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All we see is data …1110000100010011100111101100…

We cannot see quantum systems…



• To measure a system we must send in a probe (or ancilla).  
• S+A interaction encodes information about S on A.  
• Extract information by measuring A. 

• Information-back action trade-off: the more information we want, the more we disturb 
the system.
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A simple example

• Qubit: apply unitary  then measure in the computational basis  where . 

• Start in .  

1. Sample first outcome  from . 

Update state to . 

2. Sample second outcome  from . 

Update state to . 

• Generates a bitstring of emitted symbols . 

• Probability of a sequence forms a Markov chain: .

U Px = |x⟩⟨x | x = 0,1

|ψ0⟩

x1 p(x1) = |⟨x1 |U |ψ0⟩ |2

|ψ1⟩ = |x1⟩

x2 p(x2 |x1) = |⟨x2 |U |x1⟩ |2

|ψ2⟩ = |x2⟩

x1:n = (x1, …, xn)

P(x1, …, xn) = p(xn |xn−1)…p(x2 |x1)p(x1)



Non-projective measurements lead to long memory

• Apply a set of Kraus operators . Starting at : 

1. Sample first outcome  from . Update state to . 

2. Sample second outcome  from . Update state to . 

 

                and        

• String probability is now  which is highly non-Markovian.  

• Evolution of the system is Markovian. But output data is not.  

• Looks like a Hidden Markov Model (HMM): 
• Quantum system is hidden.  
• Measurement outcomes (what we see) = emitted symbols

∑x
F†

x Fx = 1 ρ0

x1 p(x1) = tr{Fx1
ρ0F†

x1
} ρx1

=
Fx1

ρ0F†
x1

p(x1)

x2 p(x2 |x1) = tr{Fx2
ρx1

F†
x2

} ρx1:2
=

Fx2
ρx1

F†
x2

p(x2 |x1)

p(xn+1 |x1:n) = tr{Fxn+1
ρx1:n

F†
xn+1} ρx1:n+1

=
Fxn+1

ρx1:n
F†

xn+1

p(xn+1 |x1:n)

P(x1:n) = p(xn |x1:n−1)p(xn−1 |x1:n−2)…p(x2 |x1)p(x1)

ρ0 ρx1
ρx1:2

ρx1:3

x1 x2 x3

…1110000100010011100111101100…



Instruments: simplify and generalize

• Instruments = superoperators: 
 
   

• Update rules become:  
 
        

 
and 

   

Mxρ = FxρF†
x

p(xn+1 |x1:n) = tr{Mxn+1
ρx1:n}

ρx1:n+1
=

Mxn+1
ρx1:n

p(xn+1 |x1:n)

Data Data

Prob. of a string:  

 

Conditional state 

 

           

P(x1:n) = tr{MxN
…Mx1

ρ0}

ρx1:n
= MxN

…Mx1
ρ0/P(x1:n)

Instruments represent the 
most general kind of 

measurement possible. 

Also encompass inefficient 
measurements  

 
Mxρ = ∑

k∈x

FkρF†
k

Wiseman, H. M. & Milburn, G. J. Quantum Measurement and Control. (Cambridge University Press, New York, 2009)



Unconditional dynamics
• If we measure but don’t record the outcome the state of the system still changes 

(measurement back action) 

• Ex: collision model or master equation.  
 
                                    where                 

•  is a quantum channel.  

• After  steps: . 

• Describes the average impact that the  
interaction with the ancilla causes in the system.

ρ′￼ = ∑
x

pxρ′￼x = ∑
x

Mxρ = ℳρ ℳ = ∑
x

Mx

ℳ

n ρn = ℳnρ0
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Connection to Hidden Markov Models
•  = prob. that system goes from  while emitting a symbol . 

• If HMM state is  the prob. that we observe symbol  is  
 
                                           

• If outcome was , bayesian update the state of the hidden layer: 
 

                                      

• Define substochastic matrices:  and . Then  

                                 and                

P(x, σ |σ′￼) σ′￼ → σ x

π(σ′￼) x

p(x) = ∑
σ,σ′￼

P(x, σ |σ′￼)π(σ′￼)

x

π(σ |x) =
P(x, σ)

p(x)
=

∑σ′￼
P(x, σ |σ′￼)π(σ′￼)

p(x)

(Mx)σ,σ′￼
= P(x, σ |σ′￼) ⟨1 | = (1,…,1)

p(x) = ⟨1 |Mx |π⟩ |πx⟩ =
Mx |π⟩
p(x)

A

B

C

x = 1

x = 0

x = 0

x
=

1

x = 1

x = 0

Compare with 

 
 

and  
 

 

p(x) = tr{Mxρ}

ρx =
Mxρ
p(x)

Milz, S. & Modi, K. “Quantum Stochastic Processes and Quantum non-Markovian Phenomena”.  
PRX Quantum 2, 030201 (2021)



Prediction

• Unifilar models: if we know  and we  

observe  we know with certainty that the system evolved to . 

• Usefulness: data compression 
 
                             

If we can know the internal state, we can make statistical predictions 
of future outcomes. 

• Example: figuring out the internal state of a large language model.

ρx1:n

xn+1 ρx1:n+1

p(xn+1 |x1:n) = p(xn+1 |ρx1:n
)

F. Binder, J. Thompson, M. Gu, “Practical unitary simulator for non-Markovian complex processes,”  
Phys. Rev. Lett. 120 240502 (2018).



Quantum jumps

GTL "Patterns in the jump-channel statistics of open quantum systems,"  arXiv 2305.07957

GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P. Potts "Current fluctuations in open quantum systems: Bridging the 
gap between quantum continuous measurements and full counting statistics," PRX Quantum 5, 020201 (2024)

Mark Mitchison Michael Kewming Patrick Potts



• Consider a quantum master equation  
 

                                        

• The infinitesimal evolution can be written as a set of instruments:  
 
                                                 

 
(jump)                        for                          
 

(no jump)                              where        

•  is infinitesimal: most of the time the system evolves with no jump.

dρ
dt

= ℒρ = − i[H, ρ] +
r

∑
x=1

LxρL†
x − 1

2 {L†
x Lx, ρ}

ρt+dt = eℒdtρt = ∑
x

Mxρt

Mxρ = dt LxρL†
x = dt 𝒥xρ x = 1,2,…, r

M0ρ = ρ + dtℒ0ρ ℒ0ρ = − i[H, ρ] −
1
2

r

∑
x=1

{L†
x Lx, ρ}

px = tr{Mxρ} = dttr{L†
x Lxρ}

GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P. Potts "Current fluctuations in open quantum systems: Bridging the 
gap between quantum continuous measurements and full counting statistics," PRX Quantum 5, 020201 (2024)



Fink et. al., “Signatures of a dissipative phase transition  
                           in photon correlation measurements” 
Nature Physics 14 365-369 (2018)

Hofmann, et. al. “Measuring the Degeneracy of Discrete Energy 
                                         Levels Using a GaAs / AlGaAs Quantum Dot,”  
Phys Rev. Lett 117, 206803 (2016)



Jumps with multiple channels
• Each jump operator  is a “channel"                             

 

                            

• Jumps occur over random times and over random channels. 

• Quantum trajectory = list of channels and their corresponding time-tags: 
 
                                                                       

Lx

dρ
dt

= ℒρ = − i[H, ρ] +
r

∑
x=1

LxρL†
x − 1

2 {L†
x Lx, ρ}

(x1, τ1), (x2, τ2), …, (xN, τN) τj = tj − tj−1

-ensemble: final time is fixed, total number 
of jumps is a random variable. 

-ensemble: total number of jumps is fixed, 
final time is a random variable.

t

N

Quantum jumps without time-tags: 
 

  Mx = − 𝒥xℒ−1
0

One-jump instrument 
 

  Mxτ = 𝒥xeℒ0τ

GTL "Patterns in the jump-channel statistics of open quantum systems,"  arXiv 2305.07957



Parameter estimation with stochastic processes



Fisher information in stochastic processes

• For a stochastic process with fixed Markov order  
 

M

F(X1:N) = F(X1:M) + (N − M)F(XM+1 |X1:M) ≃ NF(XM+1 |X1:M)

Radaelli, M., Landi, G. T., Modi, K. & Binder, F. C. Fisher information of correlated stochastic processes. New J. Phys. 25, 053037 (2023). 
Smiga, J. A., Radaelli, M., Binder, F. C. & Landi, G. T. Stochastic metrology and the empirical distribution. Phys. Rev. Research 5, 033150 (2023) 
Radaelli, M., Smiga, J. A., Landi, G. T. & Binder, F. C. Parameter estimation for quantum jump unraveling. arXiv 2402.06556 (2024)

Data compression: count sequences



Stochastic operation of thermal machines

Abhaya Hegde

Abhaya S. Hegde, Patrick P. Potts, GTL, “Time-resolved Stochastic Dynamics of Quantum Thermal Machines,” arXiv:2408.00694

Patrick Potts



• Double quantum dot  

• Engine process: uses thermal gradient to extract chemical work .  

• Refrigerator process: uses chemical work to make heat flow from 
cold to hot. 

TH, μH TC, μC

Ih

Eh
Ic

Ec

Eh Ic

Ih Ec

• There can also be “idle cycles” 

• “Idle hot” 

• “Idle cold” 

Can we identify individual cycles 
from a bitstring? 

 
IhEcIcIhEhEcIhIcEhIc

Impossible in general, if excitations  
are indistinguishable

{ IcIhEhEc

IcIhEhEc

 =IcIhEhEc

Manzano, Gonzalo, and Roberta Zambrini “Quantum Thermodynamics under Continuous Monitoring: A General 
Framework,” AVS Quantum Science 4 (2): 025302 (2022).



Single excitation assumption

• Result: for cycles to be identifiable the string must always have 
injections followed by extractions. 
 
                          

• Condition: Hilbert space must be split in 2.  

•  injects  post-injection subspace. 

•  extracts  post-extraction subspace. 

…I∙E∙I∙E∙I∙E∙I∙E∙I∙E∙…

L†
αj →

Lαj →

{

Extraction  
to bath α

{

Injection   
from bath α

{ {

Unitary 
work

Work  
reservoirs

dρ
dt

= − i[H, ρ] + ∑
n

D[Kn]ρ + ∑
α∈{h,c}

∑
j

γ−
αjD[Lαj]ρ + γ+

αjD[L†
αj]ρ

(
0 0 0
0 0 0
0 0 0)
Post  
injection

Post  
extraction

Hilbert space = 



Bitstrings of jumps  bitstrings of cycles →

 

• We can use this to answer the following questions:  

• What is the probability that the next cycle is of type X and takes a time 𝛕? 

• How are cycles correlated with each other? 

• What is the average time required to complete each cycle? 

• How many idle cycles happen between two useful cycles?

…I∙E∙I∙E∙I∙E∙I∙E∙… = …X∙X∙X∙X∙…
EL IR

IL ER

IL

EL IR

ER

X = 1

X = 2

X = 3

X = 4

• Define instruments  
 

                                with 2 emitted symbols:  and cycle duration MXτ =
τ

∫
0

dt 𝒥EX
eℒ0(τ−t)𝒥IX

eℒ0t X = 1,2,3,4 τ



Cycle probabilities

• Then prob. a cycle is of type  and takes a time :  . 

• If we don’t care about how long a cycle takes, we just need to marginalize the instrument:  
 

                                         

• Prob. of obtaining each cycle type  
 
                                          

• Conditional cycle times: if cycle is of type , how long it takes? 
 

                               

X τ pX,τ = tr{MXτπE}

MX = ∫
∞

0
dτ MXτ

pX = tr{MXπE}

X

E(τ |X) =
∞

∫
0

dτ τ
pX,τ

pX

 = Jump Steady-State 
 

Correct state to get  
long-time statistics

πE

Relation to steady-state currents: 

I =
p1 − p2

E(τ)

Correlations between cycles: 
 

P(X1, τ1, …, Xn, τn) = tr{MXnτn
…MX1τ1

πE}



Results for the 3-level maser

4

FIG. 3. (a) Probability of observing a cycle X within a duration ⌧ [Eq. (9)] at resonance � = 0 and Th/Tc = 10. (b) Total
probability of observing a cycle X [Eq. (10)] and (c) expectation values for cycle duration [Eqs. (11), (12)] as a function of the
ratio of bath temperatures. A vertical line at Th/Tc = !h/!c separates the refrigerator and engine regimes. The inset shows all
expectation values nearly converge at resonance. The parameters are fixed (in units of Tc = 1) at �h = �c ⌘ � = 0.05, !h = 8,
!c = 2, !d = 4, ✏ = 0.5 unless mentioned otherwise.

lights the di↵erent regimes of operation, which changes
from refrigeration to engine at Th/Tc = !h/!c. It is
noteworthy that

p1 � p2 / n̄h � n̄c,
p3
p1

=
p2
p4

=
(n̄h + 1)�h
(n̄c + 1)�c

, (16)

implying that across all the parameter ranges, the prob-
abilities of idle cycles bound those of useful ones [61]. As
a result, it is always more likely to observe the machine
undergoing a cycle with no net heat transfer.

For small ✏, the probability of a useful cycle pu :=
p1+p2 scales as ✏2/(�2+�2), where � = (n̄h�h+n̄c�c)/2
is the net decoherence rate and � = (!h � !c) � !d

is the detuning. This provides insights on maximizing
the occurrence of useful cycles: stronger pumps, more
resonant drives and lower damping. For this model
Eq. (14) simplifies to the geometric distribution, Pu(n) =
pu(1�pu)n. The distribution of time between two useful
cycles [Eq. (15)] is analyzed in [61].

The average duration of cycles [Eqs. (11), (12)] are
plotted in Fig. 3 (c); for this model, it turns out that
E(⌧ | 1) = E(⌧ | 3) and E(⌧ | 2) = E(⌧ | 4). Noticeably,
the cycles tend to take much longer in the refrigeration
regime. Moreover, at resonance (� = 0), all conditional
averages tend to become very close (although not strictly
equal), as shown in the inset of Fig. 3 (c).

Conclusions.— We showed how to unravel the time-
dependent statistics of quantum thermal machines, which
allowed us to classify the stochastic dynamics in terms of
distinct types of cycles, describe how often each cycle oc-
curs, and how long they take. Our results encompass all
statistical correlations between cycles, and also connect
with known results in FCS for the average excitation cur-
rent and dynamical activity. This framework opens up
a new avenue for characterizing quantum thermal ma-
chines, based entirely on experimentally observable data.
In particular, our formalism could be readily employed

to analyse, e.g., mesoscopic transport in quantum dot
experiments, shedding light on the underlying thermo-
dynamics.

Of particular importance to this analysis is the notion
of intermittency — i.e., how often a machine is actually
performing a thermodynamically useful task. Since our
approach enables the identification of both useful and idle
cycles, we now have the tools to optimize the intermit-
tency for fixed e�ciency and output power. Our results
[cf. Eq. (14)] also allow us to examine cycle “bunching”,
specifically how the occurrence of one useful cycle influ-
ences the probability of observing another immediately
after. These insights have the potential to significantly
deepen our understanding and interpretation of quantum
stochastic processes.
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and L0 = L �
P

↵
(JE↵ + JI↵) is the no-jump superop-

erator. In Eq. (6), we have introduced the jump steady-
state [61, 63]

⇡E =
(JEh + JEc)⇢ss

tr
�
(JEh + JEc)⇢ss

 2 HE , (8)

to ensure the jump sequence is stationary.
Marginalizing Eq. (6) over all (Xi, ⌧i) except one yields

the probability that a single cycle is of type X and du-
ration ⌧ ,

p
X
(⌧) = tr

�
O

X,⌧
⇡E

 
. (9)

Integrating over ⌧ yields the probability that the cycle is
of type X:

p
X

=

Z 1

0
d⌧ p

X
(⌧) = tr

�
OX⇡E

 
, (10)

where OX =
R1
0 d⌧ OX,⌧ = JEXL�1

0 JIXL�1
0 .

The average cycle time given it is of type X reads

E(⌧ | X) =
1

p
X

Z 1

0
d⌧ ⌧ p

X
(⌧). (11)

In [61], we show

E(⌧) =
4X

X=1

E(⌧ | X)p
X

=
2

Khc
, (12)

where Khc is the dynamical activity of the baths repre-
senting the average number of jumps per unit time in the
steady-state.

The p
X

in Eq. (10) represent the relative occurrence
of each cycle type over many trajectories, regardless of
their duration. The proportion of p1/2 over p3/4 yields
information on the intermittency of the machine, reveal-
ing how often useful cycles occur over idle ones overall.
In [61], we prove that p1/2 and the excitation current
from Eq. (5) are related by

Iex =
p1 � p2
E(⌧)

, (13)

which provides a fundamental connection between usual
steady-state currents and our results: the system func-
tions as an engine when p1 > p2, and as a refrigerator
when p1 < p2.

Statistics of useful cycles.— Drawing on the concept
of intermittency, we can further address the distribution
of idle cycles and the intervals between useful ones. Let
Ou = O1+O2 and Oid = O3+O4 denote the superoper-
ators associated with useful and idle cycles, respectively
(and similarly for Ou,⌧ and Oid,⌧ ). We find the probabil-
ity of n idles between two useful cycles to be [61]

Pu(n) =
tr
�
OuOn

idOu⇡E

 

tr
�
Ou⇡E

 , n = 0, 1, 2, . . . (14)

FIG. 2. (a) Schematic of a three-level maser connected to
hot and cold baths and driven by a Rabi drive, illustrating
the four jump processes induced by the baths. All cycles for
this model are shown in (b-e) with (b) X = 1: work cycle,
(c) X = 2: refrigeration cycle, (d) X = 3: idle hot, and
(e) X = 4: idle cold.

and, similarly, the time interval t between them to be [61],

Pu(t) =

1Z

�1

dz

2⇡

tr
� eOu,z(1� eOid,z)�1Ou⇡E

 

tr
�
Ou⇡E

 eizt, (15)

where eOX,z =
R1
0 d⌧ e�iz⌧OX,⌧ . These probabilities

provide a refined overview on the performance of the ma-
chine. Remarkably, both these equations fully account
for the statistical dependence between cycles. This dis-
cussion concludes our characterization of the questions
posed in the beginning, taking into account not only the
behavior of individual cycles but also their correlations
in sequences of arbitrary length.
Example: Three-level system.— We apply our results

to a three-level maser [1, 64–72] whose schematic is de-
picted in Fig. 2. It is coupled to hot and cold baths at
energy !↵ and temperature T↵ with their populations
following a Bose-Einstein distribution given by n̄↵ =
[exp(!↵/T↵) � 1]�1. The maser is driven by a Hamilto-
nianH(t) = (!h�!c)�11+!h�22+✏(ei!dt�01+e�i!dt�10)
with a Rabi drive of strength ✏ and frequency !d. The
jump operators are Lh = �02, Lc = �12 (and Kn = 0)
with rates ��

↵
= �↵(n̄↵ + 1) and �+

↵
= �↵n̄↵. Here,

�ij = |iihj| are the transition operators.
The post-extraction subspace is spanned by {|0i, |1i},

and the post-injection by {|2i}. As anticipated, the
Hamiltonian is block diagonal in the joint basis of these
subspaces. In this model, we find that the excitation
current is directly related to the steady-state heat and
work currents as Q̇h = !hIex, Q̇c = �!cIex, and
Ẇ = !dIex [72] and add up to zero only at resonance.
Explicit formulas for the the cycle probabilities of this

model are provided in [61]. Figure 3 (b) illustrates pX(⌧)
[Eq. (9)] as a function of time. The wiggles are reminis-
cent of coherent Rabi oscillations between |0i and |1i. For
large ⌧ , all probabilities scale as p

X
(⌧) ⇠ e��⌧ cos(✏⌧)

where � = (�h + �c)/2.
The marginals pX [Eq. (10)] are shown in Fig. 3 (c) as

a function of ratio of bath temperatures. The plot high-

X = 1 X = 2

X = 3 X = 4



      and         
 
 

Mu = MX=1 + MX=2 Mid = MX=3 + MX=4

ℙu(n) =
tr{MuMn

idMuπE}
tr{MuπE}

Number of idle cycles between  
two useful cycles

Time between two useful cycles

 = similar, but a bit  
               more complicated.
ℙu(t)

Machine intermittency 



Cooling on demand

Abhaya HegdeGuilherme Fiusa



Quantum absorption refrigerator

• Like sideband laser cooling, but with 
autonomous heat baths.

ωh

ωw

ωc = ωh − ωw

Hot

Cold

Work

Aamir et al “Thermally driven quantum refrigerator autonomously resets superconducting qubit,” arXiv:2305.16710



Conclusions

• Sequential quantum measurements  time-series of correlated stochastic outcomes. 

• Bayesian inference of the quantum state, given outcomes.  

• Unveiling the thermodynamics from measurement data.  

• Stochastic operation of a thermal machine. 

• Open question: machine intermittency vs. current fluctuations?

→

Thank you!

GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P. Potts "Current fluctuations in open quantum systems: Bridging 
the gap between quantum continuous measurements and full counting statistics," PRX Quantum 5, 020201 (2024)

Abhaya S. Hegde, Patrick P. Potts, GTL, “Time-resolved Stochastic Dynamics of Quantum Thermal Machines,” arXiv:2408.00694

GTL "Patterns in the jump-channel statistics of open quantum systems,"  arXiv 2305.07957
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X = 1

X = 2
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X = 4


