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Overview

* C(lassical Onsager theory of transport
 Non-Abelian transport

* (Collision models

 Linear response theory

* Application: Thermosqueezing

e Spin $ dynamics.
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Onsager theory
;
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Ly Fick’s law of diffusion

Particles flow due to gradient of
concentration.

. - )
Ly Fourier’s law

Heat flows due to gradient of
temperature.
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N
Entropy production rate
Y = Z oS, = Z L, 04,04, (fluxes X forces) I
k k¢
\_
Onsager’s main results: -
- L is symmetric: Peltier & Seebeck are equal.
- L is positive semi-definite: ¥ > 0
AN
~

» Fluxes: J, = d(Q,)/dt. Generated by gradients of af

* Linear response: if the gradiel
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laptops.
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Ly: Seebeck effect

. . 5R U Gradient of temperature generates a
Thermoelectric
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flow of particles/electrons.
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L Peltier effect

Gradient of concentration generates
heat flow
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Thermocouples



Onsager theory in the quantum regime
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Non-Abelian (hon-commuting) charges

* Inthe quantum domain we can also have transport of charges that do not commute.

|
P== exp{ — Z /lek} (O Or] # 0
£ k
(non-Abelian thermal states - NATS)
. " 1
. Ex: spin transport p = ~ exp{ — A0, — 4,0, — /IZGZ}

 EX: Energy & radiation squeezing.
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Collision model approach

* We study non-Abelian transport in a collision model approach.

» Sequence of individual collisions between small ancillas of each WAAEWREURERC LSC RN ) ool 1y

bath.
- Transport means the thing leaving one
 Two systems, A and B, each prepared in states S}{’stem must equal that entering the
other.
- Condition for strict charge conservation
pr = — exp{ Z 210; } x=AB (SCC):

(U, 0 + 051 =0, Vk
with A7 # A -

- Define unique current operator

. Interaction map: p,p = U(pj{}4 X p/ﬁ) U’ 7, = UTQIEA)U_ QIEA)

— — UTQ®U + QP

_ Average current: J, = tr( Sy & ﬂg))




Entropy production

 Entropy production can be written in a fully information-theoretic way as
2 =1(A:B) + D(py || ps) + D(pgl|pp) =2 0
* where
I'(A : B) = 5(py) + 5(pp) — S(pap)
D(p||o) = tr{plnp —plna}

* Fully operational: irreversibility due to loss of AB correlations + irreversible local changes in A and B.

NATS: entropy production reduces to Onsager’s result: > = Z oAy J s
k

M. Esposito, K. Lindenberg, C. Van den Broeck, “Entropy production as correlation
between system and reservoir”’. New Journal of Physics, 12, 013013 (2010).

Gabriel T. Landi and Mauro Paternostro, “lrreversible entropy production, from
quantum to classical”, Review of Modern Physics, 93, 035008 (2021)



Linear response theory



Symmetric logarithmic derivative

The proof of our result uses concepts from quantum
parameter estimation.

We define the SLD for each charge/affinity pair:

op;
A + o, A, = 20—
kKPy T Pii\g o2,

For commuting charges A, = (Q,) — O,

The Onsager matrix can then be written as

|
Ly = — 5<{fk, Af}>

Onsager reciprocity follows from time-reversal invariance.

Main result

If the charges (), and the dynamics are time-reversal
invariant, then the Onsager matrix can be written as

1

|
—de covy(jk, jbp)

L, , =
k¢ N

0

where ¢, = U TQIEA)U — QIEA) and
cov,(A, B) = tr(Ap”Bp' ™) — tr(Ap)tr(Bp)

is the y-covariance, with p = pj{‘ X pf being the
equilibrium state.

For commuting charges we recover the Kubo formula

L., =cov(f,, 7 ,)
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Consequence Note that D is the operator associated to the entropy
_ _ production:
The entropy production can be written as
1 2 =(D)ap
2= n de cov,(D, D), D= Z Ok S i In the commuting case, we would have the Fluctuation-
0 k Dissipation relation

This can be further split as 1
(D) 5 = EVar(D)eq

2 =2 — 1

comim
Non-commutativity breaks the FDR;:

where / is the Wigner-Yanase-Dyson skew information (a

quantifier of coherence) (D), n = : Var(D) I/
AB — 5 eq

| 2

[(m,D) = %J dy tI'([?Z'y, D[z, D]) > ()
0

is the y-covariance, with p = pj{‘ X pf being the
equilibrium state.

Reduction in the entropy production due to quantum
coherence. For commuting charges we recover the Kubo formula

D. Petz, “Covariance and Fisher information in quantum mechanics” |
| = cov( f,,
J. Phys. A., 35, 929-939 (2002) % (S S )

.



Thermosqueezing



Thermal Squeezed states

* Single QHO:
1 0 0,
I, =—€Xp{ —,BH—,B,uA}, H=—(p*+ x?), A =—(p? —x?)
4 2 2
« Two charges, H (energy) and A (asymmetry).
Vacuum Thermal state Coherent state Squeezed state
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Thermosqueezing

* Single QHO:

|
P=EGXP{—ﬁH—ﬁﬂA}a H =

w5 2 )
—(p~ +x7), A=—(p —x
2(1? ) 2(1? )

« Two charges, H (energy) and A (asymmetry).

* Onsager coefficients:

e
SU(1,1) algebra

-

Charge preserving Gaussian unitary

Unitary which preserves both energy and
squeezing:

U = exp{—gr(a/a, - aja,)}

Actually the only one which is also Gaussian
(guadratic).

3 charges
0 RN
Q1=H=?(P + x°) Q2=A=?(P — X°)

[Qla Qz] — 2iQ3
[Q3a Q1] — Zin
(D5, O3] = — 210,

The charges (,, O,, J; form a non-Abelian group:

0,

=
? X,p}
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Transport coefficients

Thermal conductance: kK = — ,BZLQQ

Squeezing conductance: G = — L, , Onsager matrix

Entropy production/dissipated heat reads Unitary which preserves both heat (/, = J,; — 1J,) and squeezing:

Q.. = /B =x6T*IT + J,G _ 0
d p A Jo = LyoSs— LB, Jy = LyoSs — LysPs,

New Joule-like heating term due to squeezing

~—

Loo =f(1 — p*)i@i + 1)

tanh o

Ly =f(1-p>" [//””_l(fl + 1)+

(72 + /2 + 1/2)]

04

where

i= -1, f=w’sin}gr), a=pwy/l—u’
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FIG. 2. (a){c) Thermosqueezing Onsager coefficients L;;,L13,Ly; on the log scale, computed from Eqgs. (19), in units of
(hw)? sin®(g7), as a function of the inverse temperature 8 (in units of Aw/kz) and the adimensional squeezing parameter .



Entropy reduction, R
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Cross coefficients

Thermopower, or Squeezing-Seebeck (Squeebeck) coefficient

1 LAQ

I Lya
(flow of squeezing due to gradient of temperature)

N

_ i _ . n . . _
SqueeZIng Peltier (Squeetler (' )) coefficient: b) Squeezing thermopower, S

Loa
P
Laa
(flow of heat due to gradient in squeezing)

The two are related by I1 = 7§




Spin S Heisenberg dynamics



Spin S c:K
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How do we actually measure these currents?

 Thermodynamics deals with transformations. process

 Require two-point measurements (TPM) OCH

* Measurements in guantum mechanics are invasive.

® F[irst measurement is the problem: global

* Destroys initial guantum coherences.

local

* (Can be overcome using identical copies)

* Next step: operational definition based on specific experimental platforms.

Kaonan Micadei, Gabriel T. Landi, Eric Lutz, arXiv:2103.14570




Conclusions & outlook

 Quantum mechanics opens up the way for performing transport of non-commuting charges.
 We put forth a framework suitable for describing this in the linear response regime.
Perspectives:

* If the charges do not commute, how can we actually measure them?

* Current fluctuations and Thermodynamic Uncertainty Relations.

 (Concrete applications of thermosqueezing.
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