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Understanding the intricate properties of one-dimensional quantum systems coupled to multiple 
reservoirs poses a challenge to both analytical approaches and simulation techniques. Fortunately, density 
matrix renormalization group-based tools, which have been widely used in the study of closed systems, 
have also been recently extended to the treatment of open systems. We present an implementation of 
such method based on state-of-the-art matrix product state (MPS) and tensor network methods, that 
produces accurate results for a variety of combinations of parameters. Unlike most approaches, which 
use the time-evolution to reach the steady-state, we focus on an algorithm that is time-independent 
and focuses on recasting the problem in exactly the same language as the standard Density Matrix 
Renormalization Group (DMRG) algorithm, initially put forward in [1]. Hence, it can be readily exported 
to any of the available DMRG platforms. We show that this implementation is suited for studying thermal 
transport in one-dimensional systems. As a case study, we focus on the XXZ quantum spin chain and 
benchmark our results by comparing the spin current and magnetization profiles with analytical results. 
We then explore beyond what can be computed analytically. Our code is freely available on github at [2].

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Transport properties at the nanoscale may be significantly dif-
ferent from bulk materials, because of low-dimensionality, inter-
actions and interference. For instance in quantum spin chains one 
can observe anomalous diffusion [3–5], negative differential con-
ductance and rectification [6–8].

The study of many-body quantum systems, however, is in gen-
eral very demanding. For instance, considering a pure state de-
scribing a chain of N spin-1/2 particles, one needs to take into 
account a Hilbert space of size 2N . However, when aiming to study 
the transport properties of a system coupled to two different baths 
at its edges, as shown in Fig. 1, one needs also to find a way to 
model the effects of the bath, thus requiring to explore a space 
larger than 2N . One approach to study open quantum, i.e. quantum 
systems in contact with an environment, is that of the Gorini-
Kossakowski-Sudarshan-Linbdlad (GKSL) master equation, which is 
a linear equation describing the evolution of the density matrix of 
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the system [9,10]. For this reason, to study transport in this frame-
work, one needs to be able to explore a space of dimension 22N . 
An exact study of systems of this type becomes quickly too diffi-
culty, e.g. for systems with L ≈ 12 (see [11] for an exact diagonal-
ization study with L = 14, which was only possible by considering 
symmetries of a particular class of boundary driven problems).

Fortunately, for the particular case of one-dimensional (1D) sys-
tems, a particular class of numerical methods has been developed 
starting from the seminal work [12], which outlined the density 
matrix renormalization group (DMRG) method that was later real-
ized within the general framework of tensor networks [13]. Tensor 
networks are a particular form of variational ansatz to explore, at 
a polynomial cost, an otherwise exponentially large Hilbert space. 
The key advantage of this variational approach is that a large class 
of physically relevant ground states, e.g. Hamiltonians of 1D sys-
tems with finite range interactions, can be exactly described using 
tensor networks [13]. The key is that the bipartite entanglement 
entropy of the system should not grow linearly with the system 
size (a.k.a. volume law).

Tensor network methods are known to be useful also in the 
description of open quantum systems. In this case there is no an-
alytical proof that the method will accurately describe the open 
quantum system. However, as we will see later in this manuscript, 
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Fig. 1. Diagrammatic representation of a one-dimensional quantum spin chain cou-
pled to two thermal baths BL and B R , one at each end. Here, each grey circle 
represent a spin.

the method can be very accurate for many physically relevant 
scenarios. Various approaches have been put forward to study 
many-body open quantum systems with tensor networks. A review 
which focuses on ensemble trajectories of stochastic wavefunctions 
[14], instead of evolving the density matrix, can be found in [15]. 
And a comparison of the trajectory method versus evolving directly 
the density matrix can be found here [16,17]. A short review of nu-
merical methods to study many-body open quantum systems can 
be found in [18]. A particularly interesting approach was put for-
ward in [1], in which the evaluation of the steady-state of a system 
was mapped into that of computing the ground state of an ef-
fective Hamiltonian with long range interactions. In this work we 
evaluate the performance of this approach when applied to bound-
ary driven systems as the one shown in Fig. 1.

To make the paper self-contained, we first provide in Sec. 2
a detailed description of the model studied, with all the relevant 
equations and the different transport properties that can emerge. 
We follow this with a short description of a tensor network algo-
rithm to compute the ground state for closed systems in Sec. 3. 
Then, in Sec. 4 we discuss in detail how one can map an open 
quantum system problem to a form conducive for tensor networks 
calculations. Next we describe how one can map the problem of 
finding the steady state of a many-body open quantum system to 
that of computing the ground state of an effective Hamiltonian 
in Sec. 5, where we also provide all details of an implementa-
tion using the ITensor library [19]. A series of numerical analyses 
benchmarking our code, comparing numerical and analytical re-
sults, and exploring the physics beyond what can be addressed 
analytically, is then discussed in Sec. 6. Conclusions are given in 
Sec. 7.

2. A boundary driven spin chain

One of the most widely studied examples of a open quantum 
spin chain is the XXZ model coupled to two local GKSL baths. The 
Hamiltonian for a 1D chain of N sites is given by

H =
N−1∑
i=1

J i

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + �iσ

z
i σ z

i+1

)
+

N∑
i=1

hiσ
z
i , (1)

where σα
i are the Pauli matrices and J i, �i, hi are parameters 

indicating respectively the tunneling between nearest sites, the 
anisotropy and a local magnetic field. In addition to the Hamilto-
nian dynamics, the system is also coupled to two baths at sites 1
and N , as described by a GKSL master equation [20]. The evolution 
of the system’s density matrix ρ will then be given by

dρ

dt
= L(ρ) := −i[H,ρ] + D1(ρ) + D N(ρ), (2)

where

Di(ρ) = γi f iD[σ−
i ](ρ) + γi(1 − f i)D[σ+

i ](ρ), i = 1, N,

(3)

with D[L](ρ) = LρL† − 1
2 {L†L, ρ}. Here γi > 0 represent the cou-

pling strength to bath i and f i ∈ [0, 1] represent the imbalance 
2

Fig. 2. Tensor network representation [Eq. (7)] of a high-rank tensor as a contraction 
of lower rank tensors.

between the baths. After a sufficient time has elapsed, the evolu-
tion of Eq. (2) will eventually reach a non-equilibrium steady-state 
(NESS) defined by

L(ρness) = 0. (4)

In the vast majority of cases, this steady-state is also unique. Note 
also that, albeit a steady-state, the system will not be in equilib-
rium since there will be, in general, a steady current flow from one 
bath to the other.

The model described by Eqs. (1)-(3) presents remarkably rich 
physics. The most relevant observables to analyze are the local cur-
rents from site i to i + 1

Ji = 2 J i(σ
i
xσ

i+1
y − σ i

yσ
i+1
x ), (5)

and the local magnetization σ i
z . In the NESS, current conserva-

tion implies that 〈Ji〉 will be independent of i (the current from 
i − 1 → i is the same as that from i → i + 1). The physics is 
then characterized by the different transport properties of 〈Ji〉. For 
large sizes, one usually has the scaling

〈Ji〉 ∼ 1

Lα
, (6)

where α > 0 is an exponent characterizing the type of trans-
port: ballistic for α = 0, diffusive for α = 1, superdiffusive for 
α ∈ [0, 1], subdiffusive for α > 1, and insulating when α → ∞. We 
mention in passing that, through a Jordan-Wigner transformation, 
the model in (1) can also be mapped into a chain of interaction 
fermions. In this case, the current (5) is interpreted instead as the 
particle current through the lattice.

3. Review of tensor network methods in closed quantum systems

The basic idea behind tensor networks is to decompose a high-
rank tensor into a controlled product of lower rank tensors. Con-
sider a generic rank-N tensor ψσ1...σN . A tensor network decompo-
sition has the form

ψσ1...σN =
∑

x1,...,xN−1

Aσ1
x1 Aσ2

x1,x2 ...AσN
xN−1 , (7)

which is shown diagrammatically in Fig. 2. This kind of expansion 
is relevant because quantum states of multipartite systems are nat-
urally represented as a high-rank tensor. For instance, the state of 
a spin chain with N sites has the form

|�〉 =
∑

σ1,...,σN

ψσ1,...,σN |σ1, . . . , σN〉 , (8)

where σi = ±1 are the eigenvalues of σ z
i . Of course, while a de-

composition of the form (7) is always possible, it is not necessarily 
advantageous. The advantages ultimately come from approxima-
tions that can be obtained by restricting the dimension of the 
internal indices xi , called the bond dimension.

The tensor network decomposition (7) is used as the starting 
point for a variety of algorithms. The most notable is the Den-
sity Matrix Renormalization Group (DMRG) [12,21], a variational 
method to estimate the ground-state |ψgs〉 of one-dimensional 
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Hamiltonians, although the DMRG algorithm was not originally for-
mulated in terms of tensor networks [12]. The idea is to solve the 
eigenvalue/eigenvector problem

H|ψ〉 = E|ψ〉, (9)

assuming that |ψ〉 is not an arbitrary quantum state, but rather 
a tensor network of the form (7) with a fixed maximum bond-
dimension. Let us denote |ψgs〉 the lowest energy tensor network 
obtained from Eq. (9). This is to be contrasted with the true 
ground-state |�gs〉, which would be obtained if the full Hilbert 
space was used. According to the variational principle of quantum 
mechanics, the true ground-state energy Egs = 〈�gs|H |�gs〉 is al-
ways bounded by

Egs := 〈ψgs|H|ψgs〉 � Egs. (10)

Hence, the energy associated to |ψgs〉 provides an upper bound on 
the true ground-state energy.

The search algorithm for the ground state is iterative. It pro-
ceeds by optimizing each tensor Aσi

xi−1,xi
in Eq. (7) at a time, after 

which it moves to the next site (details can be found in Ref. [13]). 
Moving one site at a time through the chain, and then backwards, 
is usually referred to as a sweep. For a fixed maximum bond di-
mension, multiple sweeps can be employed to ensure convergence. 
After the algorithm has converged, the bond-dimension can be in-
creased and the process can be restarted until the desired accuracy 
is met.

4. Hilbert space structures for open system dynamics

4.1. Vectorization

We now turn to the case of open quantum systems. For the 
purpose of concreteness, we shall focus on the problem described 
by Eqs. (1)-(3). The generalization to other types of Hamiltonian-
s/dissipators is straightforward. The master equation (2) is still a 
linear equation in ρ . The difference is that the Liouvillian L(ρ) is 
now a superoperator, as it may act on ρ by means of matrix multi-
plications on both sides. This linearity can be made manifest by in-
troducing a vectorization operation, also called Choi-Jamiolkowski’s 
isomorphism [22,23], and described by

vec
(|i〉〈 j|) = | j〉 ⊗ |i〉. (11)

It thus converts an operator in Hilbert space, into a ket in a space 
whose size is the square of the initial one. Matrix-wise, this corre-
sponds to stacking the columns of a matrix,

vec

(
a b
c d

)
=

⎛
⎜⎜⎝

a
c
b
d

⎞
⎟⎟⎠ . (12)

Using vectorization, a general density matrix ρ = ∑
i j ρi j|i〉〈 j| is 

converted into a ket

vec(ρ) =
∑

i j

ρi j| j〉 ⊗ |i〉. (13)

The fact that the size of the Hilbert space is squared reflects the 
fact that superoperators can act on both sides of a density matrix. 
Indeed, for any 3 matrices A, ρ and B , one may verify that

vec(AρB) = (BT ⊗ A)vec(ρ). (14)

With this the master equation (2) can be converted into a linear 
matrix-vector equation
3

d

dt
vec(ρ) = L̂vec(ρ), (15)

where L̂ is now a matrix with entries

L̂ = −i(I ⊗ H − HT ⊗ I) + D̂1 + D̂ N , (16)

with D̂i given by

D̂i = γi f iD̂[σ−
i ] + γi(1 − f i)D̂[σ+

i ], i = 1, N, (17)

and with

D̂[L] = L∗ ⊗ L − 1

2

[
I ⊗ (L†L) + (L†L)T ⊗ I

]
. (18)

In all of the above expressions, I refers to the identity matrix with 
the appropriate dimension.

The above vectorization procedure is the starting point for most 
numerical algorithms dealing with quantum master equations of 
the form (2). The relaxation dynamics of (15) will simply be given 
by

vec(ρt) = eL̂t vec(ρ0), (19)

Alternatively, one may look directly at the steady-state, Eq. (4), 
which now acquires the form

L̂vec(ρness) = 0. (20)

This equation makes explicit the fact that the NESS vec(ρness) is 
simply the eigenvector of L̂ with eigenvalue 0. Stability implies 
that all eigenvalues of L̂ should have non-positive real parts. More-
over, when the steady-state is unique, there will be only a single 
eigenstate with eigenvalue 0. One should bear in mind, notwith-
standing, that the normalization of the NESS is not the standard 
normalization for eigenvectors. Instead, density operators should 
be normalized as tr(ρ) = 1. This, in turn, can be viewed as the 
Hilbert-Schmidt inner product tr(A† B) between two operators (in 
this case ρ and the identity matrix). Indeed, vectorization turns 
out to precisely convert Hilbert-Schmidt inner products into stan-
dard dot-products for the resulting vectors:

tr(A† B) = vec(A)∗ · vec(B). (21)

Whence, the normalization condition becomes

tr(ρ) = vec(I) · vec(ρ) = 1. (22)

4.2. Vectorization for multipartite Hilbert spaces

The above recipe is not yet well suited for tensor network 
methods. The reason is that the vectorization procedure (11) gen-
erally changes the tensor ordering of the Hilbert space, which can 
have a significant impact on the numerics. To see this, we consider 
the spin chain problem in Eqs. (1)-(3). The density matrix for this 
system is described by the Matrix Product Operator (MPO)

ρ =
∑

σ1,...,σN

σ ′
1,...,σ ′

N

ρσ1,...,σN ,σ ′
1,...,σ ′

N
|σ1 . . . σN〉〈σ1 . . . σ ′

N |, (23)

where |σ1 . . . σN 〉 = |σ1〉 ⊗ . . . ⊗ |σN 〉 (see Fig. 3). In what follows, 
the tensor product symbol will be omitted for clarity. That is, we 
will equivalently write this as |σ1 . . . σN 〉 = |σ1〉 . . . |σN 〉. Naive vec-
torization, in terms of stacking columns [Eq. (12)] leads to

vec
(|σ1 . . . σN〉〈σ ′

1 . . . σ ′
N |) = |σ ′

1〉|σ ′
2〉 . . . |σ ′

N〉|σ1〉|σ2〉 . . . |σN〉.
(24)
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Fig. 3. Upon contracting over the horizontal, indices, one recovers ρ .

Whence, we see that it rearranges the Hilbert space so as to put all 
right-side indices σ ′

i first, followed by all left-side indices. We shall 
refer to Eq. (24) as the R N LN ordering. The problem with this 
kind of structure, as we shall see below, is that it pushes indices 
pertaining to the same site, σi and σ ′

i , far away from each other.
Eq. (24) shows, in fact, that there is an arbitrariness in how to 

order the Hilbert space after a vectorization. The order in which 
the indices are placed is immaterial, provided that the operators 
acting on vec(ρ) are appropriately labeled to act on the correct 
site. For instance, a much more natural vectorization would be

vec
(|σ1 . . . σN〉〈σ ′

1 . . . σ ′
N |) = |σ ′

1〉|σ1〉 . . . |σ ′
N〉|σN〉, (25)

which we shall refer to as the (R L)N ordering. This ordering pre-
serves the “real space” order of the original Hilbert space, bundling 
together left and right indices σ ′

i and σi for each site. Other types 
of orderings may also be useful, depending on the problem in 
question. Ultimately, this will depend on the kinds of operators 
multiplying vec(ρ). As we shall see next, unitary and dissipative 
elements behave quite differently in this sense.

Let us begin by considering the unitary contribution. A typ-
ical Hamiltonian term for nearest-neighbor interactions has the 
form H1 = Ai Ai+1, where Ai is an operator acting on site i. This 
Hamiltonian will act on the master equation as [H1, ρ]. Thus, H1ρ
will act on indices σi and σi+1, whereas ρH1 will act on σ ′

i σ
′
i+1. 

The way this translates into the R N LN and (R L)N orderings is 
illustrated in Figs. 4(a) and 5(a) respectively. As can be seen, in 
the R N LN ordering the Hamiltonian retains its nearest neighbor 
character, with two disconnected contributions acting on different 
parts of the Hilbert space. The (R L)N ordering, on the other hand, 
leads to a second nearest neighbor interaction.

We now move on to the dissipative contributions. The special 
part is the first term in Eq. (18). A dissipator such as D[σ−

1 ] for 
instance, has a contribution of the form σ−

1 ρσ+
1 . This will act on 

indices σ1 and σ ′
1. The corresponding tensor structure for the two 

orderings will then be as shown in Figs. 4(b) and 5(b). As we now 
see, the R N LN ordering leads to a highly non-local Hilbert space 
structure, whereas in (R L)N the structure is nearest-neighbor.

This analysis clearly shows why the (R L)N ordering (Fig. 5) will 
in general fare better in a numerical calculation: even though the 
Hamiltonian is now a second nearest-neighbor interaction, the dis-
sipator is only nearest-neighbor. This will be more advantageous 
than R N LN which has long-range interacting terms.

5. Implementation of the oDMRG algorithm

5.1. The L†L method

Having established the Hilbert space structure, we are now in 
a position to implement the oDMRG algorithm introduced in [1]. 
The starting point is the steady-state equation (20), which shows 
that the NESS is the eigenstate of L̂ with eigenvalue 0. The prob-
lem with this equation is that L̂ is a non-Hermitian operator. To 
circumvent this, we consider instead the eigenvalue/eigenvector of 
M̂= L̂†L̂ [1]; that is, instead of (20) we solve

M̂vec(ρness) = L̂†L̂ vec(ρness) = 0. (26)

The operator M̂ has the same steady-state as L̂, but is Hermi-
tian. Moreover, M̂ is by construction positive semi-definite, with 
4

exactly one zero eigenvalue (when the steady-state is unique) and 
all other eigenvalues strictly larger than zero.

For these reasons, Eq. (26) has now the exact same structure as 
the closed system eigenvalue problem Eq. (9): we need essentially 
to look for the ground-state of the effective Hamiltonian given 
by M̂, and the search for this groundstate is therefore entirely 
amenable to the closed DMRG algorithm. Eq. (26) also offers the 
additional advantage that the ground-state energy is known ex-
actly, Egs = 0. Hence, monitoring how the energy changes during 
the DMRG sweeps can be used as a way to probe the convergence 
of the algorithm (for an implementation of a DMRG-like code for 
the non-Hermitian superoperator L̂ see [24]).

For concreteness, we shall henceforth focus on the model in 
Eqs. (1)-(3) and choose the initial parameters such that J i = 1, 
�i = � and hi = h. The input parameters are then only the chain 
size N , together with γ , f1, f N , h and �.

One setback of the algorithm (26) is that even if the (R L)N or-
dering is used for L̂, the tensor structure of M̂ = L̂†L̂ will now 
be highly non-local. This should be expected because a steady 
state of local Hamiltonian and dissipative terms, in general does 
not need to follow an area-law, unlike the ground state of local 
Hamiltonians. However the non-locality of the terms may lead to 
an “entanglement-barrier” problem for the convergence of the al-
gorithm. The reason is that, during convergence, the algorithm will 
pass through multiple, highly entangled, eigenstates of the opera-
tor M̂. As a side comment, note that these excited states are typ-
ically different from the eigenstates of L̂ because non-Hermitian 
operators have different left and right eigenvectors (the NESS is 
an eigenstate that both operators share). Another issue is that M̂
has usually a smaller gap, between the steady state and the first 
excited state, as compared to L̂, making the problem numerically 
harder to converge. These problems were investigated recently in 
Ref. [25], where the authors proposed additional approximations 
for making M̂ more local. In [25], however, the authors did not 
deal with boundary-driven transport problems. In our implemen-
tation we will consider the full M̂ operator, and as we show, for 
the boundary-driven problems we studied, good convergence rates 
were obtained without the need for these additional methods.

5.2. Positivity of the variational density matrix

Another side effect of using a closed-system algorithm for open 
quantum systems concerns the positivity of the numerically ob-
tained density matrix vec(ρ). As discussed in Sec. 4.1, the vector-
ized density matrix is not normalized as a standard vector, but 
rather as in Eq. (22). This is at odds with the closed DMRG al-
gorithm, which uses standard normalization. This, of course, can 
be readily fixed by appropriately renormalizing the output state. 
A more serious issue, however, concerns the positivity of the re-
sulting density matrix: physical density matrices must be posi-
tive semi-definite. A physical tensor network variational state for 
vec(ρ) must therefore be one for which the corresponding “un-
vec’d” state is positive semi-definite. The set of tensor network 
states through which the system passes during the algorithm, how-
ever, is not restricted to this, but may very well contain also non-
positive states. The set is also not convex, so that even if we were 
to start with a physical state, there is no guarantee that the al-
gorithm remains in one. As a consequence, it is possible that the 
algorithm (26) converges to states which have low energies but 
are otherwise unphysical. This can be witnessed, for instance, by 
imaginary contributions to the expected values of observables.

We have found that this problem can be dramatically mini-
mized by adopting the following procedure. First, we use as the 
starting guess for the tensor network state, a maximally mixed 
state, vec(I), an object which below we refer to as Ivec. Second, 
we start the process with very small bond dimensions, usually 2. 
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Fig. 4. Diagramatical depiction of the Hamiltonian and dissipative terms under the R N LN formalism.

Fig. 5. Diagramatical depiction of the Hamiltonian and dissipative terms under the (R L)N formalism.
Such a small bond dimension allows for extremely fast compu-
tations, so that we allow for a large number of sweeps to ensure 
convergence. For such a small bond-dimension, the system is found 
to naturally converge to a physical state. We call this first phase 
the warm-up. Finally, and most importantly, we then proceed to 
increase the bond dimension in very small steps, usually in steps 
of 1 or 2 (allowing, of course, multiple sweeps for each bond di-
mension to ensure convergence). The reason why this works is 
because if the bond-dimension is too large, the algorithm will gen-
erally converge towards unphysical states. But by incrementing the 
bond dimension in small steps, one minimizes these disturbances, 
pushing the system towards the manifold of positive semi-definite 
states. We have no formal proof that this approach necessarily has 
to work. But in all scenarios we have tested, it was found to dra-
matically improve the results.

5.3. Numerical comparison between the (R L)N and R N LN orderings

We implement the above steps using the iTensor library [19]. 
Initially, for the sake of comparison, we have implemented both 
the (R L)N and R N LN orderings, and we provide in Fig. 6 a conver-
gence test for both. This is done by monitoring the lowest eigen-
value of M = L†L which, as already discussed, is called “energy”, 
in reference to Eq. (10). Recall that in our case the energy of the 
true steady-state is known to be identically zero. Thus, its mag-
nitude serves as a quantifier of the convergence of the algorithm. 
Indeed, as the plot indicates, the (R L)N ordering is consistently 
more reliable, having a smoother convergence curve after each 
sweep, and requiring less sweeps to achieve better numerical re-
sults. In light of this, the discussion below will be centered on the 
(R L)N ordering.

5.4. Initialization

We now discuss the details of the implementation, focusing on 
the code available at [2]. Further details on the functions presented 
in this section can be found in A. The tensor class is called by
5

Fig. 6. Energy as a function of the number of sweeps, for the (R L)N and R N LN or-
derings, with a fixed maximum bond dimension of 100. Values used: N = 20, γ =
1, � = 0.5, f1 = 0.8, f N = 0.2, h = 0. (For interpretation of the colors in the fig-
ure(s), the reader is referred to the web version of this article.)

auto s i t e s = LRN(N) ;
MPS rho = MPS( s i t e s ) ;

The resulting object sites, which is the output of the function 
LRN, contains all definitions of the Hilbert space structure, to-
gether with how the Pauli operators act on different indices for 
left- and right-multiplication.

All observables can then be constructed from the sites object. 
Here we focus on the currents (5) and the local magnetization σ i

z . 
iTensor allows for a simple symbolic input for building operators, 
which we have adapted to include left and right multiplication. 
The resulting code is then implemented as

for ( i n t i =1; i <N; i ++) {
auto aobs = AutoMPO( s i t e s ) ;
aobs += 4 . 0 , " SxL " , i , " SyL " , i +1;
aobs += −4.0 , " SyL " , i , " SxL " , i +1;
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obsCurrVec . push_back (MPO( aobs ) ) ;
}
for ( i n t i =1; i <=N; i ++) {

auto aobs = AutoMPO( s i t e s ) ;
aobs += 2 . 0 , " SzL " , i ;
obsMagVec . push_back (MPO( aobs ) ) ;

}

An object such as ‘‘SxL’’, for instance, stands for the Pauli ma-
trix acting on the left. Similarly, “SxL”,i,“SyL”,i+1 stand for 
the operator σ i

xσ
i+1
y acting on the left. The factors of 4 and 2 are 

simply because iTensor naturally loads spin operators Si
x = σ i

x/2, 
etc. The above routine constructs a list of MPOs, each representing 
the current in a given bond or the magnetization in a given site.

Next we construct the tensor network for the density matrix 
vec(ρ), which is the object that will be optimized in the algorithm. 
We also initialize it to the maximally mixed state vec(I) (normal-
ization is not required and is done only when we compute the 
expectation values of observables). The code reads

MPS rho ;
MakeIVEC ( rho , N) ;

The function MakeIVEC constructs an MPO of the form vec(I). 
Lastly, we construct the matrix M̂ = L̂†L̂:

MPO LdL = LdLXXZConstruct ( s i t e s , Delta , f1 , fL , gamma, h) ;

This function uses the same type of constructs used in iTensor to 
build Hamiltonians, but again taking care of proper left and right 
multiplications. It also uses a symbolic structure to construct the 
object in a way that is independent of the bond dimension being 
used. As a consequence, the resulting object LdL has no signif-
icant memory cost, irrespective of the size N . We also mention 
that while the above function focuses on a homogeneous chain 
(i.e. homogeneous � and h), it is trivial to extend it to the inho-
mogeneous case.

5.5. Warm-up

As discussed above, we perform a warm-up routine to improve 
the convergence to a physical tensor network. It performs multi-
ple DMRG-sweeps with the lowest bond-dimension, to sharpen the 
initial parts of the simulation. The function receives the state rho, 
the MPO object LdL, the error threshold to stop the function, and 
an additional tag (which can be either “true” of “false”) to manage 
the output of the function to the console.

WarmUp( rho , LdL , 0.001 , { " Quiet " , true } ) ;

This function is a minor adaptation of iTensors built-in DMRG rou-
tine. The improvements brought about by the warm-up are signif-
icant, as shown in Fig. 7. The black horizontal line represents the 
sweep where the warm-up ends and the actual simulation begins 
(to be discussed in what follows). As can be seen, the reduction in 
energy during the warm-up is significant, even though the simula-
tion time [Fig. 7(b)] is negligibly small.

5.6. DMRG sweeps and final calculations

After the initial warm-up routine, the DMRG procedure is then 
applied for increasing values of the bond-dimension parameter. 
The individual DMRG runs are called as

energyFin = dmrg( rho , LdL , sweeps } ) ;
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which is just a call to the built-in DMRG function from iTensor. 
This can then be placed inside a loop, which compares the en-
ergy with the previous value; if the two fall within 10% of one 
another, the bond-dimension value is increased by a fixed amount. 
Both of these parameters, the threshold upon which one increases 
the bond dimension, and the amount of the bond dimension in-
crease, can be easily altered by the user at the initial lines of the 
main routine. The algorithm can be run indefinitely, or the user 
may choose a stopping point, for instance, the maximum bond di-
mension, amount of sweeps, etc.

During each sweep, we calculate the spin current Eq. (5)
throughout the chain, as well as the magnetization for each site. 
Both of these are done in a similar manner, contracting the pre-
viously loaded MPO of the relevant site with the tensor network 
object ρ . We take advantage of iTensor’s optimized tensor network 
procedures. The value is then printed out. For example, the mag-
netization is computed with a loop going up to the size of the 
chain, for each site calculating

〈I vec |M j|ρ〉
〈I vec|ρ〉 , (27)

where M j is the magnetization MPO described in Sec. 5.4. This is 
done through the following excerpt:

for ( i n t j =1; j <=N; j ++) {
auto ev = overlapC ( Ivec , obsMagVec [ j −1] ,rho ) / overlapC ( Ivec , rho

) ;
}

A similar procedure is done for the spin current.

for ( i n t j =1; j <N; j ++) {
auto current = overlapC ( Ivec , obsCurrVec [ j −1] ,rho ) / overlapC (

Ivec , rho ) ;
}

In both cases we use the previously calculated vector of MPOs from 
Sec. 5.4. Of course, to optimize the code, one may also only com-
pute the observables at the end of the process. Here we compute 
them at each step in order to monitor their convergence.

Finally, at the end of each sweep, we check if the energy has 
stabilized, and, if so, we increase the bond dimension value in or-
der to advance the accuracy of the routine.

i f ( ( energyIni−energyFin ) / energyIni < sweepBDChangeThresholdValue
) {

bd += BDinc ;
sweeps .maxm( ) = bd ;

}

Additional conditions can be easily implemented taking into ac-
count the simulation parameters, to finely tune the convergence of 
a specific set of parameters within a specific system.

6. Results

6.1. Benchmarking convergence

Initially, we look at the convergence of the algorithm for differ-
ent chain sizes. Illustrative results are shown in Fig. 8 for sizes up 
to N = 50. As can be seen, for small sizes the convergence is ex-
tremely fast. Increasing the size of the chain makes it so that more 
sweeps are necessary, but since the bond dimension of each sweep 
is increased in a slow, controlled manner, the convergence is pos-
sible even for larger sizes. For the particular case of � = 1, f1 = 1
and f N = 0, the problem actually has an analytical solution in the 
form of a matrix product ansatz [3,26]. By looking at the average 
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Fig. 7. Plots of both ground state energy and time taken by sweep as a function of the number of sweeps. The black horizontal line represents the sweep where the warm-up 
ends and the actual simulation begins. Values used: N = 10, γ = 1, f1 = 1, f L = 0, h = 0, � = 1.
Fig. 8. Energy convergence for different chain lengths, after each sweep, for different 
system sizes N . Values used: γ = 1, � = 0.5, f1 = 1, f N = 0, h = 0.

current after each sweep, we can therefore benchmark the algo-
rithm to assure the convergence of the current. This is illustrated 
in Fig. 9. As can be seen, the convergence is generally slower for 
intermediate values of γ . Taking the analytical values available as 
references, we can see that the algorithm is working as intended. 
Additionally, all these simulations were made in the span of a cou-
ple days, with an average desktop: no broad computational power 
was required.

6.2. Benchmarking the steady-state in comparison with analytical 
solutions

After assuring that the code is working, we can further our 
analysis by studying the current for different coupling values γ , 
for two chain sizes. The steady-state current as a function of γ is 
shown in Fig. 10(a), where it is compared with the analytical solu-
tion (solid lines). As can be seen, the agreement is extremely good. 
Similarly, in Fig. 10(b), where one can clearly see the change in 
transport type as L increases, from ballistic to subdiffusive [3]. Fi-
nally, in Fig. 11 we compare the magnetization profiles 〈σ i

z〉 with 
the exact solutions, which again show perfect agreement.

6.3. Regimes with no analytical solution

Finally, we illustrate how our implementation can be used to 
explore situations which have no analytical solution and therefore 
rely solely on numerical methods. The current as a function of γ
for different driving parameters f i (see Eqs. (3), (17)) and N = 10
7

Fig. 9. Spin current convergence versus sweep number for different coupling values 
γ . Values used: N = 25, � = 1, f1 = 1, f N = 0, h = 0. Dashed lines correspond to 
the analytical solutions in [3].

is illustrated in Fig. 12(a). As can be seen, changing f i brings sig-
nificant changes to the steady-state and indeed it vanishes when 
f1 − f N = 0. A similar analysis of the magnetization profile is pre-
sented in Fig. 12(b).

7. Conclusions

To summarize, in this paper we have detailed an implemen-
tation of a DMRG routine suited for dealing with open quantum 
chains. The implementation is based on the algorithm first pre-
sented in [1], and was implemented on the iTensor library [19]. 
The code is also freely available at [2]. The goal of the imple-
mentation is to convert the open problem into the language of 
traditional DMRG, for which many sophisticated routines have al-
ready been developed. A major advantage of this method is that it 
provides, without any overhead, a simple and effective quantifier 
of convergence, because the steady state corresponds to the zero 
energy eigenstate of an effective Hamiltonian. We have presented 
several benchmarks, analyzing both the convergence of the algo-
rithm as well as comparing it with analytical predictions that are 
available for a limited choice of parameters. These analyses clearly 
show that our implementation is suitable for studying transport 
properties in one-dimensional quantum chains, and it can thus be 
used to study quantum transport phenomena such as interaction 
induced current rectification and negative differential conductance.
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Fig. 10. (a) J vs. γ for two values of L. The solid line corresponds to the analytical solution from [3] and the dots correspond to the oDMRG simulations. (b) J vs. N for 
γ = 0.5. One can clearly see the change from ballistic to subdiffusive transport. Other parameters were � = 1, f1 = 1, f N = 0, h = 0.

Fig. 11. Magnetization profile M = 〈σ i
z 〉 as a function of the sites for γ = 0.5, for (a) N = 10 and (b) N = 50. The red curves are the exact solutions from [3]. Other parameters 

were � = 1, f1 = 1, f N = 0, h = 0.

Fig. 12. (a) J vs. γ for N = 10 and different values of f1, f N . (b) Magnetization profile for N = 80. Other parameters were γ = 0.5,� = 1,h = 0.
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Appendix A. Available functions (and how to use them)

LRN-sites.h

This class is constructed with the (LR)N formalism in mind, and 
it therefore rearranges the indices of a N-sized tensor network ac-
cordingly. It defines the right (R) and left (L) versions of Sx , S y , 
Sz , S+ , S− , as well as combinations of those, which are used in the 
construction of more complex operators, such as (S−)R(S−)L and 
(S+ S−)L, and so on. It is fitting to be used by any new implemen-
tations, and its functionality is akin to the iTensor implemented 
SpinHalf class.

MakeIVEC

The MakeIVEC function sets the entries of a tensor network to 
match those of vec(I). It is called as

MakeIVEC (MPS &rho , i n t N)

The ordering is done in accordance with the indices of the input 
and the (LR)N formalism. This function is used as the initial guess 
state that is input into the simulation. This allows one to start 
with a valid physical state and also ensures that simulations can 
be re-done by starting from the same state. It is a void function, 
overwriting the values in rho.

LdLXXZConstruct

This function handles the creation of the Liouvillian MPO. It can 
receive either constant values of the parameters γ , h and �, or 
variable ones, which can be input into a vector. The same applies 
to the temperatures f1... f N . It returns an MPO object, and is called 
using the following line.

LdLXXZConstruct ( S i t e S e t &s i t e s , double Delta , vector < int >
dissipatorsVec ,

vector <double > dissipatorsTempValues , <double > gammaVec ,
vector <double > hVec )

WarmUp

The warm-up routine functions as a simple set of DMRG sweep 
with fixed bond-dimension. It has been explained in detail in 
Sec. 5.5. It is a void type function, which means it simply over-
writes the tensor network object. It is called with the following 
line.

WArgs& args = { " Quiet " , f a l s e } , Args& argsDMRG = { " Quiet " ,
true } )
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