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The story

* Open Quantum Systems generate classical (stochastic) Quantum optics paradigm
currents.

 EXxperimental characterization via continuous measurements.

=

* Discrete like emissions: photo-detection, electron counting.

* (Continuous emissions: homodyne, heterodyne.

» Motivation: to go beyond the average, and understand the Mesoscopics paradigm
fluctuations A% of the output current.

current Q
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current .
A Detection record
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» time



Thermodynamic Uncertainty Relations (TUR) & Kinetic Uncertainty Relations (KUR):

* Fluctuations in classical systems are bounded by dissipation:

2 2
AI > 3 and AI > i K = dynamical activity (jumps/second)
<]>2 - O <]>2 - K 6 = entropy production rate

(measure of dissipation and the 2nd law)

* Simple, elegant and counter-intuitive.
 But can be violated in the quantum regime!
Metrology:

o Fluctuations determine the precision (Cramér-Rao bound): A% > 1/F(C)

 But fluctuations also contain information (because output is correlated in time).

A. C. Barato, U. Seifert, PRL, 114, 158101 (2015)
S. Gammelmark, K. Mgalmer, PRL, 112, 170401 (2014)



Summary

Toolbox

Unpublished work. Cond. Mat: Full Counting Statistics.
Quantum optics: input-output, power spectrum, etc.

Part 1: tutorial paper in PRX Quantum.
* Bridge the gap between these 2 fields.

* Develop methods/formulas to efficiently
compute fluctuations numerically.

Part 2: applications to Kerr non-linearity.
e Study fluctuations in critical Kerr resonators.

e (Continuous & discontinuous transitions.

* EXxponential divergence of fluctuations.

Michael Kewming Mark Mitchison



Setup: quantum master equation

 We are going to consider systems described by a Quantum

Master equation Cat qubits:
useful for qguantum error correction

d—p—g()——{H(z) 1+ ) L U—l{LTL )
At - p)=—1 P - kP k Nk k> P W —
* EXx. 1: optical cavity with leaky photons. ﬁwt

1
Dla] =z<[apa’f —E{a?‘a,p}] > v o .

Wigner amplitude
|
o

* e.g.the Parametric Kerr model.

U G
H=-Ad"a+ Ea*cﬁaa + E(Cﬁ2 + a®)

Lescanne, et. al., Nature, 16, 509-513 (2020)



 EXx. 2: fermionic transport. A chain of fermonic sites (e.g. quantum dots) modeled by

d
76 = —i[H.p]+ ) v(1 = f) D.(p) + 7, Dor(p) AN

with
L L1
H = Z eicfcl- —-J Z (cjci |+ ciilci)

e Ex. 3: 3-level maser

d .
e A iLH, pl+7o(ng + 1)Dlog,] + YorgDloy)

dt

+}/1(n1 + I)D[GIZ] + }/1n1D[021]

* 0j = ‘l><]‘




Conditional evolution "

dp

, 1
—- = Z(p) = —ilH®. pl + ; LipL = AL Lo p)

« We associate each Lka]j with a quantum jump:
Z\(p) = ), Fup) = ) LipL]
k k

« Decompose:
L(p)=ZLy(p)+ZL(p) where Z£,= < — & is the no-jump operator.

* Dyson series:

[
e?'py = e p, + Jdtlego(t_tl)gle“?Otlpo + +...

0



4 [ A
e?'p, = e p, + J'dtleg =) L. eZ 0l + Jdtl [dtzeg =) P eZod =) P oLl 4
0 0 0

* This allows us to break the evolution into pieces conditioned on specific numbers of jumps.
 EX: probability of no jump up to time ¢
P jump(t) = tr(e""p,)
» EX: probability that first jump occurs exactly at time ¢ (waiting-time distribution)
W(t) = tr{ 3163%00}
* (Can also be resolved over individual channels

W(t’ k) - tr{ jke gOtpo } ¢ > >¢ >e—>¢ > ;

waiting times

T. Brandes, "Waiting times and noise in single particle transport,” Annalen Der Physik, 17(7), 477-496 (2008).



EXx: tight-binding chain
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* 2nd injection Is affected by the 1st.

 And also by finite-size interference
effects.



Output currents

. To each jump we associate a counting variable N,(¢), such that dN, = 1 when Lka]j OCCUrs.

» The probability that a jump happens in a time interval dt is
P(AN(®) = 1) = dztr( fkpt> — ditr(Lp, L)) = d{L{L)
 The joint probability for two jumps at different times is
P(AN(®) = 1, ANt +7) = 1) = dPu{ 7 e 7" 7 p, |

* Note that this assumes anything can happen in the middle (unlike the WTD).



The counting operators now define physical (classical) currents:

[

dN
=Yt No=| e
A 0

The u, are parameters that depend on the current in question; e.g.,
e Particle current: y;, = 1 for cpc’ and u, = — 1 for cipc
« Energy current : y;,, = x ¢ (tight-coupling).

 Dynamical activity: y, = 1 for all channels.

Very general framework. Not widely known/appreciated.

dN,
dt

Can also be extended to multiple currents: [, = Z Mok
k

* |nteresting for studying current-current correlations.



 Average current:

J(0) = E(I(1)) = 2 uE(dN;)
But
E(dN,) =1xP(dN,=1) = di(L'L,)

IO = ) mlLiL)
k

* Fluctuations: 2-point correlation function. where

_ 27+
F(t,t + 1) = E(é[télm), SL=1—1J K, = Zk‘,ﬂk (L)
and

Z(p) = 2 MkLka]j
k

A similar & simple calculation leads to

Ft,t+7) =K, 8(t) + tr{ sz,egfg,pt} _ 2



Ft,t+7) =K, 8(t) + tr{ 3,e32<z,pt} iy

* The second term is the generalization of Glauber’s 2nd order coherence function g(z) In quantum
optics:

* Indeed, assuming the quantum regression theorem:

| L7 Lip, b= D (LOLIC+ DL+ DL0)
k.q

. Reduces to g'¥ when L, = a.

e At steady-state F (¢, + 7) = F(7) and one usually studies the power spectrum (Fourier
transform)

S(w) = [ dre " F(7)



Connection with full counting statistics

[

Probability distribution of the integrated current N(#) = [ dr'l(t).
0

* Append a counting field y to each jump operator

. - 1
Zp) == ilH®. pl + ), e"MLipL = —{LLy, p}
k
The weights of the counting fields are related to the current coefficients y;.

 Cumulant generating function & Probability distribution

C(y) =1n tr{egxtpo} and P(N(t) =n) = J —%e_’”%tr{egxtpo}
T

- Famous FCS result: C(y) ~ tIn4,

G. Schaller, Open quantum systems far from equilibrium, Springer.
M.Esposito, U.Harbola, S.Mukamel, Rev. Mod. Phys. 81, 1665 (2009)



Diffusion coefficient

 The diffusion coefficient, or noise or scaled variance, is defined as

d 2

P = lim — lE(N2(t)) _ E(N(t)) ]
[— 00 dt

e This is the quantity A% studied in any TUR paper.

 Connection with previous results:

I =350) = J F(7)

. Can also be generalized to multiple currents: noise covariance matrix & af

e Describes statistical correlations between different currents.
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Efficient computation of & and S(w)

. Focusing on steady-state Z(p) = 0: F(r) = K o(7) + tr{ 316373],0} —J?

where K = Z //th<L]ij> and £ /(p) = Z ,ukLka]j
k k

e Then

S(w) = [ dre "' F(1) = K — tr{fZ,( 7 ) SZI,O}

Only require solving
a linear system of
equations.

e and
D =K - tr{ g,fsz,p}

where &1 is the Drazin inverse.



XX qulib.nb 75% v |

Simple, yet useful, functions for dealing with Quantum Information and Open Quantum Systems.
Gabriel T. Landi

QT2 group
Contributors: Jader P. dos Santos, Artur Lacerda, Anthony Kiely.

General purpose functions
Quantum theory, information & thermodynamics

Open quantum systems

Vectorization-based routines

Collision models

Full counting statistics

DrazinApply: Applies the Drazi inverse of an operator
Average current

Diffusion matrix

Power spectrum

g function

Two-point function Fog = Mg 6(1)+ Jg JB(gg}; - l)

Examples

Example usage
Example: Reproducing Fig. 2(a) of arXiv 2103.07791 »

Example: “Mollow Triplet”; comparison with the emission & absorption spectra ®

L
A ] A ] 4 ] 4 | |

Ex: Mollow Triplet, exact formulas

= B |




®@ O # FCS example usage.nb 100% v

A Q
H = — oz + — oX;
2 2

/¥ om;

L = Liouvillian[H, {c}] // cf;
p = AnalyticalSteadyState[.£];

(@)
I

S = FCSPowerSpectrumLinearSys[{w}, py, £, c]1[[1, 2] // cf

y(iy+2w)§22 N y(—iy+2w)Q2
(4 A2 (y-2 iw)z) (Y-1w) w+2 (y-21w) w Q2 (4A2+ (Y+2 iw)z) (Y+1lw) w+2 (y+2 1 w) w Q2

sz 1+

Out[12798]=

Y2 + 4 A% + 2 Q2



Homodyne detection (quantum diffusion)

* The Lindblad equation is invariant under the gauge transformation
l

* |n optical cavities this can be done by mixing the signal with a classical (high intensity) laser
field.

 This leads to stochastic currents

Jhom = D () +&O),  m =L+ L] I
k

where &,(7) are Gaussian white noises. SYSTEM / —

VERY STRONG
H. Wiseman and G. Milburn, Quantum Measurement and Control, Cambridge University Press. LOCAL OSCILLATOR



_ Define Z ((p) = Z ,uk(Lkp + pLIj).
k

 The average homodyne current reads

Jhom — tr%](p) — Z ﬂk(xk>
k
 The 2-point function reads

hom

F.. (7) = Ky 6(2) + tr{ F e? f%,p} e
where Ky = Z ,ukz
k

* The delta term is now proportional to “1”: vacuum fluctuations (shot noise) of the local oscillator.

* Results for homodyne detection are almost identical to what we had before,

K — Kyom Ly > X



Parametric Kerr model
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Photo-detection current

e @ discontinuous transition: on/off
(telegraph) behavior of the current.

* Photo-detection cannot resolve
upper or lower lobes.
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Divergence of the diffusion coefficient

In the continuous transition (A < 0)
D ~ (1/U)?
In the discontinuous transition (A > 0)

D~ 61/U
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Homodyne current (in p quadrature)

 The homodyne current switches between 3 values (+,0,-).

* Captures the tunneling between the 3 blobs.

5 i
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Divergence of the diffusion coefficient

Homodyne current diverges exponentially in a much broader region

P~ el/U
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Conclusions

* Efforts to go beyond the NESS.
* Analyze fluctuations in the time domain.

 (Connection between quantum optics and full counting statistics.
 Easy to use/compute formulas.

 Parametric Kerr model: exponential divergences of the diffusion in discontinuous transitions.

Thank you.

WWw.fmt.if.usp.br/~gtland:i
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