0,0). So
the Jacobian evaluated at that point
becomes:

a a r 0
J*(O,()) _ [ 11 12‘| _ l ]
az1 Q22 0 —m
So, we see that at these equilibria:

(26)

(27)
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By looking at Fig. 1, we expect to see a saddle point at (z,y) = (0,0), just
by the assumption that r, m are nonzero. I can graphically demonstrate this
behavior by doubling the plots range used in Fig. 8 as to equally include negative
values of x, y, even though realistically these areas of the graph are useless,
you can’t have negative rabbits. Regardless, this behavior is shown in Fig. 9.

Finally I will briefly show how
I combined equations (21) and (22)
into one equation that I used to graph

the phase diagrams of Fig. 8 and Fig.
9:32

Fig. 9. Phase Diagrams for Trivial
Equilibrium (z*,y*) = (0,0)
y (Predators)

dy —my(l—2x)
a _ %Y _
de ro(l —y) (28)

) (Prey)
3 Conclusion S

We have presented in this pa-
per a derivation of the Predator-
Prey Equations, beginning from the
simplest single-species exponential
model. We showed how the logis-
tic model solves the problems in the
exponential model, and how we can
generalize the logistic model to model
two interacting species.

Since the logistic model is a non-
linear differential equation, we used
concepts taught in PHY 235W to an-
alyze its properties through phase di-
agrams and logistic maps. There are
many other methods that could have
been employed to learn about these
equations, from bifurcation diagrams
to Poincare sections. The reason-
ing we neglected these methods was
mainly due to lack of room.

The predator-prey equations are
a great example of a how the con-
cepts taught in PHY 235W can be
applied not only to purely mechani-
cal systems, but can be generalized
to describe the relationship between a
predator and it’s prey. From here, we
can further develop these equations to

x (Prey)
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model almost any type of interaction between two species, from mutual coop-
eration, competition, and much more33.
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