# Thermodynamics in the nanoscale

Gabriel T. Landi











Shopping Useful tasks

Limitations 2<sup>nd</sup> law



<u>Trade-offs</u> Power vs. efficiency



Slow pedaling is energy efficient, but it takes a long time to reach the top.

Pedaling fast gets you there quickly. But consumes more energy.

## What changes at the nanoscale?

Fluctuations.



#### Thermodynamic processes become probabilistic

When we try to cool, one of 3 things might happen:

Success!

👮 Failure.

Disaster! (freezer actually heat up)

Events are probabilistic:  $p_S + p_F + p_D = 1$ 

| Thermodynamics<br>imposes constraints<br>that stop us from<br>having $p_S = 1$ | $p_D = p_S e^{-\sigma}$ |
|--------------------------------------------------------------------------------|-------------------------|
|--------------------------------------------------------------------------------|-------------------------|



#### Precision becomes part of the budget



### Why is thermodynamics at the nanoscale relevant?

**1 turbine:** 3300 tons 1.5 rotations/sec 700 MW ≃ 1% of Brazil's power ≃1.5M people





- Modern devices contain elements that spam a broad range of scales.
- Energy consumption across these scales differ *dramatically*.
- Must be able to move heat around, and across scales.
- Ex: high performance CPUs use thermoelectric plates.
  - Consume power to pump heat out of the core.