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We cannot see quantum systems...
All we seeis data . 1110000100010011100111101100. .



AN

- To measure a system we must send in a probe (or ancilla). > @ -~
- S+A interaction encodes information about S on A. e
- Extract information by measuring A.

- Information-back action trade-off: the more information we want, the more we disturb

the system.
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A simple example

- Qubit: apply unitary U then measure in the computational basis P, = | x){x| where x = 0,1.
- Startin |yp).

1. Sample first outcome x; from p(x,) = | (x| Uy |
Update state to |yq) = | x;).

2. Sample second outcome x, from p(x, | x;) = | (x, | U] x;) |*.
Update state to |yn) = | X,).

- Generates a bitstring of emitted symbols x,., = (x, ..., x,).

- Probability of a sequence forms a Markov chain: P(xy, ..., x,) = p(x, | x,_1)...p(x | x)p(x)).



Non-projective measurements lead to long memory

. Apply a set of Kraus operators Z FIF. = 1.Starting at py
X

. FxlpOF)jl
1. Sample first outcome x; from p(x;) = tr{Fxlponl}. Update state to p,, = )
P
2. Sampl d f = tr{F, p, F\.}. Upd _ ol
. Sample second outcome X, from p(x, | x;) = tr{F, p, F\ }. Update state toﬂxl;z_m'
T
T xn+1pxl:n Xn+1

p(‘xn+1 |'x111’l) = tr{Fxn+1px1:nF

Xn+1 Ond pxl:n+1 -

p(xn+1 |x1:n)

« String probability is now P(x;.,) = p(x,, | x|, )P, 1 | X1.—2) - - -P(X5 | X1)p(x;) which is highly non-Markovian.

- Evolution of the system is Markovian. But output data is not.

pO g px1

« Quantum system is hidden.

g pxl:Z pxm

. Looks like a Hidden Markov Model (HMM): \é\‘é\‘é

« Measurement outcomes (what we see) = emitted symbols

.1110000100010011100111101100...



[nstruments: simplity and generalize

- Instruments = superoperators:

M.p = FpF ®

- Update rules become:

Py X1 = tr{Manle:n} Prob. of a string:
and P(x,.,) = tr{M, ..M, p}

xn+1pxl:n Conditional state

e =
e p(X 1 X0.0)

pxlzn = MxN' : 'MxlpO/P(xl:n)

|
l

Data

Instruments represent the
most general kind of
measurement possible.

Also encompass inefficient
measurements

Mp =Y FpF|

kex

Wiseman, H. M. & Milburn, G. J. Quantum Measurement and Control. (Cambridge University Press, New York, 2009)




Unconditional dynamics

- If we measure but don't record the outcome the state of the system still changes

(measurement back action)

« Ex: collision model or master equation.

p' = prp)'c = ZMxp = Mp where M = ZMx
X X X
System
. M is a quantum channel.
: Ancilla @ ® O
- After n steps: p,, = M"p, Interaction New
" bete Ancilla

- Describes the average impact that the
interaction with the ancilla causes in the system.



Connection to Hidden Markov Models

« P(x,o0|0") = prob. that system goes from ¢’ — ¢ while emitting a symbol x.

« If HMM state is n(c6”) the prob. that we observe symbol x is

px) = Z P(x,0|06")n(c’) Compare with

px) = tr{M,p}

- If outcome was x, bayesian update the state of the hidden layer:

and
P(.x, O') ZG/ P(xs O-l 6/)77:(6/)
(o] x) = =
px) pXx)

+ Define substochastic matrices: (M,),, » = P(x,c|c’) and (1| = (1,...,1). Then

M, | )
)

Milz, S. & Modi, K. “Quantum Stochastic Processes and Quantum non-Markovian Phenomena”.
PRX Quantum 2, 030201 (2021)

p) = (1|M,|x)  and |7



Prediction

- Unifilar models: if we know p, and we

observe x,, | we know with certainty that the system evolved to p, .
« Usefulness: data compression

p(xl’l-l-] |x11’l) = p(xn+1 |px1:n)

If we can know the internal state, we can make statistical predictions
of future outcomes.

- Example: figuring out the internal state of a large language model.

F. Binder, J. Thompson, M. Gu, “Practical unitary simulator for non-Markovian complex processes,”
Phys. Rev. Lett. 120 240502 (2018).



Quantum jumjps

.....

Mark Mitchison

GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P Potts "Current fluctuations in open quantum systems: Bridging the
gap between quantum continuous measurements and full counting statistics," PRX Quantum 5,020201 (2024)

GTL "Patterns in the jump-channel statistics of open quantum systems,' arXiv 2305.07957



- Consider a quantum master equation \/ A \/

| T¢ : ¥
dp JaNlVe NN

F — N f_Lygrt
= Lp=—ilH.pl+ Y LpLi-3{L{L.p)

x=1

« The infinitesimal evolution can be written as a set of instruments:

Prear =€ p, = Z M, p,
X

(jump) Mp=dtLpLl =dt Fp for x=12,...,r
1 r
(no jump) Myp =p+dtLyp where  Zoap = —i[H,p] — 0 Z {LIL,p}
x=1
. p,=tr{M p} = dttr{L'L p} is infinitesimal: most of the time the system evolves with no jump.

GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P Potts "Current fluctuations in open quantum systems: Bridging the
gap between quantum continuous measurements and full counting statistics," PRX Quantum 5,020201 (2024)
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Fink et. al., “Signatures of a dissipative phase transition Hofmann, et. al. “Measuring the Degeneracy of Discrete Energy
in photon correlation measurements” Levels Using a GaAs / AlGaAs Quantum Dot,”

Nature Physics 14 365-369 (2018) Phys Rev. Lett 117, 206803 (2016)



Jumps with multiple channels
HO—00—@ &0 0!

. Each jump operator L, is a ‘channel"

dp

T_Lyrd
3’0 o l[H ’0] + Z L pL N {LXLX”D} * t-ensemble: final time is fixed, total number

of jumps is a random variable.

* N-ensemble: total number of jumps is fixed,
final time is a random variable.

dt

x=1

« Jumps occur over random times and over random channels.

- Quantum trajectory = list of channels and their corresponding time-tags:

(x17 Tl)a (.Xz, 7'.2)7 X (-xN, TN) 7".] — t] - tj_l

One-jump instrument Quantum jumps without time-tags:

MM = jxegor Mx = jx‘gal

GTL "Patterns in the jump-channel statistics of open quantum systems,' arXiv 2305.07957



Parameter estimation with stochastic processes



Fisher iInformation in stochastic processes

- For a stochastic process with fixed Markov order M

FXy.n) = FXpp0) + (N = M)F(Xyp1 1 [ X)) = NE40 1 X00)

outcomes

A

X3 T

process X, 4+
Py(X,, ..., Xy) 2

Xl T

> time

Data compression: count sequences

=ml
---1011000101100110001101110101010101010---

Radaelli, M., Landi, G. T, Modi, K. & Binder, F. C. Fisher information of correlated stochastic processes. New J. Phys. 25, 053037 (2023).
Smiga, J. A., Radaelli, M., Binder, F. C. & Landi, G. T. Stochastic metrology and the empirical distribution. Phys. Rev. Research 5, 033150 (2023)
Radaelli, M., Smiga, J. A., Landi, G. T. & Binder, F. C. Parameter estimation for quantum jump unraveling. arXiv 2402.06556 (2024)



Stochastic operation of thermal machines

QAL s Xy

Patrick Potts ~ Abhaya Hegde

Abhaya S. Hegde, Patrick P. Potts, GTL, “Time-resolved Stochastic Dynamics of Quantum Thermal Machines,” arXiv:2408.00694



- Double quantum dot

- Engine process: uses thermal gradient to extract chemical work .
E, I

c
/‘\/‘\/\(

- Refrigerator process: uses chemical work to make heat flow from > —=
cold to hot.

E h IC
o~ P
Ty, by \J“\J‘
1, E.

Impossible in general, if excitations

- There can also be “idle cycles”
are indistinguishable

Can we identify individual cycles

- “Idle hot” >C— — < from a bitstring? I'_I'_E'—|E
c"h™~h™c

- “Idle cold” > — —/\< IhEcIthEhEthIthIc ILE E =
~ c"h=h™=c ™~ ———
IthEhEc

Manzano, Gonzalo, and Roberta Zambrini “Quantum Thermodynamics under Continuous Monitoring: A General
Framework,” AVS Quantum Science 4 (2): 025302 (2022).



Single excitation assurmption

2 = _i[Hp)+ 2 DIK,Jp+ D, D vaDILylp+riDIL ]

ac{hc) j
Y A S S T o
Unitary Work Extraction Injection
work reservoirs tobatha  from bath a

« Result: for cycles to be identifiable the string must always have
injections followed by extractions.

LEIEIEIEILE.,.. Post

injection s

. Condition: Hilbert space must be split in 2. Hilbertspace = [ --s--semsgorensen
1 Post

o L ' extraction
. L;j injects — post-injection subspace. '

. La]. extracts — post-extraction subspace.



Bitstrings of jumps — bitstrings of cycles

.ELEILEILE.... = .. XXXX....

- We can use this to answer the following questions:

- What is the probability that the next cycle is of type X and takes a time 17

- How are cycles correlated with each other?
- What is the average time required to complete each cycle?

- How many idle cycles happen between two useful cycles?

« Define instruments

T
My, = Jdt jEXego(T_t)jlxegO’ with 2 emitted symbols: X = 1,2,3,4 and cycle duration =
0

IL
T
e —
E
L IR
N
) ——=
ER

X=1
X=2
X=3
X=4



Cycle probabilities 7z = Jurnp Steady-State

Correct state to get
» Then prob. a cycle is of type X and takes a time 7: py . = tr{My, 7;}. long-time statistics

- If we don't care about how long a cycle takes, we just need to marginalize the instrument:

MX - J dT MXT
0

Relation to steady-state currents:
« Prob. of obtaining each cycle type

I:P1—P2

px = twr{Mym} E@)

- Conditional cycle times: if cycle is of type X, how long it takes?

pX,T
Px

Correlations between cycles:

E(t|X) = de T
0

P(Xl’ Tl, S )(n, Tn) = tI‘{MXnTn. . 'MXlTlﬂE}



Results for the 3-level maser @) 2) hX=1_ ©0X=2
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FIG. 3. (a) Probability of observing a cycle X within a duration 7 [Eq. (9)] at resonance A = 0 and T}, /T, = 10. (b) Total
probability of observing a cycle X [Eq. (10)] and (c) expectation values for cycle duration [Egs. (11), (12)] as a function of the
ratio of bath temperatures. A vertical line at Tj, /T, = wy /w. separates the refrigerator and engine regimes. The inset shows all
expectation values nearly converge at resonance. The parameters are fixed (in units of T, = 1) at vy, = v. = v = 0.05, wp = 8§,
We = 2, wg = 4, € = 0.5 unless mentioned otherwise.



Machine intermittency

Number of idle cycles between Time between two useful cycles
two useful cycles
30 e x 107 , | ,
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M, =My +My_, and  Mg= My_3+ My,

B (n) = L MuMiaM 7} P_(£) = similar, but a bit

tr{M .} more complicated.




Cooling on demand
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Quantum apsorption refrigerator

- Like sideband laser cooling, but with We + Wh + W
autonomous heat baths. 1111)
wp, + Wy
we+wp, |011)
110)
) Work Wh We + Wy
1010) 1101)
- We
— 1100)

4
v

Aamir et al “Thermally driven quantum refrigerator autonomously resets superconducting qubit,” arXiv:2305.16710




Conclusions

- Sequential quantum measurements — time-series of correlated stochastic outcomes.

- Bayesian inference of the quantum state, given outcomes. >/1L\ . §Q< Yo
« Unveiling the thermodynamics from measurement data. E. I
)y x=2
- Stochastic operation of a thermal machine. I

—— ( Xx=3

- Open question: machine intermittency vs. current fluctuations? E, I,
) ——{ X=4

ER

GTL, Michael J. Kewming, Mark T. Mitchison, Patrick P. Potts "Current fluctuations in open quantum systems: Bridging
the gap between quantum continuous measurements and full counting statistics," PRX Quantum 5, 020201 (2024)

GTL "Patterns in the jump-channel statistics of open quantum systems,' arXiv 2305.07957

Abhaya S. Hegde, Patrick P. Potts, GTL, “Time-resolved Stochastic Dynamics of Quantum Thermal Machines,” arXiv:2408.00694



