Relativistic Quantum Mechanics
Homework 1 (solution)

September 23, 2007
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Consider the Klein-Gordon equation in the presence of a static Coulomb barrier
(minimal coupling),
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2 (TeXing by Andreas Liapis)

Using the fact that the set that includes the identity and the three Pauli matrices
is a complete basis set for the 2 x 2 matrix space, we can expand any arbitrary
2 X 2 matrix A as

3
A= E ajop 5 03 =1,01,02,03, (10)
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where «; are C-numbers.

2.1

Assume there exists a 2 x 2 matrix A that commutes with all three Pauli ma-

trices:
[A,0;] =0 ; 1=0,1,2,3. (11)

Using the expansion (10) we can express this condition as: (recall that the Pauli
matrices obey the cyclic commutation relation [6;, 6] = 2i€;;,0%)
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[A, 5’1] = ZO@[O}, 5’1] = —2iapb3 + 2iazd9 = 0, (12&)
0
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[A, 5’2] = ZO@[O}, 5’2] = 4+2ia163 — 2iazd1 = 0, (12b)
0
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[A,a'g] = Zai[ai,&g] = —2i102 + 2iagd; = 0. (12C)
0

From these it is immediately obvious' that, for the commutation requirement
(11) to hold, the expansion coefficients involved in the above expressions have
to vanish:

;=0 ; i=1,23. (13)

We are therefore left with:
A= qpl. (14)

2.2

Assume there exists a 2 x 2 matrix B that anti-commutes with all three Pauli
matrices:

Following the same procedure as in the previous section, we express this condi-
tion as: (recall that the anti-commutator of Pauli matrices is twice the identity:
[64,6i]r =262 =2-1)

[B,61] = 26061 +2611=0 — [y =01 =0, (16a)
[B,62] = 2Bp62 +206:1=0 — [y=/p2=0, (16b)
[3,63] = 2ﬁ0&3 + 2ﬁ31 =0 — ﬁo = ﬁ3 =0. (160)

1Since the Pauli matrices are orthogonal to each-other, there exists no C-number « such
that ao; = 0.



Therefore only the null matrix anti-commutes with all three Pauli matrices and,
as a result, finding four anti-commuting 2 X 2 matrices is impossible.
3 (help with TEXing from Andreas Liapis)

3.1

We wish to obtain plane wave solutions to the Dirac equation with an arbitrary
wavevector; We begin with the Dirac equation in the coordinate representation,

(if) —m) ¥ =0, (17)
for which we postulate solutions of the form
U(z) = u(k)e F7. (18)

The eigenvalues of (17) are obtained from:
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The amplitude of the plane wave must obey

(F—m)u(k) =0. (22)

We can write equation (22) as
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We now express the four-component vector u(k) as a pair of two-component
vectors @ and . )
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Equation (23) is then reduced to a pair of equations relating these two-component
vectors. If we choose the positive energy solution kg = w, we find
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In this case, @ is the independent quantity, so we wish to solve for ©. From the

second equation, we find that
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Similarly, if we chose the negative energy solution, kg = w_ we would find
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This time, it is © that is the independent quantity, and solving the first equation
gives:
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3.2

We wish to confirm that the states obtained above are eigenstates of the Hamil-
tonian

H=a p+pm. (29)
Consider the positive energy solution first.
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Here we have made use of the fact that k? = w? — m? as well as the identity?
(0-k)? =k%+i0-(k x k) = k%. We see that ¥, is indeed an eigenstate of
H with eigenvalue w. For the negative energy solution we start from equation

(30c):
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2This can easily be derived from the commutation relation of the Pauli matrices: 60 =
165 + €4ki0%



We therefore confirm that W_ is an eigenstate of H with eigenvalue —w.



