

Current fluctuations in critical Kerr resonators

Gabriel T. Landi

University of São Paulo / University of Rochester

Nov. 2022 - XVII Enceuntro SUF

www.fmt.if.usp.br/~gtlandi

Current fluctuations & two-time correlations

C. E. Fiore, Pedro E. Harunari, C. E. Fernandez Noa, and GTL **Current fluctuations in nonequilibrium discontinuous phase transitions** ArXiv 2109.00385

M. Kewming, M. Mitchison & GTL, "Diverging current fluctuations in critical Kerr resonators", arXiv 2205.02622.

GTL, M. Kewming, M. Mitchison, P. Potts, "Current fluctuations in open quantum systems: Bridging the gap between quantum continuous measurements and full counting statistics." Tutorial, in preparation

Pedro Harunari

Patrick Potts

Michael Kewming

Mark Mitchison

Overview

- Continuously measured quantum system.
- Ex: optical cavity
 - Monitor the photons that leak out. lacksquare

Classical stochastic currents (time-series)

- Quantum jumps: discrete current \rightarrow individual clicks in the detector.
- Quantum diffusion: continuous (noisy) current.

Classical outcomes describing an underlying quantum system

Quantum jumps - time

Quantum diffusion

Motivation

- In many experiments, this is the only way to probe it.
 - What information does the current conveys about the system? \bullet
- Basic quantity: average current $J = \langle I(t) \rangle$.
 - - Current fluctuations & two-time correlations: outcomes are not independent.

• But the current is stochastic: the full signal has a lot more information than the average.

Why study current fluctuations

- **Metrology:**
 - Quantum system as a sensor. \bullet
 - e.g. magnetic fields.
 - e.g. gravitational waves (LIGO)
 - LIGO in fact uses exactly the present setup, with optical cavities.
 - * Some information is only contained in the correlations!
- **Thermo-kinetic uncertainty relations:** ullet

Counterintuitive:

To reduce fluctuations, we must increase dissipation.

Entropy production (a measure of dissipation)

Parametric Kerr model

Parametric Kerr model

• Non-linear quantum harmonic oscillator:

* a = annihilation operator
photon operator for an
optical cavity

*
$$\Delta = \omega_p - \omega_c$$
 = detuning

- U = Kerr non-linearity. (requires a non-linear crystal inside the cavity)
- ★ G = 2-photon pump (input laser produces photons in pairs)

* κ = loss rate rate at which photons leak out of the cavity

- 2 phase transitions, continuous and discontinuous
- Proper criticality occurs in the limit $U \rightarrow 0$ ("thermodynamic limit")

Wigner function

Cat qubits

 Steady-state is a mixture of two Schrödinger cat states

(c)

$$|S\rangle = |\alpha\rangle + |-\alpha\rangle$$
$$|A\rangle = |\alpha\rangle - |-\alpha\rangle$$

• Use this to define cat qubits:

$$|0\rangle = |\alpha\rangle$$

 $|1\rangle = |-\alpha\rangle$

- Cat qubits are more robust against errors.
 - Quantum computing with Kerr cats.

Lescanne, et. al., Nature, 16, 509-513 (2020)

Pitchfork bifurcation at critical detuning $\Delta_c = \bullet$

$$\alpha^* = \pm \sqrt{n_0} e^{i\phi_0}$$

$$n_0 = \frac{\Delta}{U} + \sqrt{\frac{G^2 - \kappa^2/2}{U^2}},$$

$$-\sqrt{G^2-\kappa^2/4}$$

$$\phi_0 = \frac{1}{2} \arcsin\left(\frac{-\kappa}{2G}\right)$$

- * Can predict the continuous transition (bottom)
- Unable to predict the × discontinuous transition (top).

Photo-detection current

How to simulate the stochastic photo-detections?

- Quantum jump unravelling.
- At each time step dt a jump occurs with probability $\kappa dt \langle a^{\dagger}a \rangle$.

• (
$$\propto dt$$
: very unlikely)

- If jump occurs: $|\psi\rangle \rightarrow a |\psi\rangle$
- If no jump occurs: $|\psi\rangle = e^{-iH_{\rm eff}t} |\psi\rangle$

$$H_{\rm eff} = H - \frac{\kappa}{2} a^{\dagger} a$$

(non-Hermitian Hamiltonian)

Every time a jump occurs, we count dN = 1**Stochastic current:**

Photo-detection current

 $\langle \hat{a}^{\dagger} \hat{a} \rangle_{\mathrm{PD}}$

- @ discontinuous transition: on/off (telegraph) behavior of the current.
- Photo-detection cannot resolve upper vs. lower blobs.

 $J = \langle I \rangle$ = "dynamical activity" = jumps/second

Current fluctuations - Full Counting Statistics

• Two-time correlation function:

$$F(\tau) := \left\langle I(t)I(t+\tau) \right\rangle - J^2$$
$$= J \,\delta(\tau) + J^2 \Big[g^{(2)}(\tau) - 1 \Big]$$

Power spectrum: lacksquare

$$S(\omega) = \int_{-\infty}^{\infty} e^{-i\omega\tau} F(\tau) d\tau$$

• Zero-frequency component of the power spectrum := "noise":

$$D = S(0) = \lim_{t \to \infty} \frac{d}{dt} \operatorname{Var}(N(t))$$

GaAs cavity polaritons.

T. Fink, et. al., Nature Physics, 14, 365 (2018)

Minimal 2-level model

Minimal 2-level model

• Let q_0 = prob. the system is in the middle blob.

 q_1 = prob. the system is in any of the outer blobs.

Master equation:

$$\frac{d}{dt} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} -a & b \\ q_1 \end{pmatrix}$$

Dependence with U:

$$a \sim \exp\{(\Delta - \Delta_c)/U\}$$
$$b \sim \exp\{-(\Delta - \Delta_c)/U\}$$

 q_0 q_1

 $a = rate to jump from 0 \rightarrow 1$ $b = rate to jump from 1 \rightarrow 0$

Time between jumps $\tau_m \sim e^{1/U}$

Prob. of being in the outer blobs

$$q_1 \sim (1 + e^{-(\Delta - \Delta_c)/\delta})$$

Noise

• The minimal model gives for the noise:

$$D = q_1 D_1 + q_0 D_0 + q_1 (1 - q_1)(\mu_1 - \mu_0)^2$$

- First 2 terms: fluctuations within each blob.
- Last term: fluctuations between blobs.
 - Depends on $\tau_m \sim e^{1/U}$: diverges exponentially.

Homodyne detection

Homodyne current

- Mix photon output with a strong laser source $\alpha = |\alpha| e^{i\phi}$.
 - Equivalent to measuring

$$\left\langle (a+\alpha)^{\dagger}(a+\alpha) \right\rangle = \left(\left| \alpha \right|^{2} + \left| \alpha \right| \left\langle ae^{-i\phi} + a^{\dagger}e^{i\phi} \right\rangle + \left\langle a^{\dagger}a \right\rangle \right)$$

- $|\alpha|^2$ is just a constant offset.
- If α is large, then the current will predominantly

$$x := ae^{-i\phi} + a^{\dagger}e^{i\phi}$$

instead of $a^{\dagger}a$.

• Quantum diffusion unravelling:

 $d\rho = dt \mathscr{L}\rho + dW [\mathscr{H}\rho - \langle x \rangle \rho],$ $\mathscr{H}\rho = \kappa (a\rho + \rho a^{\dagger})$

dW = Wiener increment: $E(dW) = 0, \qquad dW^2 = dt$

Homodyne current (in $p = i(a^{\dagger} - a)$)

- The homodyne current switches between 3 values (+,0,-).
- Captures the tunneling between the 3 blobs.

Divergence of the diffusion coefficient

Homodyne current noise diverges exponentially in \bullet a much broader region.

 $D \sim e^{1/U}$

Reflects sensitivity to all 3 blobs. \bullet

Summary & next steps

Summary

- Fluctuations in the time domain:
 - Classical time series produced by a quantum system.
- Connection between quantum optics and full counting statistics.
- Parametric Kerr model: critical properties of the fluctuations shed light on the nature of the transitions
 - Photo-detection: exponential divergence in the discontinuous transition.
 - Homodyne: exponential divergence in the entire critical region.

Metrology

- Phase transition makes current very sensitive to changes in the parameters.
- We can use this as a sensor.

•
$$\Delta = \omega_p - \omega_c$$

Waiting time metrology/thermometry

- The time between clicks encodes information on the system.
- We can use this as a thermometer.
- Ex: quantum dot continuously monitored using a quantum-point contact.

A. Hofmann, et. al., PRL, 117, (2016)

Feedback control

Reintroduce the filtered signal back into the system:

B. Annby-Andersson, et. al., "Quantum Fokker-Planck Master Equation for Continuous Feedback Control." Physical Review Letters, 129, (2022)

Open access and highly selective | Dedicated Editorial board of leading experts | Innovative publishing options

A Physical Review journal

SELECTED ARTICLES

Many-Body Physics in the NISQ Era: Quantum Programming a Discrete Time Crystal

Matteo Ippoliti, Kostyantyn Kechedzhi, Roderich Moessner, S.L. Sondhi, and Vedika Khemani

Integrated Quantum Photonics with Silicon Carbide: Challenges and Prospects

Daniil M. Lukin, Melissa A. Guidry, and Jelena Vučković

PRX QUANTUM 1, 020102

PRX QUANTUM 2, 030346

Submit your research today: journals.aps.org/prxquantum

PUBLISHED BY THE AMERICAN PHYSICAL SOCIETY

Experimental Realization of a Protected Superconducting Circuit Derived from the $0-\pi$ Qubit

András Gyenis, Pranav S. Mundada, Agustin Di Paolo, Thomas M. Hazard, Xinyuan You, David I. Schuster, Jens Koch, Alexandre Blais, and Andrew A. Houck

PRX QUANTUM 2, 010339

University of Rochester

My group is moving to UofR next year, and we have open positions to work on

- theory of quantum thermodynamics 0
- open quantum systems
- quantum information

For more information, visit: www.fmt.if.usp.br/~gtlandi

Thank you.

www.fmt.if.usp.br/~gtlandi

