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Statistics of continuously monitored quantum systems

Multi-time correlations

Quantum jump current Full Counting Statistics

Continuously meagured [I ! 1 A
quantum syste T
m ‘ > time
W Quantum diffusion current
T > time
Quantum Trajectories Classical (stochastic) measurement current () FCS
t
d =
Pe or net charge N(t) = | dt’' I(t) P(N(1) = n)
0
Relevant questions: Applications:
O Waiting time between 2 jumps? O Learn about the quantum system.
. . / O Metrology.
O 2-point function: E(1(?)I(t gy
o S ( (DK )) O Time-resolved thermodynamics.
FCS:P(N(1) = n) O Timekeeping.

GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P. Potts "Current fluctuations in open quantum systems: Bridging the gap between
quantum continuous measurements and full counting statistics," 2303.04270



Quantum jump unravelling

* Quantum Master Equation with multiple jump channels:

dp
dt

« Each L, represents a channel. Physical meaning depends on the problem.

Dynamics in the QJU:

With probability p, = dttr(L]ijp) jump to channel k: p —

Otherwise, evolve as dp = Lypdt where Lop = Lp — Z LkaIj

_ 1
= Pp=—i[H©),p] + [Lka,j - E{L;Lk’p}]

LipL{

tr(L L.p)

k

Quantum trajectory: {dN, (1)} or w;.xy = {(k{, 7)), (ky, T), ..., (K, T) }

 7; = time between jumps.

« k; = channel (runs over finite alphabet).

Integrated current (net charge):

dN,(t) = 0,1 if jump occurs in k at ¢.

N(7) = [dt’l(t’) =)y Jde(r')
0 k 0

Choice of weights defines a current:
* 1, = l: dynamical activity

- Vi) = T 1: excitation current




First Passage Time

Michael J. Kewming, Anthony Kiely, Steve Campbell, GTL,
"First Passage Times for Continuous Quantum Measurement Currents,"
2308.07810



First Passage Time

Given a certain stochastic process X(7), what is the first
time 7 when X(¢¥) > b or X(¥) < a?

« Region £ = [a,b] witha <0, b > 0.

Not the same as P(a < X(¢) < b) because there is the
possibility that X(¢7) leaves £ and then comes back.

Can be computed using absorbing boundaries.
e Force P(x,t) = Oforallx & X.

« Produces a new evolution Pg(x, f).

|
X0

k cliff/threshold/bar
| F\

Survival probability:
b
G4(t) = [ dx Pgy(x,1) = Pgla < X(t) < D)

First passage time (FPT) distribution

__4dGa
Ja(D) = %

If Ggz(c0) = 0 the bound%gy is always

eventually reached and dif (1) = 1.
0



FPT for Quantum Jumps

It does not make sense to talk about FPT of a quantum system: they live in superpositions.

* But we can talk about the FPT of the classical measurement record.

dN, !
Consider a specific current (1) = Z ykT and the net charge N(t) = | dt’ I(t).
4
k 0

« What is the FPT for N(¢) to first cross a region £ = [a,b]? (a < 0, b > 0)

. Define the charge resolved state p,(f) = E [pc(t)éN(t),n].

N | tr(p, (1)) = P(n,t) = P(N(t) = n)
« We show that p, satisfies a charge-resolved master equation

op, — Full Counting Statistics probability

ot

= gOIDn + Z Lkpn—ykL]:r
k

FPT is now easy to implement with absorbing boundaries: set p, () = 0 forn & X.

» Produces new evolution pn‘%(t)
. B Michael J. Kewming, Anthony Kiely, Steve Campbell, GTL, “First
and new P%(n, f) = tr{pn (t)} Passage Times for Continuous Quantum Measurement Currents,"

2308.07810



Example: system with 1 injection and one extraction channel:

v_=1 and v, =-1

The charge resolved equation will look like

op,
ot

= Lopp+ L p, LI+ Lo, L]

This is just a system of coupled equations

(02 (%o 7. 0 ... 0)(p?)
d Pﬁl S Ly Sy - O Pﬁl
= % = O Z_ cee :

Pb-1 = ' Zo Si||pi

\Pia%) \0 0o ... JF_ 520) \p,;%)

Then we can show that

fa® =t{LTL pZ®)} + t{LIL_p (1)}

FPT therefore depends only on the boundary states.



EX: driven qubit

* Consider
dp . _ _
A = —1[Qo,, p] + y(n + 1)D[o_] + ynD|o,] = 2 Ll
Do’ | | ‘
= 0 : | 1
_2 W0 I
« We choose boundaries % = [—5,5 —4
[ ] 0 5 10 15 20 25 30
vt
N — I
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Kinetic Uncertainty Relations

* In classical stochastic processes (incoherent master equations) the
signal-to-noise ratio of the FPT is bounded as

E(z)?
SNR := < E(0K
Var(7)
where K = 2 tr{LkTLkpSS} = dynamical activity
k

* This KUR can be violated for coherent dynamics.

* Van Vu and Saito showed instead that in this case there is another
bound

SNR < E(7)(K + Q)
where @ is a quantum correction.

J. P. Garrahan, Phys. Rev. E 95, 032134 (2017)
T. Van Vu and K. Saito, Phys. Rev. Lett. 128, 140602 (2022).

(average number of jumps per unit time).

b) Rl c) -
7/ -~
// /’/

10° / "

4 /

/— sNR >

— = EnlK |

-—- E[r](K + Q) o

101 [7n]

For the qubit model:
o 2y + D|y*a(i + 1) + 297
y2(2n + 1) + 8Q2
32
y2(27n + 1)2




Stochastic clocks

Recall that quantum jumps can be described in the:

« “N-ensemble:” total number of jumps are fixed. Final time tffluctuates.

. “tf—ensemble:” final time is fixed. Total number of jumps fluctuates.

If you want to use your system as a clock, we have to work in the N-ensemble.

« Time standard = first passage time when N(¢) > b or N(¢) < a.

Simple choice: take the current = dynamical activity; i.e. v, = 1. Then

(%, 0
7 2
0 7
0 0

0
0

0
0
Z, 0
7 2,

R
Ph-1

Py

opZ
— =2+ Il Fp= ZLka]j P’
ot %
k d P1
« We just need to solve this forn = 0,1,..., b. The FPT will be dr Pz;:%l
R
fy0) = r{ Fp, (1)} i




Quantum diffusion current

Diffusion unravelling  itebnabesimitipii - o



* In this case the system follows a stochastic master equation

dp, = Lpdi+Y (%[Lke_i"bk]pc _ (xk>cpc)de(t)
k

where F[Alp = Ap + pAT, x, = Lie 7 + LkT P and dW,(t) are independent Wiener increments.

* The current and the charge in this case is given by
dW !
=7 vk(<xk>c + —) N(@) = J di' 1(t)
k dt 0

* The charge is now a continuous stochastic process. Our main result in this case is that the charge-resolved
master equation becomes a Fokker-Planck like equation:

op,
ot

. L —igp, apn Kdiff 62 n K _ 2
= pn_zyk [Le™ ] o + > on2 diff = Z’/k
k k

Similar equations appear in reaction-diffusion systems.

« Absorbing boundary conditions can now be easily implemented, as before.

B. Annby-Andersson, F. Bakhshinezhad, D. Bhattacharyya, G. D. Sousa, C. Jarzynski, P. Samuelsson, and P. P. Potts, Physical Review Letters 129 (2022),



Homodyne detection of o,

We consider again

dt

dp :
— = — i[Qo,, p] + yDlo_lp,

Choose ¢p=-7/2 — x=ilL-L")= \/}_/ay

(1) = (x), + aw

dt

For the FPT, we set the region to be % = (—o00, Ny,] with Ny, = 1

P(n,t)
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FPT, feedback and other conditionings



Quantum continuous measurements are associated with a classical & detectable stochastic process:

Xo,Xl,Xz, ceey X] =X(]dt)

- Quantum jumps: X; = 0,1,..., A (either the jump channel or no jump)

dwW
. Quantum diffusion: X; = I(jdt) = tr(xp, ;) + —

If these outcomes are detectable, we can consider dynamics which use this data to do something.
= First Passage Times uses this data as a stopping criterion.
= Feedback uses this data to adaptively change the Hamiltonian.

At the level of the stochastic master equation both have the general form
dpc(]dt) — WXI:]'(’OC)

with some superoperator that may depend on the entire history up to time f.



* Implementing arbitrary maps like this is easy at the level of quantum trajectories.
* But stochastic averages are expensive.

* Having ways to implement this deterministically is very valuable.

« Our formalism allows us to implement arbitrary conditioning on the integrated current N(¢).
* We can easily adapt our formalism to include feedback:
H— HN®) and L, —» L(N(®))

* Charge-resolved master equations then become:

op,,
—, = Zolmp, + 2 L0 L)’
k
op ., Op K gige 8
"= P, — Y KL (n)e Pt 4 S~
o1 (n)pn Z Vk [ k(n)e ] on 2 on?

k

H. M. Wiseman and G. J. Milburn, Physical Review Letters 72, 4054 (1994).



Conclusions

= 0.6

2 0.4

* New results on how to compute first passage times 0.2

in continuously measured quantum systems. %)

—1

« FPT until the integrated current N(¢) first crosses = -2

a region £ = [a, b] Z :5)1

—5

» Basic idea: charge-resolved master equation +

absorbing boundary conditions. o 1 2 3 4 5 00 05

vt PNth(n7 T)
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systems," 2305.07957

* Time-keeping. » GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P. Potts "Current
fluctuations in open quantum systems: Bridging the gap between
quantum continuous measurements and full counting statistics,"
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* Luis Felipe Santos, GTL, “Waiting time statistics of a double
https://www.pas.rochester.edu/~gtlandi/ quantum dot-based single-photon detector.” In preparation.




Ex: DQD photon detector ﬁmww

« Optical cavity interacting with a DQD:

d
7? = — i[H.p] + kDlalp + TD[ 0){e 1p+TD[ g){0 1p H

L,=T 0)e
witthg(atT g)e +a e)g ) Lg=\/F 2){0 \

- DQD has 3 levels: 0), g), e)

« An absorbed photon takes the DQD from g)to e).

« Photo-detection successful if jump occurs in channel L, = \/1: 0){e . Convenient parameters:

a=1/k
- Channel L, = 2){(0 (injection of an electron on the DQD) is assumed not C = 4g%/Tk
monitorable. = cooperativity.

« Unsuccessful if it occurs at L. = ﬁa (let us assume it is monitorable for now).
W. Khan, et. al., "Efficient and continuous microwave photoconversion in hybrid cavity-semiconductor nanowire double quantum dot diodes."
Nature Communications, 12, 5130, (2021).

Drilon Zenelaj, Patrick P. Potts, Peter Samuelsson, "Full counting statistics of the photocurrent through a double quantum dot embedded in a driven
microwave resonator." Physical Review B, 106, 205135, (2022).



. Suppose we start with exactly one photon inside the cavity: p, = 0)(0 pop ® 1,

. WTD: W(t, k) = tr{ 7,7 py }.

Alphabet k = ¢, c. o0 C o?
. D= J W(z, e)dr =
a=landC=4 0 1+C 1+ a)>
(@) (b)
08/ 1 0100 ® W(z,
. kKE(t e) = K’J dr t .¢)
0.6f — W(re) o 0010 0 be
— W@eo) ?ﬂ . 3 n 1 + 1
04 < 0.001 : Ca+1 a(C+1) C+1
02 1 10 : - kE(z) = E(z e)p,+ E(z g)p,
6 23 6 8 10 6 2 4 & &8 10 _ 1 n C 3a+l
- kr C+1 C+1(a+1)?

Oscillations occur when 4C > (a — 1)*/a

Luis Felipe Santos, GTL, “Waiting time statistics of a double quantum dot-based single-photon detector.” In preparation.



