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The story
• Open Quantum Systems generate classical (stochastic) 

currents.


• Experimental characterization via continuous measurements. 


• Discrete like emissions: photo-detection, electron counting. 


• Continuous emissions: homodyne, heterodyne. 


• Motivation: to go beyond the average, and understand the 
fluctuations  of the output current. Δ2

I

Detection record 
 
ζt = (0,0,1,0,0,0,0,1,1,0,1,…)

Quantum optics paradigm

Mesoscopics paradigm



Thermodynamic Uncertainty Relations (TUR) & Kinetic Uncertainty Relations (KUR): 

• Fluctuations in classical systems are bounded by dissipation:  
 

                         and                           


• Simple, elegant and counter-intuitive.


• But can be violated in the quantum regime!


Metrology:


• Fluctuations determine the precision (Cramér-Rao bound): 


• But fluctuations also contain information (because output is correlated in time).
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Summary

Unpublished work. 


Part 1: tutorial paper in PRX Quantum. 

• Bridge the gap between these 2 fields. 


• Develop methods/formulas to efficiently 
compute fluctuations numerically. 


Part 2: applications to Kerr non-linearity. 

• Study fluctuations in critical Kerr resonators. 


• Continuous & discontinuous transitions. 


• Exponential divergence of fluctuations. 

Toolbox 
 
Cond. Mat: Full Counting Statistics.  
Quantum optics: input-output,  power spectrum, etc. 

Michael Kewming Mark Mitchison



Setup: quantum master equation

• We are going to consider systems described by a Quantum 
Master equation 
 




• Ex. 1: optical cavity with leaky photons.  
 

           


• e.g. the Parametric Kerr model. 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Lescanne, et. al., Nature, 16, 509-513 (2020)

Cat qubits:  
useful for quantum error correction



• Ex. 2: fermionic transport. A chain of fermonic sites (e.g. quantum dots) modeled by  
 

 

 
with  
 

 

• Ex. 3: 3-level maser  
 




•
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Conditional evolution




• We associate each  with a quantum jump: 

 

• Decompose:  
 
                 where      is the no-jump operator. 

• Dyson series:  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• This allows us to break the evolution into pieces conditioned on specific numbers of jumps. 


• Ex: probability of no jump up to time  
 
                                    


• Ex: probability that first jump occurs exactly at time  (waiting-time distribution) 
 
                                             


• Can also be resolved over individual channels  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T. Brandes, "Waiting times and noise in single particle transport,” Annalen Der Physik, 17(7), 477–496 (2008).



Ex: tight-binding chain

• 2nd injection is affected by the 1st.


• And also by finite-size interference 
effects.
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• To each jump we associate a counting variable , such that  when  occurs. 


• The probability that a jump happens in a time interval  is 
 
                      


• The joint probability for two jumps at different times is  
 
            


• Note that this assumes anything can happen in the middle (unlike the WTD).  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Output currents



• The counting operators now define physical (classical) currents:  
 

                                        


• The  are parameters that depend on the current in question; e.g., 


• Particle current:  for  and  for 


• Energy current :  (tight-coupling).


• Dynamical activity:  for all channels. 


• Very general framework. Not widely known/appreciated. 


• Can also be extended to multiple currents:  


• Interesting for studying current-current correlations.
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• Average current:  
 

 

But  
 

 
 
 


• Fluctuations: 2-point correlation function.  
 
           


• A similar & simple calculation leads to  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• The second term is the generalization of Glauber’s 2nd order coherence function  in quantum 
optics: 


• Indeed, assuming the quantum regression theorem:  
 
 
              


• Reduces to  when .


• At steady-state  and one usually studies the power spectrum (Fourier 
transform) 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∞
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Connection with full counting statistics

• Probability distribution of the integrated current .


• Append a counting field  to each jump operator  
 

             

The weights of the counting fields are related to the current coefficients .


• Cumulant generating function & Probability distribution 
 

                           and          


• Famous FCS result: 
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G. Schaller, Open quantum systems far from equilibrium, Springer. 
M.Esposito, U.Harbola, S.Mukamel, Rev. Mod. Phys. 81, 1665 (2009) 



• The diffusion coefficient, or noise or scaled variance, is defined as 
 

                         


• This is the quantity  studied in any TUR paper.  

• Connection with previous results: 
 

                                  


• Can also be generalized to multiple currents: noise covariance matrix . 


• Describes statistical correlations between different currents. 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Diffusion coefficient



• Ex: driven qubit  and H = Ωσx
dρ
dt

= − i[H, ρ] + γD(σ−)
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Efficient computation of  and 𝒟 S(ω)
• Focusing on steady-state :    

 
 
where  and 


• Then  

                    


• and  
 
                           
 
where  is the Drazin inverse.
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Only require solving 
a linear system of 

equations. 







Homodyne detection (quantum diffusion)

• The Lindblad equation is invariant under the gauge transformation  
 
                         


• In optical cavities this can be done by mixing the signal with a classical (high intensity) laser 
field.


• This leads to stochastic currents 
 
      

 
 where  are Gaussian white noises. 

Lk → Lk + αk, H → H −
i
2

(α*k Lk − αkL†
k )

Jhom = ∑
k

μk(⟨xk⟩ + ξk(t)), xk = Lk + L†
k

ξk(t)

H. Wiseman and G. Milburn, Quantum Measurement and Control, Cambridge University Press.



• Define .


• The average homodyne current reads 
 
       


• The 2-point function reads  
 
       
 
where 


• The delta term is now proportional to “1”: vacuum fluctuations (shot noise) of the local oscillator.


• Results for homodyne detection are almost identical to what we had before,  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k

μk(Lkρ + ρL†
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Fhom(τ) = Khomδ(τ) + tr{ℋIeℒτℋIρ} − J2
hom

Khom = ∑
k

μ2
k

K → Khom ℒI → ℋI



Parametric Kerr model



Example: parametric Kerr model

• Consider again the Kerr model: 
 

       and      


• Can undergo 2 phase transitions, one continuous and the other discontinuous: 

• Proper criticality occurs in the limit  (“thermodynamic limit”)

H = − Δa†a +
U
2

a†a†aa +
G
2

(a†2 + a2)
dρ
dt

= − i[H, ρ] + κD[a]

U → 0
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Photo-detection current

• @ discontinuous transition: on/off 
(telegraph) behavior of the current. 


• Photo-detection cannot resolve 
upper or lower lobes.
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Divergence of the diffusion coefficient



Homodyne current (in  quadrature)p
• The homodyne current switches between 3 values (+,0,-).


• Captures the tunneling between the 3 blobs.
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Divergence of the diffusion coefficient

Homodyne current diverges exponentially in a much broader region 
 
                  𝒟 ∼ e1/U



T. Fink, et. al., Nature Physics, 14, 365 (2018)

GaAs cavity polaritons. 



Conclusions
• Efforts to go beyond the NESS. 


• Analyze fluctuations in the time domain. 


• Connection between quantum optics and full counting statistics. 


• Easy to use/compute formulas. 


• Parametric Kerr model: exponential divergences of the diffusion in discontinuous transitions.
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