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Single transmon: quantum states are like harmonics of a vibrating string



Basic rules

When left alone:  

•  = ground-state = state with the smallest energy. 

• If left alone, systems will tend to decay to the ground-state.  

• Thermal fluctuations can populate excited states.  

• : populations decrease exponentially with energy separation.  

• Any coherences are eventually lost after some time due to noise (decoherence) 

When driven:  

• External pulses can excite system.  

• External pulses can create superposition.

E0

pn/p0 = e−(En−E0)/kBT

Superposition Mixture

In many states at the same time Maybe many states. Ignorance.

Very quantum-y Classical

Lost if left alone (“decoherence”)



Interactions between quantum systems: 

• Weak coupling  stuff only happens when there are resonances.→

Quantum systems do not live in real space.  
• They live in Hilbert space.  
• System @ energy levels = classical-ish.  
• Wobbly-wobbly = quantum-ish.  
• Quantum-ish to classical-ish due to decoherence. 

Superposition Mixture

In many states at the same time Maybe many states. Ignorance.

Very quantum-y Classical

Lost if left alone (“decoherence”)



Hot

Cold

Want to 
 cool

Cooling colder than the coldest bath

Transmon 3 is part of a quantum computer.  
We want to keep it cool.  

Coldest bath, determined by the dilution 
fridge.  

We can cool below the coldest bath using an  
absorption refrigerator.

Idea: only resonant transition is 
 

• Excitation arrives in 3. 
• Combines with excitation in 1 (hot; plenty). 
• Transferred to cold. 

ω1 + ω3 = double gap of 2

1Q3
1Q1

→ 2Q2



Quantum complications



• We cannot directly “see” quantum systems.  

• To see = to measure = to send in a probe to interact with it.  

• Probe has a back-action: perturbs the system.  

• Information is always indirect. If we try to see it, we perturb it.   

• Similarity to Hidden Markov Models (HMM): 
• Quantum system is hidden.  
• Measurement outcomes (what we see) = data. 

• All we can do is Bayesian updates: 
• What is our best guess for the state of the system given the 

data?

System

Probe

Interaction Data

…1110000100010011100111101100…



Ex: Injection/extraction on a lattice

IL ER

IL IL ER

t1 t2 t3

• Lattice with L sites that can be empty or occupied. 

• Particles can be injected on the left ( ) 

• or extracted on the right ( ).  

• And they can jump back and forth through the chain:  
not monitorable. 

IL

ER

IL

IL

ER

All we observe are symbols  
ILILER



A simpler quantum machine: 3-level maser
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A simpler quantum machine: 3-level maser

• A quantum system with 3 levels can be used to generate coherent 
microwave radiation (maser).  

• Clockwise cycle: emit a photon.  

• Anti-clockwise cycle: absorbs a photon. 
• Undesirable but can happen.  

• Idle cycles (bounces): machine failed;  
nothing happened.
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and L0 = L �
P

↵
(JE↵ + JI↵) is the no-jump superop-

erator. In Eq. (6), we have introduced the jump steady-
state [61, 63]
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to ensure the jump sequence is stationary.
Marginalizing Eq. (6) over all (Xi, ⌧i) except one yields

the probability that a single cycle is of type X and du-
ration ⌧ ,
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Integrating over ⌧ yields the probability that the cycle is
of type X:
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The average cycle time given it is of type X reads
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In [61], we show

E(⌧) =
4X

X=1

E(⌧ | X)p
X

=
2

Khc
, (12)

where Khc is the dynamical activity of the baths repre-
senting the average number of jumps per unit time in the
steady-state.

The p
X

in Eq. (10) represent the relative occurrence
of each cycle type over many trajectories, regardless of
their duration. The proportion of p1/2 over p3/4 yields
information on the intermittency of the machine, reveal-
ing how often useful cycles occur over idle ones overall.
In [61], we prove that p1/2 and the excitation current
from Eq. (5) are related by

Iex =
p1 � p2
E(⌧)

, (13)

which provides a fundamental connection between usual
steady-state currents and our results: the system func-
tions as an engine when p1 > p2, and as a refrigerator
when p1 < p2.

Statistics of useful cycles.— Drawing on the concept
of intermittency, we can further address the distribution
of idle cycles and the intervals between useful ones. Let
Ou = O1+O2 and Oid = O3+O4 denote the superoper-
ators associated with useful and idle cycles, respectively
(and similarly for Ou,⌧ and Oid,⌧ ). We find the probabil-
ity of n idles between two useful cycles to be [61]

Pu(n) =
tr
�
OuOn

idOu⇡E

 

tr
�
Ou⇡E

 , n = 0, 1, 2, . . . (14)

FIG. 2. (a) Schematic of a three-level maser connected to
hot and cold baths and driven by a Rabi drive, illustrating
the four jump processes induced by the baths. All cycles for
this model are shown in (b-e) with (b) X = 1: work cycle,
(c) X = 2: refrigeration cycle, (d) X = 3: idle hot, and
(e) X = 4: idle cold.

and, similarly, the time interval t between them to be [61],
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where eOX,z =
R1
0 d⌧ e�iz⌧OX,⌧ . These probabilities

provide a refined overview on the performance of the ma-
chine. Remarkably, both these equations fully account
for the statistical dependence between cycles. This dis-
cussion concludes our characterization of the questions
posed in the beginning, taking into account not only the
behavior of individual cycles but also their correlations
in sequences of arbitrary length.
Example: Three-level system.— We apply our results

to a three-level maser [1, 64–72] whose schematic is de-
picted in Fig. 2. It is coupled to hot and cold baths at
energy !↵ and temperature T↵ with their populations
following a Bose-Einstein distribution given by n̄↵ =
[exp(!↵/T↵) � 1]�1. The maser is driven by a Hamilto-
nianH(t) = (!h�!c)�11+!h�22+✏(ei!dt�01+e�i!dt�10)
with a Rabi drive of strength ✏ and frequency !d. The
jump operators are Lh = �02, Lc = �12 (and Kn = 0)
with rates ��

↵
= �↵(n̄↵ + 1) and �+

↵
= �↵n̄↵. Here,

�ij = |iihj| are the transition operators.
The post-extraction subspace is spanned by {|0i, |1i},

and the post-injection by {|2i}. As anticipated, the
Hamiltonian is block diagonal in the joint basis of these
subspaces. In this model, we find that the excitation
current is directly related to the steady-state heat and
work currents as Q̇h = !hIex, Q̇c = �!cIex, and
Ẇ = !dIex [72] and add up to zero only at resonance.
Explicit formulas for the the cycle probabilities of this

model are provided in [61]. Figure 3 (b) illustrates pX(⌧)
[Eq. (9)] as a function of time. The wiggles are reminis-
cent of coherent Rabi oscillations between |0i and |1i. For
large ⌧ , all probabilities scale as p

X
(⌧) ⇠ e��⌧ cos(✏⌧)

where � = (�h + �c)/2.
The marginals pX [Eq. (10)] are shown in Fig. 3 (c) as

a function of ratio of bath temperatures. The plot high-

Scovil, H. E. D. & Schulz-DuBois, E. O. Three-level masers as heat engines.  
Physical Review Letters 2, 262 (1959).
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In [61], we prove that p1/2 and the excitation current
from Eq. (5) are related by

Iex =
p1 � p2
E(⌧)

, (13)

which provides a fundamental connection between usual
steady-state currents and our results: the system func-
tions as an engine when p1 > p2, and as a refrigerator
when p1 < p2.

Statistics of useful cycles.— Drawing on the concept
of intermittency, we can further address the distribution
of idle cycles and the intervals between useful ones. Let
Ou = O1+O2 and Oid = O3+O4 denote the superoper-
ators associated with useful and idle cycles, respectively
(and similarly for Ou,⌧ and Oid,⌧ ). We find the probabil-
ity of n idles between two useful cycles to be [61]

Pu(n) =
tr
�
OuOn

idOu⇡E

 

tr
�
Ou⇡E

 , n = 0, 1, 2, . . . (14)

FIG. 2. (a) Schematic of a three-level maser connected to
hot and cold baths and driven by a Rabi drive, illustrating
the four jump processes induced by the baths. All cycles for
this model are shown in (b-e) with (b) X = 1: work cycle,
(c) X = 2: refrigeration cycle, (d) X = 3: idle hot, and
(e) X = 4: idle cold.

and, similarly, the time interval t between them to be [61],

Pu(t) =

1Z

�1

dz

2⇡

tr
� eOu,z(1� eOid,z)�1Ou⇡E

 

tr
�
Ou⇡E

 eizt, (15)

where eOX,z =
R1
0 d⌧ e�iz⌧OX,⌧ . These probabilities

provide a refined overview on the performance of the ma-
chine. Remarkably, both these equations fully account
for the statistical dependence between cycles. This dis-
cussion concludes our characterization of the questions
posed in the beginning, taking into account not only the
behavior of individual cycles but also their correlations
in sequences of arbitrary length.
Example: Three-level system.— We apply our results

to a three-level maser [1, 64–72] whose schematic is de-
picted in Fig. 2. It is coupled to hot and cold baths at
energy !↵ and temperature T↵ with their populations
following a Bose-Einstein distribution given by n̄↵ =
[exp(!↵/T↵) � 1]�1. The maser is driven by a Hamilto-
nianH(t) = (!h�!c)�11+!h�22+✏(ei!dt�01+e�i!dt�10)
with a Rabi drive of strength ✏ and frequency !d. The
jump operators are Lh = �02, Lc = �12 (and Kn = 0)
with rates ��

↵
= �↵(n̄↵ + 1) and �+

↵
= �↵n̄↵. Here,

�ij = |iihj| are the transition operators.
The post-extraction subspace is spanned by {|0i, |1i},

and the post-injection by {|2i}. As anticipated, the
Hamiltonian is block diagonal in the joint basis of these
subspaces. In this model, we find that the excitation
current is directly related to the steady-state heat and
work currents as Q̇h = !hIex, Q̇c = �!cIex, and
Ẇ = !dIex [72] and add up to zero only at resonance.
Explicit formulas for the the cycle probabilities of this

model are provided in [61]. Figure 3 (b) illustrates pX(⌧)
[Eq. (9)] as a function of time. The wiggles are reminis-
cent of coherent Rabi oscillations between |0i and |1i. For
large ⌧ , all probabilities scale as p

X
(⌧) ⇠ e��⌧ cos(✏⌧)

where � = (�h + �c)/2.
The marginals pX [Eq. (10)] are shown in Fig. 3 (c) as

a function of ratio of bath temperatures. The plot high-

Questions: 
• What is the probability that the next cycle is of a 

given type. 
• What is the probability a cycle takes a certain time? 
• How are cycles correlated with each other? 
• What is the average time required to complete 

each cycle? 
• How many idle cycles happen between two useful 

cycles?
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Stochastic excursions



Motivation: cooling on demand

Many things can happen in between. 

There are many ways that the cooling  
process can fail before it succeeds.

Hot

Cold

Want to 
 cool

Excursion:  
• Starts when an excitation arrives at the green qubit. 
• Ends the first time the excitation leaves the green qubit.

Traditional questions: excursion times (First Passage times, Travel times, sojourn times,…) 

What we are interested: statistics of counting observables. 

So far: fully classical.



Example 1

Example 2

1 2

3

4

5



Idle

2FA

E-mail

Blackboard UR student

New task arrives….

During an excursion… 

How many 2-factor authentications? 

How many e-mails were sent? 

How many faculty did she have speak to?

We can attribute contextual meaning to any transition



Our results

Classical rate equation: 
dpx

dt
= ∑

y

Wxypy − Γxpx

Linear counting observable: .   

The weights  can be used to append contextual meaning to each transition.

Q̂(�̂�) = ∑
x,y

νxyN̂xy(�̂�)

νxy

Excursion time �̂�
Counting variables N̂xy(�̂�)

New result: mathematical tool to efficiently calculate the full distribution  within a single excursion.P(Q̂1, …, Q̂r, �̂�)



Optimal time-keeping



• Suppose we want to use this stochastic system as a clock. 

• Each excursion = 1 tick of the clock. 

• How do we build an optimal estimator for time? 
 
                                                    

• Choose  such that . 

•
Optimal choice is  

̂θ = ∑
x,y

νxyN̂xy

νxy E( ̂θ) = t

̂θ = ∑
x,y

N̂xy

Γy

Prech, K. et al. “Optimal time estimation and the clock uncertainty relation for stochastic processes”. arXiv 2406.19450.



Thank you!



System

Ancilla

Interaction Data
New  
Ancilla Data

Prepare & measure

iid outcomes

System

Ancilla

Interaction Data
New  
Ancilla Data

Sequential measurements

Correlated outcomes


