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Rectification induced by geometry in two-dimensional quantum spin lattices
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We address the role of geometrical asymmetry in the occurrence of spin rectification in two-dimensional
quantum spin chains subject to two reservoirs at the boundaries, modeled by quantum master equations. We
discuss the differences in the rectification for some one-dimensional cases, and present numerical results of
the rectification coefficient R for different values of the anisotropy parameter of the XXZ model, and different
configurations of boundary drives, including both local and nonlocal dissipators. Our results also show that
geometrical asymmetry, along with inhomogeneous magnetic fields, can induce spin current rectification even in
the XX model, indicating that the phenomenon of rectification due to geometry may be of general occurrence in
quantum spin systems.

DOI: 10.1103/PhysRevE.103.032108

I. INTRODUCTION

If we couple two reservoirs to a system inducing a flux
through it (for instance, of heat or particles), and if the total
system has the property of being relaxing, it will reach a
nonequilibrium steady state (NESS), characterized by a con-
stant flow. Then, if we reverse the reservoirs and the flow
induced by the exchanged reservoirs has a different magnitude
of the first configuration, we say that the system exhibits
rectification.

Besides the familiar rectification of electric currents, ther-
mal rectification was observed as well for the first time by
Starr (1936) in copper oxide rectifiers [1,2] and has gained
more and more attention nowadays, experimentally and the-
oretically, largely due to the possibility of experimentally
realizing thermal circuits and diodes [3–10]. The phenomenon
can also be observed in quantum many-body systems for en-
ergy and magnetization currents [11–13]. Understanding the
transport properties of those systems can lead to technological
advances and, furthermore, bring new insights for fundamen-
tal physics.

Even though rectification is a well-known phenomenon,
the essential elements for its occurrence are not yet fully un-
derstood. Undoubtedly, an asymmetric component is required,
but not any type of asymmetry is sufficient [14]. In phononics,
for example, a considerable effort has been dedicated to the
proposal of an efficient and feasible thermal diode. Systems
given by the sequential coupling of two or three segmented
parts [8], graded systems [15], i.e., devices in which the
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structure changes gradually in space, arrangements involving
long range interactions [16], and other mechanisms have been
recurrently investigated. A graded thermal diode has been
already experimentally built [17], given by a carbon and boron
nitride nanotube, externally and asymmetrically coated with
heavy molecules. Unfortunately, its thermal rectification fac-
tor is very small. Geometrical arrangements, in particular for
some intricate graphene models, have been also considered as
a possible mechanism for thermal rectification. For example,
a graphene nanoribbon with a two-dimensional trapezoidal
shape is studied in Ref. [18]; graphene Y junctions are con-
sidered in Ref. [19]; and graphene nanoribbons in triangular
shapes are investigated in Ref. [20].

A subject of currently increasing attention is the study
of the transport laws at quantum scale. Motivated by the
advances of quantum thermodynamics and the possibility of
building quantum devices due to the progress of nanotech-
nology, several works are devoted to the theme. In particular,
quantum spin chains described by Heisenberg and XXZ mod-
els are exhaustively visited. These systems are related to
problems in different areas: cold atoms, quantum information,
condensed matter, optics, etc.

Important results about rectification in one-dimensional
quantum spin chains have being obtained [12,13,21–23].
For example, in Refs. [11,24] it was shown that for
the XXZ model, a graded interaction induces rectifi-
cation of energy currents, with no need of a graded
magnetic field. Conversely, for magnetic currents, as dis-
cussed in Ref. [12], the XXZ model under a graded
magnetic field is enough for the existence of rectification.
However, for the XX model this configuration does not
suffice.
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When extended to two-dimensional lattices, not many stud-
ies on rectification in spin systems have been reported, so in
this work we focus on the theme and consider four distinct
geometries for open quantum spin lattices governed by the
XXZ model. In order to explore the role of the geometries
on spin transport, two cases with geometrical asymmetry and
two symmetrical cases are examined, each one with different
number of coupled reservoirs. The dynamics are described
by the Lindblad master equation [25–27] and the solution
for the steady state is obtained through vectorization of the
time evolution operator. We analyze the rectification behavior
for different values of the anisotropy parameter � and three
configurations of an external magnetic field: one homoge-
neous and two nonhomogeneous changing along the lattice.
We show numerical results for the occurrence of rectification
in symmetrical XXZ and asymmetrical XXZ and XX (� = 0)
models under nonhomogeneous magnetic fields.

This work is organized as follows. In Sec. II we begin by
describing the XXZ model, the symmetric and asymmetric
geometries that we consider and also the master equation
approach for the dynamics of the open systems. In Sec. III
we discuss how to evaluate spin currents and quantify rectifi-
cation in two-dimensional XXZ spin lattices. Also, we present
the solution for the steady state of Lindblad master equation
through vectorization and time evolution operator. Finally, in
Sec. IV we show numerical results for all geometries and
magnetic fields considered. This section contains the most
important results of our work, particularly for the asymmetric
XX model, which presents rectification under a nonhomoge-
neous magnetic field.

II. MODEL

We consider four different geometries of two-dimensional
spin- 1

2 lattices coupled to magnetic reservoirs: two with asym-
metric geometry and two symmetric, as represented in the
Fig. 1. The Hamiltonian that describes the lattices was chosen
to be in the XXZ form

H =
∑
〈i, j〉

[
α
(
σ x

i σ x
j + σ

y
i σ

y
j

) + �σ z
i σ z

j

] +
N∑
i

hiσ
z
i , (1)

where σ a
k with a ∈ x, y, z are the Pauli matrices, the sum

〈i, j〉 refers to sites that interact with each other, and hi is the
magnetic field acting on site i. In this work we set h̄ = 1 and
fix α = 1.

For the dynamics we consider a local Lindblad equation
approach, where the time evolution of the density matrix ρ is
given by the Lindblad master equation (LME):

L(ρ) = d

dt
ρ = −i[H, ρ] + DL(ρ) + DR(ρ). (2)

The dissipative parts DL and DR are given by

Dβ (ρ) =
∑
j∈β

∑
s=±

γ j (Lj,sρL†
j,s − 1

2
{L†

j,sL j,s, ρ}), (3)

where {·} is the anticommutator, β = L, R are the sites cou-
pled to the reservoirs on the left and right sides, respectively
(see Fig. 1), γ j is a positive constant that will be specified for
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FIG. 1. Four lattices considered: Two with geometrical asymme-
try and two symmetric. In (a) asymmetric geometry with ten sites,
one reservoir on the left side and four on the right side; (b) asymmet-
ric geometry with eight sites, one reservoir on the left and two on the
right side; (c) symmetric geometry with ten sites, two reservoir on
the left and two on the right side; (d) symmetric geometry with nine
sites, three reservoirs on the left and three on the right side.

each geometry based on the number of coupled reservoirs and

Lj,± = √
1 ± f j σ±

j (4)

describes the coupling between sites and reservoirs, where

σ±
j = σ x

j ±iσ y
j

2 are the spin creation and annihilation operators
acting on site j. The parameter f j can be interpreted as the ex-
pectation value of the magnetization of an extra spin that is not
part of the lattice coupled to the site j. When f j∈L �= f j∈R the
system will evolve to a nonequilibrium steady state (NESS),
which is characterized by a constant flow of magnetization
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FIG. 2. In the steady state the sum of the currents J12 + J13 must
be equal to the sum of the currents J24 + J25 + J35 + J36. The vertical
currents cancel themselves when the system reaches NESS.

through the lattice. In this work we set

f j∈L = − f j∈R = f , (5)

and f = 1, which represents reservoirs with fixed magnetiza-
tion as only up or down, not a mixture of them.

III. SPIN CURRENTS AND RECTIFICATION

The spin currents may be found through the continuity
equation, that in the model considered is given by evaluating
the time variation of the local magnetization 〈σ z

k 〉. For sites
that are not coupled to reservoirs it can be shown that

d

dt

〈
σ z

k

〉 =
∑

j

Jk j, (6)

where the sums in j are for sites that interact with site k and

Jk j = 2α
〈
σ x

k σ
y
j − σ

y
k σ x

j

〉
(7)

is the current from site k to j. This form for the current can be
obtained through the LME and continuity equation.

When the system reaches the NESS we have d
dt 〈σ z

k 〉 = 0
for every k. For one-dimensional cases we would obtain that
the currents must be the same between each site, but for the
two-dimensional cases we can consider the sum in a column
of sites. If we have a triangular lattice with six sites, as in
Fig. 2 and making the sum on sites 2 and 3, for example, we
can obtain the relation

J12 + J13 = J24 + J25 + J35 + J36 ≡ J, (8)

so the sum of the currents J is homogeneous through the
lattice. For different geometries the relation is analogous: the
sum of the currents on the left side of a column of sites must be
the same as the sum on the right side. This can be interpreted
as the sum of the currents that “goes in” the column must be
the same that “goes out”. In this work the sum J is considered
to verify and quantify how much rectification the systems
present.

To measure how much rectification a system has, we must
compare J ( f ) with J (− f ), where J ( f ) is the steady state cur-
rent and J (− f ) is the steady state current when the reservoirs
are reversed, represented by the sign change f → − f . Thus,

we can define a rectification coefficient as [12]

R = J ( f ) + J (− f )

J ( f ) − J (− f )
. (9)

If R = 0 there is no rectification and if R = ±1 the system
behaves as a perfect insulator in one direction, characterizing
total rectification. The sign of R only indicates in which direc-
tion the current is more intense.

To evaluate the currents J ( f ) and J (− f ) we must find the
NESS solution first, where L(ρ) = 0 is satisfied. For this cal-
culation we start employing the vectorization method, which
consists in converting a matrix in a column vector. For 2 × 2
matrices, the operation vec(·) is given by [12]

vec

(
a b
c d

)
=

⎛
⎜⎝

a
c
b
d

⎞
⎟⎠, (10)

and for any matrices A, B, and C, the identity

vec(ABC) = (C� ⊗ A)vec(B) (11)

may be verified.
We define the vectorization of the density matrix as

vec(ρ) ≡ |ρ〉, (12)

and then, the vectorized terms of the Lindblad master equation
can be written as

vec(−i[H, ρ]) = −i(1 ⊗ H − H� ⊗ 1) |ρ〉,
vec(LjρL†

j ) = (L∗
j ⊗ Lj ) |ρ〉,

vec(L†
j L jρ) = (1 ⊗ L†

j L j ) |ρ〉,
vec(ρL†

j L j ) = ((L†
j L j )

� ⊗ 1) |ρ〉. (13)

Thus, the LME can be written as

d

dt
|ρ〉 = W |ρ〉, (14)

and the solution for |ρ(t )〉 is given by time evolution operator

|ρ(t )〉 = eW t |ρ(0)〉. (15)

Since the system under consideration has the relaxing
property, the steady-state is reached when t → ∞:

d

dt
|ρ(t → ∞)〉 = d

dt
|ρss〉 = 0, (16)

hence we can write the NESS solution as

|ρss〉 = lim
t→∞ eW t |ρ(0)〉. (17)

The vectorized density matrix |ρ〉 has length 22N and due
to the large amount of sites on the lattices being considered,
we had computational power restriction. On behalf of that,
we chose an initial state and then applied the time evolution
operator with a sufficiently large value for t . Emphasizing that
the system is Markovian, so the choice of the initial state must
not change the final state.

We estimate t = 103 (in 1/α units) as enough time for the
systems under consideration reach a state that is essentially
in the NESS, and to ensure this the property (8) is verified in
every case, adapting it to each geometry.
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FIG. 3. Field configurations 1 and 2 for the triangular lattice
with ten sites. (a) Field configuration 1 of the triangular lattice with
ten sites: magnetic field varies from h = 1 to h = 4 from left to
right; (b) field configuration 2 of the triangular lattice with ten sites:
magnetic field varies from h = 1 to h = 4 from right to left.

IV. RESULTS

For the four geometries considered under a homogeneous
magnetic field (same magnetic field applied in each site)
h = 1.0, as well as the absence of it, rectification is not ob-
served. But when we consider a non-homogeneous magnetic
field, differences between asymmetric and symmetric geome-
tries show up.

Two configurations of nonhomogeneous magnetic field are
investigated: The first one (field configuration 1) h increases
in one unit for each column of sites from left to right, and
the second case (field configuration 2) h increases in one unit
from right to left. For the asymmetrical lattice with ten sites
the field configurations are represented in Fig. 3 and the other
lattices follow the same idea, depending only on the number
of columns they have.

The results for the first lattice [Fig. 1(a)] with geometrical
asymmetry, under a magnetic field varying from h = 1.0 to
h = 4.0 and coupling parameter γ j∈R = γ j∈L/4 = 1.0/4, are

(a)

(b)

(c)

(d)

FIG. 4. Rectification coefficient R vs �, given two configurations
of nonhomogeneous magnetic field: (a) asymmetrical lattice with ten
sites [Fig. 1(a)], (b) asymmetrical lattice with eight sites [Fig. 1(b)],
(c) symmetrical lattice with ten sites [Fig. 1(c)], and (d) symmetrical
lattice with nine sites [Fig. 1(d)].

in Fig. 4(a). For the second lattice [Fig. 1(b)], under a a field
varying from h = 1.0 to h = 4.0 as well and γ j∈R = γ j∈L/2 =
1.0/2, are in Fig. 4(b). Differently from one-dimensional
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chains, the XX model (� = 0) shows rectification in the pres-
ence of a nonhomogeneous magnetic field and have a point
where R = 0 for � > 0 in both geometries, that seems to be a
symmetry point. Another interesting detail is the change only
on the sign of the rectification coefficient R when the magnetic
field configuration changes, which is unexpected since the
total magnetic field applied is not the same.

For the third lattice [Fig. 1(c)] with a symmetric geome-
try, under a magnetic field varying from h = 1 to h = 5 and
γ j∈R = γ j∈L = 1.0, the results are in Fig. 4(c). And finally, the
results for the fourth lattice [Fig. 1(d)], under a field varying
from h = 1 to h = 3 and γ j∈R = γ j∈L = 1.0, are in Fig. 4(d).
The symmetric geometries shows symmetric values of rectifi-
cation around � = 0 where R = 0 and have a similar behavior
as the one-dimensional cases, where the XX model does not
present rectification even under a nonhomogeneous magnetic
field. It is important to emphasise that the inversion of the
field configurations just changes the sign of the rectification
coefficient, as expected for the symmetric cases.

For all geometries we expect that the rectification reaches a
maximum point and then starts to decreases as |�| increases.

Additionally, it is interesting to point out that these kinds
of geometries may allow interference effects to play a role.
For instance, if we consider the XX model in the geometry
in Fig. 1(a), without the reservoirs, an excitation initially put
in the right column, in a suitable superposition, may never
reach the leftmost site. The reservoirs we have considered may
obscure these effects, since they pump particles in the right
column incoherently.

To verify interference effects, we consider two types of
collective reservoirs on the right side for the triangular lattice
with ten sites [Fig. 1(a)]. The first reservoir is described by

LR,± =
√

1 ± fR (σ±
7 + σ±

8 + σ±
9 + σ±

10). (18)

And for the second one alternate phases are included:

LR,± =
√

1 ± fR (σ±
7 + i σ±

8 + σ±
9 + i σ±

10). (19)

However, at least for the system sizes we were able to
consider, both collective reservoirs were not able to show
significant differences in the rectification behavior, compared
to the cases with separated reservoirs.

Furthermore, to certify that the geometry alone does not
induces the rectification, two extra cases with six sites and

homogeneous magnetic field (h = 1.0) are considered: In the
first situation we fix one reservoir on the left side and two
on the right side; in the second case we fix one reservoir
on the left and three on the right. Then, all possible geome-
tries are tested, including cases where sites and reservoirs
are excluded. None of them exhibited rectification, indicating
that a non-homogeneous magnetic field is necessary to the
occurrence of magnetic currents rectification.

V. CONCLUSIONS

We have explored numerically the rectification R in
two symmetric and two asymmetric geometries for two-
dimensional XX and XXZ spin lattices, under one homo-
geneous and two nonhomogeneous magnetic field configura-
tions. In addition, we also considered two collective reservoirs
for the triangular lattice with ten sites and all possible geome-
tries with six sites under a homogeneous magnetic field.

The results have shown that the nonhomogeneous magnetic
field is a required element, but besides that, the interesting
occurrence of rectification in the XX model for asymmetric
geometries distinguish its behavior from the symmetric cases
considered, that are similar to one-dimensional chains.

Finally, we conclude that these outcomes described for
archetypal models of open quantum system suggest the ge-
ometry can interfere significantly on spin transport and,
particularly, its asymmetry reveal new possibilities for induc-
ing rectification in quantum spin lattices, even in the XX
model. Importantly, the occurrence of spin rectification in
such simple models indicates that the phenomenon is of gen-
eral occurrence in spin systems.

We hope our results stimulate more research on the theme
of geometry-induced rectification, in particular, it will be in-
teresting to investigate these effects in the energy current as
well.
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