Quantum information, thermodynamics and stochastic process in open quantum system

Gabriel T. Landi

03/31/2023 - University of Rochester

Entropy production

- Clausius formulated the notion of irreversibility using entropy.
- Consider a thermodynamic process involving heat \& work:

$$
\left.\Delta U=W+Q_{h}+Q_{c} \quad \text { (1st law }=\text { balance equation }\right)
$$

- According to Clausius, entropy does not satisfy a balance equation:

$$
\Delta S=\frac{Q_{h}}{T_{h}}+\frac{Q_{c}}{T_{c}}+\sigma \quad \sigma \geqslant 0 \text { is the entropy produced in the process. }
$$

- $\sigma \geqslant 0$ is the mathematical statement of the 2nd law.
- To explore the power of the 2nd law, let us consider a cyclic operation:

$$
W+Q_{h}+Q_{c}=0 \quad \text { and } \quad \frac{Q_{h}}{T_{h}}+\frac{Q_{c}}{T_{c}}+\sigma=0
$$

$$
W+Q_{h}+Q_{c}=0 \quad \text { and } \quad \frac{Q_{h}}{T_{h}}+\frac{Q_{c}}{T_{c}}+\sigma=0
$$

- Operation as a heat engine: efficiency

$$
\eta=\frac{W}{Q_{h}}=\eta_{c}-\frac{T_{c} \sigma}{Q_{h}} \quad \text { where } \quad \eta_{c}=1-\frac{T_{c}}{T_{h}}
$$

- The efficiency is always lower than Carnot's efficiency because entropy is produced (Carnot's statement of the 2nd law)
- Heat flow (no work): $Q_{h}=-Q_{c}$

$$
\sigma=\left(\frac{1}{T_{c}}-\frac{1}{T_{h}}\right) Q_{h} \geqslant 0 \quad \begin{aligned}
& \text { Heat always flows from hot to cold } \\
& \text { (Clausius' statement) }
\end{aligned}
$$

- Landauer's erasure: Minimum cost to erase information

$$
\Delta Q \geqslant k_{B} T \ln 2
$$

- What about $T \simeq 0$? Very relevant for quantum computation.

- If eraser is a waveguide:

$$
\Delta Q \geqslant k_{B} T \ln 2+\frac{3 \hbar c}{\pi L} \ln ^{2}(2)
$$

- Non-equilibrium steady-states: not equilibrium.

$$
\frac{d S}{d t}=\frac{\dot{Q}}{T}+\dot{\sigma}=0 \quad \text { so } \quad \dot{\sigma}=-\frac{\dot{Q}}{T}
$$

$$
\dot{\sigma}=\frac{\mathscr{E}^{2}}{R T}
$$

Irreversibility and the arrow of time

Prof. George Porter

 YouTube
Prof. George Porter

YouTube

Prof. George Porter
YouTube

Prof. George Porter

YouTube

Irreversibility and the arrow of time

- Irreversibility: how unlikely the backward process is, in comparison with the forward one.
- But why does this happen?
- The microscopic laws of the universe (Newton, Schrödinger, \&c) are time-reversible.
- Operational definition: what is accessible and what is not.
- Dissipation: heat lost to the environment cannot be recovered.
- Irreversible videos were those that involved a lot of dissipation.

Fluctuations are significant in the micro-world

- Macro-world: heat flows from hot \rightarrow cold.
- Micro-world: heat usually flows from hot \rightarrow cold.

G. T. Landi and Dragi Karevski Phys. Rev. E 93, 032122 (2015)

Heat Exchange Fluctuation Theorem

$$
P(-\sigma)=e^{-\sigma} P(\sigma)
$$

Implies 2nd law: $\langle\sigma\rangle \geqslant 0$
C. Jarzynski and D. Wójcik, Phys. Rev. Lett. 92, 230602 (2004)
G. E. Crooks, Journal of Statistical Physics, 90, 1481-1487 (1998)

Entropy production and stochastic trajectories

- Fluctuations allow us to formulate the entropy production problem in terms of trajectory probabilities

$$
\sigma[\gamma]=\ln \frac{P_{F}[\gamma]}{P_{R}[\gamma]}
$$

- A process is reversible when the time-reversed process is as likely as the forward one.

Connecting the two pictures

- 2 systems, A, B, in equilibrium:

$$
p_{n}^{A}=\frac{e^{-\beta_{A} E_{n}^{A}}}{Z_{A}} \quad \text { and } \quad p_{i}^{B}=\frac{e^{-\beta_{B} E_{i}^{B}}}{Z_{B}}
$$

- At $t=0$ we put them in contact and allow them to interact with Hamiltonian H.

$$
n_{A}, i_{B} \xrightarrow{e^{-i H t}} m_{A}, j_{B} \quad \text { Occurs with prob. } p\left(n_{A}, i_{B} \rightarrow m_{A}, j_{B}\right)=p_{n}^{A} p_{i}^{B}\left\langle m_{A}, j_{B} e^{-i H t} n_{A}, i_{B}\right\rangle^{2}
$$

- Entropy production

$$
\sigma=\ln \frac{P\left(n_{A}, i_{B} \rightarrow m_{A}, j_{B}\right)}{P\left(m_{A}, j_{B} \rightarrow n_{A}, i_{B}\right)}=\ln \frac{p_{n}^{A} p_{i}^{B}\left\langle m_{A}, j_{B} e^{-i H t} n_{A}, i_{B}\right\rangle^{2}}{p_{m}^{A} p_{j}^{B}\left\langle n_{A}, i_{B} e^{-i H t} m_{A}, j_{B}\right\rangle^{2}}=\ln \frac{p_{n}^{A} p_{i}^{B}}{p_{m}^{A} p_{j}^{B}}=\beta_{A}\left(E_{m}^{A}-E_{n}^{A}\right)+\beta_{B}\left(E_{j}^{B}-E_{i}^{B}\right)
$$

Entropy production for quantum systems

- Information-theoretic formulation: $\sigma=I(S: E)+D\left(\rho_{E}^{\prime} \quad \rho_{E}\right)$
- Operational interpretation: Characterizes irreversibility in terms of what you do not have access to:
- System-environment correlations.
- Changes in the environment.
- Tricky business: how to define heat currents for quantum master equations.

$$
\frac{d \rho}{d t}=-i[H, \rho]+\sum_{k} L_{k} \rho L_{k}^{\dagger}-\frac{1}{2}\left\{L_{k}^{\dagger} L_{k}, \rho\right\}
$$

Gabriel T. Landi and Mauro Paternostro, "Irreversible entropy production, from quantum to classical", Review of Modern Physics, 93, 035008 (2021)

Gabriel T. Landi, Dario Poletti, Gernot Schaller, "Nonequilibrium boundary-driven quantum systems: Models, methods, and properties." Reviews of Modern Physics, 94, (2022)

$$
\rho_{S E}^{\prime}=U\left(\rho_{S} \otimes \rho_{E}\right) U^{\dagger}
$$

Describes an enormous variety of processes! (maybe a complicated U)

Relaxation towards equilibrium

- Imagine an atomic system relaxing towards equilibrium.
- Population of energy eigenstates fluctuate until they reach thermal equilibrium.
- In addition: destroy any superpositions (decoherence).
- Entropy production rate can be split as $\sigma=\sigma_{\mathrm{pop}}+\sigma_{\text {coh }}$

Additional entropy production due to coherence:
Dissipation of information, without dissipation of energy.
J. P. Santos, L. Céleri, GTL, M. Paternostro, npj Quantum Information 5, 23 (2019)

Information-thermodynamics

- In the presence of initial correlations the second law is modified to

$$
\sigma=\left(\frac{1}{T_{c}}-\frac{1}{T_{h}}\right) Q_{h} \geqslant \Delta I(h: c)
$$

- Heat can flow from cold to hot, provided we consume quantum correlations.

Kaonan Micadei, John P. S. Peterson, Alexandre M. Souza, Roberto S. Sarthour, Ivan S. Oliveira, Gabriel T. Landi, Tiago B. Batalhão, Roberto M. Serra, Eric Lutz, "Reversing the direction of heat flow using quantum correlations", Nature Communications, 10, 2456 (2019)
K. Micadei, G. T. Landi, E. Lutz, "Quantum fluctuation theorems beyond two-point measurements", Phys. Rev. Lett. 124, 090602 (2020)

Quantum phase space

- Many quantum experiments are done using optical cavities with semi-transparent mirrors.

- Photons leaking out \simeq zero temperature bath.
- Spontaneous emission: excitations can leave, but not return.
. 2nd law is buggy @ $T=0: \quad \sigma=\left(\frac{1}{T_{c}}-\frac{1}{T_{h}}\right) Q_{h}$.
- Does not include vacuum fluctuations (present in every measurement).
- We reformulated the entropy production problem in terms of

$$
\begin{aligned}
& \sigma=\left(\frac{1}{T_{c}^{\text {eff }}}-\frac{1}{T_{h}^{\text {eff }}}\right) Q_{h} \\
& T_{\mathrm{eff}}=\omega(\bar{n}+1 / 2), \quad \bar{n}=\frac{1}{e^{\beta \omega}-1}
\end{aligned}
$$

High temperatures: $\omega(\bar{n}+1 / 2) \simeq T$.

Zero temperature: $\omega(\bar{n}+1 / 2)=\omega / 2$. quantum phase space \& the Wigner function.

Experiments

M. Brunelli, L. Fusco, R. Landig, W. Wieczorek, J. Hoelscher-Obermaier, GTL, F Semião, A. Ferraro, N. Kiesel, T. Donner, G. De Chiara, and M. Paternostro. Phys. Rev. Lett., I 2 I, I 60604 (20I8)

Continuously measured vibrating membrane

Informational steady-state:
Conditional dynamics relaxes to a colder state, which can only be maintained by continuously monitoring S.

Continuously monitored quantum systems

- Continuous monitoring of photons that leak out of the cavity.
- Individual clicks in the detector.

- Fundamental questions: what is entropy production given a detection record.
- Operation: define thermodynamics in terms of what we can actually measure.
- Includes information directly in the formulation.
current
$\xrightarrow{\text { A }}$

Holevo information

- Unconditional: If we do not know the individual clicks: ρ_{t}
- Conditional on the detection record: $\rho_{t} \zeta_{t}$
- Holevo information: accumulated information we learned from the detection.

$$
I\left(S_{t}: \zeta_{t}\right)=\sum_{\zeta_{t}} P\left(\zeta_{t}\right) D\left(\begin{array}{ll}
\rho_{t} \zeta_{t} & \rho_{t}
\end{array}\right)
$$

- With each new detection

$$
\Delta I_{t}=G_{t}-L_{t}=\text { gain }- \text { loss }
$$

- Conditional entropy production

$$
\Delta \Sigma^{c}=\Delta \Sigma^{u}-\Delta I
$$

Mechanical setup

Informational steady-state:
Conditional dynamics relaxes to a colder state, which can only be maintained by continuously monitoring S .

Massimiliano Rossi, Luca Mancino, Gabriel T. Landi, Mauro Paternostro,Albert Schliesser, Alessio Belenchia, "Experimental assessment of entropy production in a continuously measured mechanical resonator", Phys. Rev. Lett. I 25, 08060 (2020)

Thermodynamic uncertainty relations

Thermodynamic uncertainty relations

- At the μ-scale: currents fluctuate a lot:

- Work, heat, particle current, \&c.
- For classical Markov processes: TUR $\frac{\Delta_{I}^{2}}{I^{2}} \geqslant \frac{2}{\dot{\sigma}}$
- Counterintuitive: must increase dissipation to curb fluctuations.

$$
\begin{gathered}
\text { For a heat engine: } \\
\Delta_{W}^{2} \geqslant 2 T_{c} W \frac{\eta}{\eta_{C}-\eta}
\end{gathered}
$$

- "Irreversibility can be good" (when fluctuations are large)

TURs can be violated in the quantum regime

- Quantum coherent transport, e.g. through quantum dots.
- Important example: thermoelectricity.

- Practical question: what is the best thermoelectric?
- New question: what is the most precise thermoelectric?

Major open questions in the field:

- Why quantum coherence?
- What limits the precision in the quantum world?
- Is there an actual trade-off?

Understanding current fluctuations

- New tutorial on how to compute current fluctuations in open quantum systems.

$$
\frac{d \rho}{d t}=-i[H, \rho]+\sum_{k} L_{k} \rho L_{k}^{\dagger}-\frac{1}{2}\left\{L_{k}^{\dagger} L_{k}, \rho\right\}
$$

- Pedagogical. Meant for PhD students.
- Connects tools using in Quantum Optics with tools used in Cond. Mat. and Statistical Physics.

Quantum jumps (Sec. II.C)

Superoperators:

$\mathcal{J} \rho=\sum_{k} \nu_{k} L_{k} \rho L_{k}^{\dagger}, \quad K=\sum_{k} \nu_{k}^{2}\left\langle L_{k}^{\dagger} L_{k}\right\rangle$

Stochastic current:

$d N(t)=\nu_{k}$ when jump k occurs.
Averages to $J=\sum_{k} \nu_{k}\left\langle L_{k}^{\dagger} L_{k}\right\rangle$

Quantum diffusion ((Sec. II.D)

Superoperators:

$\mathcal{H} \rho=\sum_{k} \nu_{k}\left(L_{k} \rho e^{-i \phi_{k}}+\rho L_{k}^{\dagger} e^{i \phi_{k}}\right), \quad K_{\text {diff }}=\sum_{k} \nu_{k}^{2}$

$$
\begin{gathered}
\text { Stochastic current: } \\
I_{\mathrm{diff}}=\sum_{k} \nu_{k}\left(\left\langle L_{k} e^{-i \phi_{k}}+L_{k}^{\dagger} e^{i \phi_{k}}\right\rangle+\frac{d W_{k}}{d t}\right)
\end{gathered}
$$

Averages to $J_{\text {diff }}=\sum_{k} \nu_{k}\left\langle L_{k} e^{-i \phi_{k}}+L_{k}^{\dagger} e^{i \phi_{k}}\right\rangle$

Fluctuations of the output current (Sec. III)

Two-point function: $F(\tau)=E(I(t) I(t+\tau))-J^{2}=K \delta(\tau)+\operatorname{tr}\left\{\mathcal{J} e^{\mathcal{L} \tau} \mathcal{J} \rho\right\}-J^{2}$

Power spectrum: $S(\omega)=\int_{-\infty}^{\infty} d \tau e^{-i \omega \tau} F(\tau)$
Noise: $D=\frac{d}{d t} \operatorname{Var}(N(t))=S(0)=2 \int_{0}^{\infty} d \tau F(\tau)$

For diffusion change

$$
\begin{aligned}
& \mathcal{J} \rightarrow \mathcal{H} \\
& K \rightarrow K_{\text {diff }}
\end{aligned}
$$

Tilted Liouvillians (Sec. IV)

Quantum Jumps: $\mathcal{L}_{\chi} \rho=-i[H, \rho]+\sum_{k} e^{i \nu_{k} \chi} L_{k} \rho L_{k}^{\dagger}-\frac{1}{2}\left\{L_{k}^{\dagger} L_{k}\right\}$

Quantum diffusion:

$\mathcal{L}_{\chi} \rho=-i[H, \rho]+i \chi \sum_{k} \nu_{k}\left(L_{k} \rho e^{-i \phi_{k}}+\rho L_{k}^{\dagger} e^{i \phi_{k}}\right)-\frac{\chi^{2}}{2} \rho \sum_{k} \nu_{k}^{2}$
Generalized superoperators from \mathscr{L}_{χ} :

$$
\mathcal{J}=-\left.i \partial_{\chi} \mathcal{L}_{\chi}\right|_{\chi=0} \quad K=-\left.\partial_{\chi}^{2} \mathcal{L}_{\chi}\right|_{\chi=0}
$$

Full counting statistics (Sec. IV)

Generalized QME: $\frac{d \rho_{\chi}}{d t}=\mathcal{L}_{\chi} \rho_{\chi} \quad \rightarrow \quad \rho_{\chi}(t)=e^{\mathcal{L}_{\chi} t} \rho(0)$
Prob. dist. of $N(t): \quad P(n, t)=\int \frac{d \chi}{2 \pi} e^{-i n \chi} \operatorname{tr} \rho_{\chi}(t)$
Scaled CGF: $C(\chi)=\lim _{t \rightarrow \infty} \partial_{t} \ln \operatorname{tr} \rho_{\chi}(t)=\lambda_{0}(\chi)=\max$ eig of \mathcal{L}_{χ}

Quantum trajectories and stochastic currents

. Parametric Kerr model: $H=-\Delta a^{\dagger} a+\frac{U}{2} a^{\dagger} a^{\dagger} a a+\frac{G}{2}\left(a^{\dagger 2}+a^{2}\right)$

- Quantum dynamics \rightarrow stochastic current (which is what an experimentalist measures!)

(c)

Conclusions

- Entropy production: quantifies dissipation/irreversibility.
- In the quantum realm:
- How to define it.
- What does it imply?
- Quantum coherences and correlations.
- Current fluctuations:

```
G.T. Landi, M. J. Kewming, M.T. Mitchison and P. Potts,
    "Current fluctuations in open quantum
systems: Bridging the gap between
quantum continuous measurements and full
counting statistics"
Tutorial in PRX Quantum.
arXiv 2303.04270
```

- TURs: To curb fluctuations, we must increase dissipation.
- How to describe them.
- Connection between the quantum realm and the classical world.

Current fluctuations in the Parametric Kerr model

Parametric Kerr model

- Non-linear quantum harmonic oscillator:

$$
\begin{aligned}
& \frac{d \rho}{d t}=-i[H(t), \rho]+\kappa\left[a \rho a^{\dagger}-\frac{1}{2}\left\{a^{\dagger} a, \rho\right\}\right] \\
& H=-\Delta a^{\dagger} a+\frac{U}{2} a^{\dagger} a^{\dagger} a a+\frac{G}{2}\left(a^{\dagger 2}+a^{2}\right)
\end{aligned}
$$

* $a=$ annihilation operator photon operator for an optical cavity
* $\Delta=\omega_{p}-\omega_{c}=$ detuning
* $U=$ Kerr non-linearity.
(requires a non-linear crystal inside the cavity)
* $G=2$-photon pump (input laser produces photons in pairs)
* κ = loss rate rate at which photons leak out of the cavity

- 2 phase transitions, continuous and discontinuous
- Proper criticality occurs in the limit $U \rightarrow 0$ ("thermodynamic limit")

Wigner function

Cat qubits

- Steady-state is a mixture of two Schrödinger cat states

$$
\begin{aligned}
& S\rangle=\alpha\rangle+-\alpha\rangle \\
& A\rangle=\alpha\rangle--\alpha\rangle
\end{aligned}
$$

- Use this to define cat qubits:
$0\rangle=\alpha\rangle$
$1\rangle=-\alpha\rangle$

- Cat qubits are more robust against errors.
- Quantum computing with Kerr cats.

Lescanne, et. al., Nature, 16, 509-513 (2020)

Photo-detection current

- @ discontinuous transition: on/off (telegraph) behavior of the current.
- Photo-detection cannot resolve upper vs. lower blobs.

Divergence of the diffusion coefficient

- "Thermodynamic limit:" $U \rightarrow 0$
- In the discontinuous transition $(\Delta>0)$

$$
\Delta_{I}^{2} \sim e^{1 / U}
$$

GaAs cavity polaritons.

Homodyne current (in $p=i\left(a^{\dagger}-a\right)$)

- The homodyne current switches between 3 values (+,0,-).
- Captures the tunneling between the 3 blobs.

(c)

Divergence of the diffusion coefficient

- Homodyne current noise diverges exponentially in a much broader region.

$$
\Delta_{I}^{2} \sim e^{1 / U}
$$

- Reflects sensitivity to all 3 blobs.

