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Entropy production in continuously measured Gaussian
quantum systems
Alessio Belenchia 1, Luca Mancino1, Gabriel T. Landi 2 and Mauro Paternostro 1✉

The entropy production rate is a key quantity in nonequilibrium thermodynamics of both classical and quantum processes. No
universal theory of entropy production is available to date, which hinders progress toward its full grasping. By using a phase space-
based approach, here we take the current framework for the assessment of thermodynamic irreversibility all the way to quantum
regimes by characterizing entropy production—and its rate—resulting from the continuous monitoring of a Gaussian system. This
allows us to formulate a sharpened second law of thermodynamics that accounts for the measurement back action and information
gain from a continuously monitored system. We illustrate our framework in a series of physically relevant examples.
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INTRODUCTION
Entropy production, a fundamental concept in nonequilibrium
thermodynamics, provides a measure of the degree of irreversi-
bility of a physical process. It is of paramount importance for the
characterization of an ample range of systems across all scales,
from macroscopic to microscopic1–11. The lack of a continuity
equation for entropy prevents entropy production from being a
physical observable, in general. Its quantification must thus pass
through inference strategies that connect the values taken by
such quantity to accessible observables, such as energy12–14. This
approach has recently led to the possibility to experimentally
measure entropy production in microscopic15 and mesoscopic
quantum systems16, and opened up intriguing opportunities for
its control17. Alternative approaches to the quantification of
entropy production are based on the ratio between forward and
time-reversed path probabilities of trajectories followed by
systems undergoing nonequilibrium processes18–20.
A large body of work has been produced in an attempt to

overcome the lack of generally applicable theories of entropy
production11,21. Remarkably, this has allowed the identification of
important contributions to the irreversibility emerging from a
given process stemming from system–environment correla-
tions17,22,23, quantum coherence24–26, and the finite size of the
environment23,27.
Among the directions of potential further investigations, a

particularly relevant one is the inclusion of the back action,
resulting from measuring a quantum system. Measurements can
have a dramatic effect on both the state and the ensuing
dynamics of a quantum system: while the randomness brought
about by a quantum measurement adds stochasticity to the
evolution of a system, the information gained through a
measurement process unlocks effects akin to those of a Maxwell
daemon28,29. Both such features are intuitively expected to affect
the entropy production and its rate (cf. Fig. 1).
The ways such modifications occur have been the focus of some

attention recently. Elouard et al. and Manikandan et al.29,30 tackled
the problem by focusing on the stochastic energy fluctuations
that occur during measurements, while refs. 31–39 addressed the
case of weak quantum measurements of a system, which allowed

for the introduction of trajectory-dependent work and heat
quantifiers (cf. refs. 40,41). In line with a Landauer-like framework,
Sagawa and Ueda focused on the minimum thermodynamic cost
implied by a measurement, highlighting the information theore-
tical implications of the latter on the stochastic thermodynamics
of a two-level system42,43, an approach that can both be
generalized to general quantum measurements44 and assessed
experimentally45.
Here, we contribute to the quest for a general framework for

entropy production and its rate in a general system brought out of
equilibrium and being continuously monitored. We propose a
widely applicable formalism able to identify the measurement-
affected rate of entropy production, and the associated entropy
flux to or from the environment that is connected to the
monitored system. We unveil the thermodynamic consequences
of measuring by way of both general arguments and specific case
studies, showing that the entropy production rate can be split in a
term that is intrinsically dynamical and one that is informational in
nature. We show that, for continuously measured Gaussian
systems, the entropy production splitting leads to a refined,
tighter second law. We also discuss the possibility to control the
nonequilibrium thermodynamics of a system through suitable
measurements. We illustrate it by studying a thermal quench of an
harmonic oscillator and a driven dissipative optical parametric
oscillator.
Our approach paves the way to the assessment of the

nonequilibrium thermodynamics of continuously monitored
Gaussian systems—such as (ensembles of) trapped ions and
quadratically confined levitated optomechanical systems—whose
energetics will require tools designed to tackle the intricacies of
quantum dynamics and the stochasticity of quantum measure-
ments, which are currently lacking46–55.

RESULTS
Entropy rate of a continuously measured system
The dynamics of a continuously measured Markovian open
quantum system can be described by a stochastic master
equation (SME) that describes the evolution conditioned on the
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outcomes of the continuous measurement56–58. Upon averaging
over all trajectories, weighted by the outcomes probabilities, the
stochastic part vanishes leaving a deterministic Lindblad ME for
the system, whose dynamics we call unconditional.
In the unconditional case, the entropy rate can be split as _Suc ¼

Φuc þ Πuc with Φuc (Πuc) the unconditional entropy flux (produc-
tion) rate11, with Suc an entropic measure. The second law of
thermodynamics for the unconditional dynamics is encoded in
Πuc ≥ 0. It should be noted that, choosing the widely used von
Neumann entropy leads to controversial results, when the system
is in contact with a vanishing-temperature thermal bath59,60. We
will address this point again later on.
For the conditional dynamics, a similar splitting of the entropy

rate can be obtained, although involving stochastic trajectory-
dependent quantities. Indeed, given that the conditional
dynamics describes quantum trajectories in Hilbert space, the
entropy rate and the entropy production are stochastic quantities.
We are interested in the average of such stochastic quantities over
all trajectories, i.e.,

E½dS=dt� ¼ E dϕ=dt½ � þE dπ=dt½ � ¼ Φþ Π; (1)

where dS, dπ, and dϕ depend on the stochastic conditional state,
and Π and Φ are the averaged conditional entropy production and
flux rates. These quantities will in general differ from their
unconditional counterparts because they depend nonlinearly on
the state of the system. We now move on to explain in more detail
their physical interpretation.
Operationally, the conditional dynamics is obtained by con-

tinuously monitoring the system and recording the outcomes of
the measurement. After repeating the experiments many times,
and computing each time the stochastic entropy flux and entropy
production rate, one finally averages these quantities over the
stochastic trajectories of the system. Such average quantities are
related to the state of the system conditioned on the outcomes of
the continuous measurements. On the contrary, the unconditional
dynamics is recovered by ignoring the outcomes of the
measurements at the level of the state of the system. Thus, the
state of the system, from which the statistics are inferred,
corresponds to the average over the possible outcomes of the
conditional state at each instant of time.
We aim to connect Π to the entropy produced by the system

due to only the open system dynamics (Πuc). We thus assume that
the stochastic entropy flux is linear in the conditioned state of the
system, i.e., E½dϕ=dt� ¼ Φuc. This is so in all those cases where the
entropy flux is given by the heat flux from the system to an
(equilibrium) environment at a reference temperature, a second
relevant instance being when the entropy flux is associated to the
occurrence of a quantum jump of the system8. To the best of our

knowledge, no example of violation of this assumption has been
reported in the literature so far. However, a formal proof of
linearity is still missing. As we aim at a general framework that
encompasses nonequilibrium states of the environment, here we
do not necessarily identify the entropy flux rate with the heat flow
rate to a thermal environment, while claiming for its linearity in
the conditional state of the system. In what follows we show that,
for Gaussian systems, this linearity can be explicitly proven. The
same can be done for more general systems starting from a
microscopic description of the system–environment interaction
via a repeated collisions model61.
By comparing the splitting of the entropy rate for conditioned

and unconditioned dynamics, we arrive at

Π ¼ Πuc þ _I ; (2)

where the last term quantifies the entropic cost of continuously
monitoring the system and, as Φ=Φuc, it must then follow
_I ¼ E½dS=dt� � dSuc=dt.
In order to further characterize the informational term _I and, in

particular, single out the entropy production and flux rates, we
focus on open Gaussian systems subject to continuous Gaussian
measurements. Such a class of systems and processes plays a
substantive role in the broad panorama of quantum optics,
condensed matter physics, and quantum information science in
general. Gaussian measurements are some of the most widely
used techniques in quantum labs, and their role in stochastic
nonclassical thermodynamics is thus both interesting and
physically very well motivated.
The Gaussian case calls for the use of powerful phase-space

techniques, in conjunction with the adoption of the Wigner
entropy as an entropic measure59, which allow us to unambigu-
ously identify the entropy flux and production rates based on the
dynamics of the system, without resorting to a thermal environ-
ment (at finite temperature) and bypasses some of the
controversies linked to more standard von Neumann entropy-
based formulations59, thus going beyond any standard approach.
It should be noted that, in some cases of continuously measured
quantum Gaussian systems, e.g., homodyne detection of an
optical mode, where the bath mode being monitored is effectively
at zero temperature, there are no alternatives to the adoption of
the Wigner entropy due to the unphysical divergences that plague
the definition of entropy production and fluxes obtained by
adopting the von Neumann entropy59,60. Nonetheless, consis-
tently with classical stochastic thermodynamics, ref. 59 showed
that the results obtained using the Wigner entropy agree with the
von Neumann ones, and crucially with the classical ones, for
systems interacting with thermal baths in the high-temperature
limit. Finally, we would like to remark that refs. 62,63 made a step

Fig. 1 Scheme of principle. a A system, prepared in an arbitrary state and being externally driven, interacts with an environment. The
dynamics is associated with a (unconditional) rate of entropy production Πuc. b Continuous measurements alter the dynamics of the system,
resulting in an entropy production rate Π that includes an information-theoretical contribution _I determined by the amount of information
extracted through the measurement.
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forward to extend phase-space-based formulation of entropy
production rate and flux to the case of non-Gaussian systems and
dynamics, using the well-known Wehrl entropy defined in terms of
the Shannon entropy of the Husimi function. All the considera-
tions reported here can be generalized straightforwardly to the
use of the Wehrl entropy.

Continuously measured Gaussian systems
Solving the SME is in general a tall order. Luckily, the intricacy of
such an approach is greatly simplified when dealing with Gaussian
systems, as their description can be reduced to the knowledge of
the first two statistical moments of the quadratures of the system.
The SME can thus be superseded by a simpler system of stochastic
equations. We consider a system of n modes, each described by
quadrature operators ðq̂i; p̂iÞ with ½q̂j; p̂j� ¼ i, and define the vector
x̂ ¼ ðq̂1; p̂1; q̂2; p̂2; ¼ ; q̂n; p̂nÞ. When restricting to Gaussian sys-
tems, the Hamiltonian is at most quadratic in the quadrature
operators and can be written as Ĥ ¼ 1

2 x̂
THsx̂þ bTΩx̂, where Hs is a

2n × 2n matrix, b is a 2n-dimensional vector accounting for a
(time-dependent) linear driving, and Ω ¼ �n

j¼1iσy;j is the n-mode
symplectic matrix (σy,j is the y-Pauli matrix of subsystem j). For an
environment modeled by Lindblad generators that are linear in
the quadratures of the system and the latter is monitored through
Gaussian measurements, the dynamics preserves the Gaussianity
of any initial state. In this case, the vector of average moments
x ¼ hx̂i and the covariance matrix (CM) σij ¼ hfx̂i; x̂jgi=2�
hx̂iihx̂ji of the modes completely describe the dynamics via the
equations57,58,64

_σ ¼ Aσ þ σAT þ D� χðσÞ;
dx ¼ ðAxþ bÞdt þ ðσCT þ ΓTÞdw; (3)

where dw is a 2ℓ-dimensional vector of Wiener increments (ℓ is
the number of output degrees of freedom being monitored), A(D)
is the drift (diffusion) matrix characterizing the unconditional open
dynamics of the system, and χ(σ)= (σCT+ ΓT)(Cσ+ Γ) ≥ 0 is
defined in terms of the 2ℓ × 2n matrices C and Γ that describe
the measurement process (see ref. 57 and references therein for a
detailed derivation of these equations). While the explicit form of
such matrices is inessential for our scopes (cf. refs. 57,58,64), we
highlight the fact that the drift matrix A can be decomposed as A
=ΩHs+ Airr, where the first term accounts for the unitary
evolution and the second for diffusion. Notwithstanding the
stochasticity of the overall dynamics, the equation for the CM is
deterministic. Thus, σ(t) does not depend on the explicit outcomes
of the measurement (i.e., the trajectory followed by the system),
while it depends on the measurement carried out58. The dynamics
of the corresponding unconditional quantities σuc and xuc is
achieved from Eq. (3) by taking C ¼ Γ ¼ O withO the null 2ℓ × 2n
matrix. This then implies χ(σ)= 0, so that one recovers the
dynamical equation for the evolution of σuc.

Entropy production rate and flux
Equation (3) can be conveniently cast in the phase space as the
continuity equation (cf. Supplementary Information)

dW ¼ �div½Jdt þ Jsto�; (4)

where W ¼ e�
1
2ðx�xÞTσ�1ðx�xÞ=ð2πÞn ffiffiffiffiffiffiffiffiffiffiffi

det σ
p

is the Wigner function
associated with the state of the n-mode system and we have
introduced the deterministic phase-space current J, which can be
divided as J= Jrev+ Jirr, and its stochastic counterpart Jsto. Here,
Jrev=ΩHsxW+ bW encodes the contribution stemming from the
unitary dynamics and Jirr= AirrxW− (D/2)∇W accounts for the
irreversible dissipative evolution. It should be noted that these
currents are equal to the ones of the unconditional dynamics with
the replacement W→Wuc, where Wuc is the Wigner function
of the unconditional state obtained through the replacements

σ→ σuc and x ! xuc. The stochastic term Jsto=W(σCT+ ΓT)dw
depends entirely on the conditional dynamics, through σ and W,
and the measurement strategy being chosen.
In order to characterize the entropy of the n-mode system, we

adopt the Wigner entropy S ¼ � R
W lnW d2nx as our entropic

measure. For Gaussian systems65

S ¼ 1
2
ln ðdet σÞ þ kn ¼ �ln ðPÞ þ ~kn; (5)

with kn; ~kn inessential constants that depends only on the number
n of modes involved and P the purity of the state of the system,
which for a Gaussian state reads P ¼ ðdet 2σÞ�1=2. This also
coincides with the Rényi-2 entropy65 and tends to the von
Neumann entropy in the classical limit of high temperatures. Let
us note that the Renyi-α entropy for a generic N-mode Gaussian
state is defined as SαðρÞ ¼ 1

α�1

PN
i¼1 ln fαðσiÞ, where f αðσiÞ ¼

σiþ1
2

� �α � σi�1
2

� �α
and σi is the ith symplectic eigenvalues of the

Gaussian state. A “classical limit” for such a quantity can be
recovered by considering σi≫ 1, i.e., the “high-temperature limit”.
In these conditions, it is easy to see that the Rényi-α entropy
reduces to SαðρÞ ¼ Nlog α=ðα� 1Þ � Nlog 2þPN

i¼1 log σi . We see
that, except for a α-dependent constant, this matches the von
Neumann entropy.
As the Wigner entropy only depends on the CM of the system,

its evolution is deterministic even for continuously measured
system, a peculiarity of Gaussian systems. The same then holds
true for the entropy rate given by

dS
dt

¼ 1
2
d
dt

ðTr½log σ�Þ ¼ 1
2
Tr½2Aþ σ�1ðD� χðσÞÞ�: (6)

In the unconditional case, the entropy rate is _Suc ¼ Φuc þ Πuc
11,

and both the unconditional entropy flux and production rates
depend on the irreversible part of the phase-space current Jirr. In
the Supplementary Information accompanying this paper, we
report expressions for these quantities written in terms of Airr, σuc,
and D. For a system interacting with a high-temperature thermal
environment, Φuc coincides with the energy flux from the system
to the environment. Thus, this formalism generalizes the usual
thermodynamic description in a meaningful manner.
For the continuously measured case, while Eq. (6) presents a

deterministic quantity, both the entropy flux and production rate
are inherently stochastic, as they depend on the first moments of
the quadrature operators. Nonetheless, using Eq. (4), it is possible
to single out the entropy production and flux rates as the
quadratic and linear part of dS/dt in the irreversible currents,
respectively. The entropy rate is thus written as dS ¼ dϕx þ dπx
with dϕx; dπx the conditioned trajectory-dependent entropy flux
and production rates. It can be shown that, upon taking the
average (E) over the outcomes of the measurements,
E dϕx=dt½ � ¼ Φuc, demonstrating that the linearity of the stochas-
tic entropy flux in the state of the system is a property of Gaussian
systems and does not need to be postulated, as shown in the
Supplementary Information. Thus, on average, we can rewrite the
entropy as _S ¼ E dϕx=dt½ � þE dπx=dt½ � ¼ Φuc þ Π.
As the entropy of the conditioned system is deterministic, we

can write _S ¼ _Suc þ _I , where the term _I accounts for the excess
entropy production, resulting from the measurement process.
Indeed, by integrating the above expression, one finds
I ¼ ln ðPuc=PÞ, showing that I quantifies the noise to be added
to the conditional state to bring it back to its unconditional form.
As, in general, we have P � Puc, we gather that I � 0. In fact, it
can be further shown that I ¼ �IðX : XÞ � 0; with I the classical
mutual information between the phase-space position X in the
unconditional case and the stochastic first moments X, which
evolve according to the Itô equation in Eq. (3). The inequality is
saturated iff σ= σuc (see Supplementary Information for details).
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A straightforward calculation based on Eq. (6) leads to

_I ¼ 1
2
Tr½σ�1ðD� χðσÞÞ � σ�1

uc D�; (7)

where, as seen from Eq. (3), D− χ(σ) accounts for a modification to
the diffusion matrix of the dynamics occurring due to the choice
of measurement: the latter conjures with the environment and
acts on the system so as to modify its diffusive dynamics. Equation
(7) embodies the effects of continuous detection, which modifies
the CM of the system and its dynamics.
As for Eq. (2), we have Π ¼ Πuc þ _I : This is the main result of this

work. It connects the entropy production rate of the unmonitored
open Gaussian system to the homonymous quantity for the
monitored one via the informational term _I . The second law for
the unmonitored system Πuc ≥ 0 can now be used to obtain the
refined second law for continuously measured Gaussian systems
Π � _I , which epitomizes the connection between nonequilibrium
thermodynamics and information theory, as pioneered by Land-
auer’s principle. The degree of irreversibility of the dynamics being
considered, which is associated with a change in entropy of the
state of the system, is lower-bounded by an information theoretical
cost rate that depends on the chosen measurement, and that is in
general more stringent than that associated with the unmeasured
dynamics. This echoes and extends significantly the results in
ref. 43, which were valid for discrete measurements and equilibrium
environments.

Case study
To illustrate our framework, we consider two relevant examples:
a thermal quench and the driven dissipative optical parametric
oscillator. In both cases, the system (either a driven harmonic
oscillator or an optical parametric oscillator) is monitored by a
single field mode in thermal equilibrium. We call nth the mean
occupation number of such thermal state of the field, which is
subjected to general-dyne measurements57. The system is
coupled to the thermal field mode via an excitation–exchange
interaction,

Ĥint ¼ ffiffiffi
γ

p
x̂Tx̂B; (8)

where x̂ ¼ ðq̂; p̂Þ and x̂B represent the quadratures vector for
system and bath, respectively. Calling Hs the system Hamiltonian

in the two cases, the SME describing the conditional dynamics of
the continuously monitored system is written as57

_ρ ¼ �i½Hs; ρ� þ γðnth þ 1ÞD½â�ρþ γnthD½ây�ρþ ffiffiffi
γ

p H½â�ρdw; (9)

where D½Ô�ρ ¼ ÔρÔy � ðÔyÔρþ ρÔyÔÞ=2, dw is a Wiener

increment, and H½Ô�ρ ¼ Ôρþ ρÔy � Tr½ρðÔ þ ÔyÞ�ρ. The last,
stochastic term in Eq. (9) encodes the effect of the continuous
monitoring of the p̂ quadrature of the environment’s mode (cf.
ref. 58). Similar SMEs describe general-dyne measurements (cf.
refs. 64,66,67 for the most general SME for bosonic systems and
Markovian dynamics, and further details).
The two exemplary cases that we consider are (I) a driven

harmonic oscillator described by Hs ¼ ω=2 ðq̂2 þ p̂2Þ þ Hdrive,
where Hdrive ¼ iEðâeiθ � âye�iθÞ describes the driving by a pump
of amplitude E and phase θ; (II) the optical parametric oscillator
described by Hs ¼ �χ=2 ðq̂p̂þ p̂q̂Þ. From now on we work in
natural units and set ω= χ= 1. Further details on these examples
and their description in the Gaussian framework can be found in
the “Methods” section.
In Fig. 2, the behavior of the entropy production rate, entropy

flux rate, and _I is shown for both systems under either homodyne
or heterodyne measurements. For example (I), we have chosen a
thermal bath with 2nth+ 1= 100 and a displaced thermal initial
state for the system with a larger initial temperature. The system is
thus cooled down by the interaction with the environment. For
the parametric oscillator in example (II), the thermal bath is chosen
at zero temperature, the initial state is a squeezed vacuum state,
and we also consider a small additive Gaussian noise so as to
make the detection not ideal. Such additional noise makes the
steady state different for different detection strategies.
The behavior of the information rate _I in both examples is

consistent with expectations (cf. Fig. 2a, b, d, e). It starts at an
initially large negative value in light of the nonequilibrium nature
of the initial state, but then vanishes as the system approaches
the steady state of the conditional dynamics. In fact, at the
steady state no additional information on the system is acquired
with respect to the one acquired up to that moment. This does
not mean, however, that the continuous measurement is
unnecessary at the steady state. Indeed, the continuous
monitoring sustains the steady state, which would otherwise

Fig. 2 Numerical example. a–c Thermal quench of a harmonic oscillator interacting with an environment in thermal equilibrium (mean
occupation number nth such that 2nth+ 1= 100) and subjected to homodyne and heterodyne measurements. The initial state of the
harmonic oscillator, which is externally driven by a pump of amplitude E, is thermal with an energy ten times larger than the environment.
a, b Πuc (dashed blue curve), Π (solid red curve), Φ (black dotted curve), and _I (dot-dashed green curve) for homodyne (monitoring of the
system’s momentum quadrature) and heterodyne detection. c I when homodyning the position and momentum quadratures of the system
(dot-dashed green curve and dotted red curve, respectively), and heterodyne measurements (dashed blue curve). d–f Optical parametric
oscillator in contact with an external mode in thermal equilibrium (nth= 0), and subjected to homodyne and heterodyne measurements with
additional Gaussian noise. d and e are analogous to a and b. f I for various detection schemes (cf. “Methods” section).
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evolve toward its unconditional counterpart effectively causing a
loss of information61,68.
It should be noted that, after an initial negative phase, _I

becomes positive in both examples, consistently with Fig. 2c–f.
While _I takes both positive and negative values, the regions
where _I > 0 show how our refined second law offers a more
stringent constraint than the standard one.
Finally, by comparing Fig. 2c, f, we note a stark qualitative

difference between the informational terms resulting from the
dynamics of a harmonic oscillator subjected to a thermal quench
and the optical parametric oscillator. Indeed, the inspection of the
results for the thermal quench shows that I ! 0 at the steady
state (cf. Fig. 2c). This is justified by the fact that the steady state of
the conditional and unconditional dynamics is the same
irrespective of the measurement, and asymptotically no extra
information from the measurements is acquired with respect to
the unconditional case. In contrast, Fig. 2f, which refers to the
parametric oscillator, shows different long-time behavior of I for
different measurements due to the additive Gaussian noise that is
introduced by the choice of detection strategy. This makes the
steady state of the conditioned dynamics mixed, with a purity
dependent on the measurement and, in turn, the measurement
outcomes remain informative also in the asymptotic regime.

DISCUSSION
We have characterized the entropy production rate of continu-
ously monitored nonequilibrium Gaussian quantum processes in
terms of the effects induced by measurement. This led us to the
formulation of a refined second law reminiscent of Landauer’s
principle, and in line with previous results valid for discrete
measurements and systems. However, it should be noted that, the
particular form of this refined second law is tailored to Gaussian
dynamics and the Wigner entropy as an entropic measure.
On one hand, our results shine light on the emerging field of

information thermodynamics, highlighting the tight fundamental
link between nonequilibrium thermodynamics and information
gains. On the other hand, they offer a general way to define the
entropy production and flux rates for Gaussian systems, thus
overcoming the limitations of previous approaches.
Our framework will be invaluable to analyze and characterize the

nonequilibrium dynamics of experimental systems of strong current
interest. In particular, levitated quantum optomechanics offers
fertile ground for the application of our formalism48,49,51–55,68.

METHODS
Here, we give some additional specifics of the two examples considered
in the main text, i.e., the thermal quench of a simple harmonic oscillator
and the optical parametric oscillator coupled to a thermal bath. In doing
so, we follow closely58 where the example of the optical parametric
oscillator is described in details. The bath is described, in both our
examples, by the initial single mode CM σB ¼ ðnth þ 1=2ÞI. The
excitation–exchange interaction Hamiltonian, also common to both the
examples, is given by

Ĥint ¼ ffiffiffi
γ

p
x̂Tx̂B ¼ 1

2
ðx̂; x̂BÞ

0 C

C 0

0
B@

1
CA x̂

x̂B

� �
; C ¼

ffiffiffi
γ

p
0

0
ffiffiffi
γ

p
� �

; (10)

where we have introduced the quadratures of the bath x̂B . A general-
dyne, noisy measurement is described, in the Gaussian formalism, by
giving the CM corresponding to the state over which one project. For an
ideal general-dyne measurement on the single output mode, the state is
pure and the CM is given by the 2 × 2 matrix

2σm ¼ R½φ�T s 0

0 1=s

� �
R½φ�; (11)

where R[φ] is a rotation matrix and s > 0. Note that, given the form of the
excitation–exchange interaction Hamiltonian, s= 0 corresponds to

homodyne detection of the x—quadrature of the output mode, and
thus the indirect monitoring of the p—quadrature of the system, s= 1
corresponds to heterodyne detection on the output mode, and s=∞ to
indirect monitoring of the x—quadrature of the system (homodyne
detection of the p—quadrature of the output mode). In order to account
for noisy measurements, the CM σm needs to be modified by acting on it
with the dual of a CP Gaussian map. The reason for this stems from the
fact that a noisy measurement can be seen as the action of a CP Gaussian
map on the state of the system previous to an ideal general-dyne
measurement58. For our simple case, the CM σm for a general-dyne
detection with efficiency η ∈ [0, 1] and additive Gaussian noise Δ is given
by

2σm ¼ R½φ�T s=η 0

0 1=ðsηÞ

� �
R½φ� þ ð1� ηÞ=ηþ Δ 0

0 ð1� ηÞ=ηþ Δ

� �
:

(12)

Given the measurement CM and the interaction Hamiltonian, we can
obtain the measurements matrices Γ, C. For both our examples, these are
given by

ΓT ¼ 1ffiffiffi
2

p ΩCσB σB þ σmð Þ�1=2; (13)

CT ¼ �
ffiffiffi
2

p
CΩ σB þ σmð Þ�1=2: (14)

It should be noted that, in the limit of η→ 0 and/or Δ→∞, i.e., for zero
efficiency of the detectors and/or infinite additive Gaussian noise, the
conditional dynamics converges to the unconditional one. This is
intuitive, given that in both these situations no information about the
system is acquired by the inefficient/very noisy detection scheme.
However, this highlight also another interesting aspect of this type of
noisy general-dyne detection: no matter how large the additive noise or
how inefficient the detectors, the conditional dynamics will never
increase the uncertainty on the state of the system more than the
unconditional dynamics.
Finally, we specify the Hamiltonians of the two systems that we consider

and we explicit the parameters chosen in Fig. 2. For the thermal quench of
the harmonic oscillator, we chose a thermal occupation number of the
bath such that 2nth+ 1= 100. The Hamiltonian of the system, comprising
a quadratic term and a linear drive, is given by

Ĥs ¼ 1
2
x̂T

ω 0

0 ω

� �
x̂þ dTΩx̂; (15)

where d ¼ �ð ffiffiffi
2

p E cos θ; ffiffiffi
2

p E sin θÞ and the driving term correspond, in
terms of annihilation and creation operators of the system oscillator, to
Ĥdrive ¼ iEðâeiθ � âye�iθÞ: Here as in the second example, we work in
natural units. Furthermore, we set ω= 1 so that all other quantities
appearing are in units of ω. In Fig. 2, we have chosen θ ¼ 0; E ¼ 2; and γ=
1/10. For the measurement, we chose the rotation matrix to be the
identity, i.e., φ= 0, and we consider an ideal measurement Δ= 0, η= 1,
with s= {0, 1, ∞}. Furthermore, the initial mean values of the oscillator
quadratures is xðt ¼ 0Þ ¼ ð1; 1Þ. The drift and diffusion matrices are readily
obtained as

A ¼ �γ=2 ω

�ω �γ=2

� �
; (16)

D ¼ γðnth þ 1=2ÞI: (17)

For the optical parametric oscillator, we chose the bath in the vacuum
state nth= 0, which is a reasonable assumption for optical modes. The
(effective) Hamiltonian of the system is given by

Ĥs ¼ 1
2
x̂T

0 �χ

�χ 0

� �
x̂: (18)

The unconditional dynamics of the oscillator is stable only if γ > 2χ. The
drift and diffusion matrices are given by

A ¼ �χ � γ=2 0

0 χ � γ=2

� �
; (19)

D ¼ γðnth þ 1=2ÞI: (20)

Note that, as expected, only the reversible part of the drift matrix (A)
changes with respect to the previous example. In Fig. 2, we set χ= 1 so
that all other quantities appearing are in units of χ. We chose the coupling
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constant to be γ= 2.001, i.e., the parametric oscillator is close to the
instability point γ= 2χ. The initial expectation value of the quadratures is
chosen in the origin of phase space. For the measurement, we chose the
rotation matrix to be the identity, i.e., φ= 0, and we consider an efficient
measurement (η= 1) with a small additive noise Δ= 0.1. As before s= {0,
1, ∞}. We add Gaussian noise in such a way to have an unconditional
dynamics which, for different detection schemes, leads the system to
steady states with different purities. It should be noted that for a thermal
bath at zero temperature and ideal general-dyne measurements, the
steady state of the conditional dynamics would always be a pure state (in
contrast to the unconditional steady state which is always a mixed state).
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Codes are available upon request from the authors.

Received: 27 April 2020; Accepted: 7 October 2020;

REFERENCES
1. Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405 (1931).
2. Machlup, S. & Onsager, L. Fluctuations and irreversible process. II. Systems with

kinetic energy. Phys. Rev. 91, 1512 (1953).
3. de Groot, S. R. & Mazur, P. Non-Equilibrium Thermodynamics (North-Holland

Physics Publishing, Amsterdam, 1961).
4. Tisza, L. & Manning, I. Fluctuations and irreversible thermodynamics. Phys. Rev.

105, 1695 (1957).
5. Schnakenberg, J. Network theory of microscopic and macroscopic behavior of

master equation systems. Rev. Mod. Phys. 48, 571 (1976).
6. Tomé, T. & de Oliveira, M. J. Entropy production in nonequilibrium systems at

stationary states. Phys. Rev. Lett. 108, 020601 (2012).
7. Landi, G. T., Tomé, T. & de Oliveira, M. J. Entropy production in linear Langevin

systems. J. Phys. A Math. Theor. 46, 395001 (2013).
8. Breuer, H.-P. Quantum jumps and entropy production. Phys. Rev. A 68, 032105

(2003).
9. Deffner, S. & Lutz, E. Nonequilibrium entropy production for open quantum

systems. Phys. Rev. Lett. 107, 140404 (2011).
10. de Oliveira, M. J. Quantum fokker-planck-kramers equation and entropy pro-

duction. Phys. Rev. E 94, 012128 (2016).
11. Batalhão, T. B., Gherardini, S., Santos, J. P., Landi, G. T. & Paternostro, M. In

Thermodynamics in the Quantum Regime - Recent Progress and Outlook, Funda-
mental Theories of Physics, 395 (Springer International Publishing, 2019).

12. Crooks, G. E. Nonequilibrium measurements of free energy differences for
microscopically reversible markovian systems. J. Stat. Phys. 90, 1481–1487 (1998).

13. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett.
78, 2690–2693 (1997).

14. Jarzynski, C. & Wójcik, D. K. Classical and quantum fluctuation theorems for heat
exchange. Phys. Rev. Lett. 92, 230602 (2004).

15. Batalhão et al, T. B. Irreversibility and the arrow of time in a quenched quantum
system. Phys. Rev. Lett. 115, 190601 (2015).

16. Brunelli, M. et al. Experimental determination of irreversible entropy production
in out-of-equilibrium mesoscopic quantum systems. Phys. Rev. Lett. 121, 160604
(2018).

17. Micadei, K. et al. Reversing the direction of heat flow using quantum correlations.
Nat. Commun. 10, 2456 (2019).

18. Crooks, G. E. Path-ensemble averages in systems driven far from equilibrium.
Phys. Rev. E 61, 2361–2366 (2000).

19. Spinney, R. E. & Ford, I. J. Entropy production in full phase space for continuous
stochastic dynamics. Phys. Rev. E 85, 051113 (2012).

20. Manzano, G., Horowitz, J. M. & Parrondo, J. M. R. Quantum fluctuation theorems
for arbitrary environments: Adiabatic and nonadiabatic entropy production. Phys.
Rev. X 8, 031037 (2018).

21. Landi, G. T. & Paternostro, M. Irreversible entropy production, from classical to
quantum. Preprint at https://arxiv.org/abs/2009.07668 (2020).

22. Esposito, M., Lindenberg, K. & den Broeck, C. V. Entropy production as correlation
between system and reservoir. N. J. Phys. 12, 013013 (2010).

23. Reeb, D. & Wolf, M. M. An improved landauer principle with finite-size corrections.
N. J. Phys. 16, 103011 (2014).

24. Santos, J. P., Céleri, L. C., Landi, G. T. & Paternostro, M. The role of quantum
coherence in non-equilibrium entropy production. npj Quant. Inf. 5, 23 (2019).

25. Francica, G., Goold, J. & Plastina, F. Role of coherence in the nonequilibrium
thermodynamics of quantum systems. Phys. Rev. E 99, 042105 (2019).

26. Mohammady, M. H., Aufféves, A. & Anders, J. Energetic footprints of irreversibility
in the quantum regime. Commun. Phys. 3, 89 (2020).

27. Santos, J. P., de Paula, A. L., Drumond, R., Landi, G. T. & Paternostro, M. Irrever-
sibility at zero temperature from the perspective of the environment. Phys. Rev. A
97, 050101(R) (2018).

28. Koski, J. V., Kutvonen, A., Khaymovich, I. M., Ala-Nissila, T. & Pekola, J. P. On-chip
maxwell’s demon as an information-powered refrigerator. Phys. Rev. Lett. 115,
260602 (2015).

29. Elouard, C., Herrera-Martí, D., Huard, B. & Auffèves, A. Extracting work from
quantum measurement in Maxwell demon engines. Phys. Rev. Lett. 118, 260603
(2017).

30. Manikandan, S. K., Elouard, C. & Jordan, A. N. Fluctuation theorems for continuous
quantum measurements and absolute irreversibility. Phys. Rev. A 99, 022117 (2019).

31. Alonso, J. J., Lutz, E. & Romito, A. Thermodynamics of weakly measured quantum
systems. Phys. Rev. Lett. 116, 080403 (2016).

32. Elouard, C., Herrera-Martí, D. A., Clusel, M. & Auffèves, A. The role of
quantum measurement in stochastic thermodynamics. npj Quantum Inf. 3, 9
(2017).

33. Di Stefano, P. G., Alonso, J. J., Lutz, E., Falci, G. & Paternostro, M. Non-equilibrium
thermodynamics of continuously measured quantum systems: a circuit-QED
implementation. Phys. Rev. B 98, 144514 (2018).

34. Naghiloo, M. et al. Heat and work along individual trajectories of a quantum bit.
Phys. Rev. Lett. 124, 110604 (2020).

35. Naghiloo, M., Alonso, J. J., Romito, A., Lutz, E. & Murch, K. W. Information gain and
loss for a quantum maxwell’s demon. Phys. Rev. Lett. 121, 030604 (2018).

36. Horowitz, J. M. Quantum-trajectory approach to the stochastic thermodynamics
of a forced harmonic oscillator. Phys. Rev. E 85, 031110 (2012).

37. Hekking, F. W. J. & Pekola, J. P. Quantum jump approach for work and dissipation
in a two-level system. Phys. Rev. Lett. 111, 093602 (2013).

38. Cottet, N. et al. Observing a quantum maxwell demon at work. Proc. Natl Acad.
Sci. USA 114, 7561–7564 (2017).

39. Masuyama, Y. et al. Information-to-work conversion by maxwell’s demon in a
superconducting circuit quantum electrodynamical system. Nat. Commun. 9, 1–6
(2018).

40. Strasberg, P. & Winter, A. Stochastic thermodynamics with arbitrary interventions.
Phys. Rev. E 100, 022135 (2019).

41. Strasberg, P. Repeated interactions and quantum stochastic thermodynamics at
strong coupling. Phys. Rev. Lett. 123, 180604 (2019).

42. Sagawa, T. & Ueda, M. Second law of thermodynamics with discrete quantum
feedback control. Phys. Rev. Lett. 100, 080403 (2008).

43. Sagawa, T. & Ueda, M. Minimal energy cost for thermodynamic information
processing: Measurement and information erasure. Phys. Rev. Lett. 102, 250602
(2009).

44. Abdelkhalek, K., Nakata, Y. & Reeb, D. Fundamental energy cost for quantum
measurement. Preprint at https://arxiv.org/abs/1609.06981 (2016).

45. Mancino, L. et al. The entropic cost of quantum generalized measurements. npj
Quant. Inf. 4, 20 (2018).

46. Genoni, M. G., Zhang, J., Millen, J., Barker, P. F. & Serafini, A. Quantum cooling and
squeezing of a levitating nanosphere via time-continuous measurements. N. J.
Phys. 17, 073019 (2015).

47. Genoni, M. G., Mancini, S. & Serafini, A. General-dyne unravelling of a thermal
master equation. Russ. J. Math. Phys. 21, 329 (2014).

48. Millen, J., Deesuwan, T., Barker, P. & Anders, J. Nanoscale temperature mea-
surements using non-equilibrium brownian dynamics of a levitated nanosphere.
Nat. Nanotechnol. 9, 425–429 (2014).

49. Gieseler, J., Quidant, R., Dellago, C. & Novotny, L. Dynamic relaxation of a levitated
nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol. 9, 358–364
(2014).

50. Vinante, A. et al. Testing collapse models with levitated nanoparticles: detection
challenge. Phys. Rev. A 100, 012119 (2019).

51. Debiossac, M., Grass, D., Alonso, J. J., Lutz, E. & Kiesel, N. Thermodynamics of
continuous non-markovian feedback control. Nat. Commun. 11, 1360 (2020).

52. Rondin, L. et al. Direct measurement of kramers turnover with a levitated
nanoparticle. Nat. Nanotechnol. 12, 1130–1133 (2017).

53. Ricci, F. et al. Optically levitated nanoparticle as a model system for stochastic
bistable dynamics. Nat. Commun. 8, 15141 (2017).

54. Gieseler, J. & Millen, J. Levitated nanoparticles for microscopic thermodynamics—
a review. Entropy 20, 326 (2018).

55. Hoang, T. M. et al. Experimental test of the differential fluctuation theorem and a
generalized Jarzynski equality for arbitrary initial states. Phys. Rev. Lett. 120,
080602 (2018).

56. Doherty, A. C. & Jacobs, K. Feedback control of quantum systems using con-
tinuous state estimation. Phys. Rev. A 60, 2700–2711 (1999).

57. Serafini, A. Quantum Continuous Variables: a Primer of Theoretical Methods (CRC
Press, 2017).

A. Belenchia et al.

6

npj Quantum Information (2020)    97 Published in partnership with The University of New South Wales

https://arxiv.org/abs/2009.07668
https://arxiv.org/abs/1609.06981


58. Genoni, M. G., Lami, L. & Serafini, A. Conditional and unconditional Gaussian
quantum dynamics. Contemp. Phys. 57, 331 (2016).

59. Santos, J. P., Landi, G. T. & Paternostro, M. Wigner entropy production rate. Phys.
Rev. Lett. 118, 220601 (2017).

60. Uzdin, R. In Thermodynamics in the Quantum Regime - Recent Progress and Outlook,
Fundamental Theories of Physics, 681 (Springer International Publishing, 2019).

61. Landi, G. T., Paternostro, M. & Belenchia, A. Informational steady-states and
conditional entropy production in continuously monitored systems. In prepara-
tion (2020).

62. Santos, J. P., Céleri, L. C., Brito, F., Landi, G. T. & Paternostro, M. Spin-phase-space-
entropy production. Phys. Rev. A 97, 052123 (2018).

63. Goes, B. O., Fiore, C. E. & Landi, G. T. Quantum features of entropy production in
driven-dissipative transitions. Phys. Rev. Res. 2, 013136 (2020).

64. Wiseman, H. M. & Doherty, A. C. Optimal unravellings for feedback control in
linear quantum systems. Phys. Rev. Lett. 94, 070405 (2005).

65. Adesso, G., Girolami, D. & Serafini, A. Measuring gaussian quantum information and
correlations using the rényi entropy of order 2. Phys. Rev. Lett. 109, 190502 (2012).

66. Wiseman, H. M. & Diósi, L. Complete parameterization, and invariance, of
diffusive quantum trajectories for markovian open systems. Chem. Phys. 268,
91–104 (2001).

67. Wiseman, H. M. & Milburn, G. J. Quantum Measurement and Control (Cambridge
University Press, 2009).

68. Rossi, M. et al. Experimental assessment of entropy production in a continuously
measured mechanical resonator. Phys. Rev. Lett. 125, 080601 (2020).

ACKNOWLEDGEMENTS
The authors would like to thank Mario A Ciampini, Marco Genoni, Nikolai Kiesel, Eric
Lutz, Kavan Modi, Albert Schliesser, and Alessio Serafini for stimulating discussions.
A.B. acknowledges the hospitality of the Institute for Theoretical Physics and the
“Nonequilibrium quantum dynamics” group at Universität Stuttgart, where part of
this work was carried out. The authors acknowledge financial support from H2020
through the MSCA IF pERFEcTO (Grant Agreement No. 795782) and Collaborative
Project TEQ (Grant Agreement No. 766900), the Angelo della Riccia Foundation (R.D.
19.7.41. n.979, Florence), the São Paulo Research Foundation (FAPESP; Grant Nos.
2018/12813-0 and 2017/50304-7), the DfE-SFI Investigator Programme (Grant No. 15/
IA/2864), the Leverhulme Trust Research Project Grant UltraQute (Grant No. RGP-
2018-266), COST Action CA15220, and the Royal Society Wolfson Research Fellowship
scheme (RSWF\R3\183013). G.T.L. and M.P. are grateful to the SPRINT programme
supported by FAPESP and Queen’s University Belfast.

AUTHOR CONTRIBUTIONS
M.P. provided the initial project direction; A.B. and L.M. carried out the core of the
calculations and derivation with the input from G.T.L. and M.P.; all authors
contributed to the writing up of the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/
s41534-020-00334-6.

Correspondence and requests for materials should be addressed to M.P.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

A. Belenchia et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2020)    97 

https://doi.org/10.1038/s41534-020-00334-6
https://doi.org/10.1038/s41534-020-00334-6
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Entropy production in continuously measured Gaussian quantum systems
	Introduction
	Results
	Entropy rate of a continuously measured system
	Continuously measured Gaussian systems
	Entropy production rate and flux
	Case study

	Discussion
	Methods
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




