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⚛  2nd law at the quantum level

• Consider a physical system  with an arbitrary initial state  

and interacting with a bath  prepared in a thermal state 
 via an arbitrary unitary : 

 
                  

• This describes a very broad class of processes! 

• from an atom interacting with the electromagnetic vacuum…   

• …to a red-hot sword being dipped in a bucket of water. 

• The unitary may be insanely complicated.  

• But the map will still be of this form.

S ρS
E

ρE = e−βHE /ZE U

ρ′ SE = U(ρS ⊗ ρE)U†

GTL and M. Paternostro, “Irreversible entropy production,  
from quantum to classical”, arXiv:2009.07668



• Let  denote the entropy of the system. 

• It was shown by Esposito and Lindenberg that  
 
            
 
where  is the heat that entered the bath. 

• This implies that the changes in entropy of the system 
are not independent of the heat flux to the bath. 

•  is called the entropy production. 

• This is the 2nd law in a fully quantum formulation.  

✓ It can be extended to multiple baths. 

✓ And reproduces classical results in the appropriate 
limits.

S(ρS) = − tr(ρS ln ρS)

Σ := ΔSS − βQE ⩾ 0

QE = ⟨HE⟩′ − ⟨HE⟩

Σ

M. Esposito, K. Lindenberg, C. Van den Broeck, “Entropy production as correlation 
between system and reservoir”. New Journal of Physics, 12, 013013 (2010).

  can be expressed as a fully 
information-theoretic quantity: 

 

where 

 

Σ

Σ = I′ (S : E) + S(ρ′ E | |ρE)

I′ (S : E) = S(ρ′ S) + S(ρ′ E) − S(ρ′ SE)

S(ρ′ E | |ρE) = tr(ρ′ E ln ρ′ E − ρ′ E ln ρE)



•  measures how irreversible a process is. 

• Example: 

• The efficiency of a heat engine can be written as  
 

                

• Since  (2nd law), it follows that . 

• Example: 

• Suppose  is generated by an infinitesimal quench . 

• Then work  but .

Σ

η = ηC −
TcΣ
Qh

, ηC = 1 − Tc/Th

Σ ⩾ 0 η ⩽ ηC

U HS(0) → HS(1) = HS(0) + δHS

⟨W⟩ ∼ δH Σ ∼ δH2
S

M. Scandi, H.J.D. Miller, J. Anders and M. Perarnau-Llobet, “Quantum work statistics 
close to equilibrium”, Phys. Rev. Research 2, 023377 (2020).



✳ Production/flux in non-equilibrium settings

• The idea of entropy production, as a gauge 
of irreversibility can also be extended 
beyond thermal environments. 

• The map continues to have the form: 
 
        
 
but with arbitrary .  

• The entropy production is still defined as 
 
        

ρ′ SE = U(ρS ⊗ ρE)U†

ρE

Σ = I′ (S : E) + S(ρ′ E | |ρE)

• This can always be written as  
 
             
 
where 
 

          
 
is called the entropy flux. 

•  depends only on E. It measures the 
change in the “thermodynamic potential” 

 of the environment.  

• For thermal baths,  coincides with the 
heat flux.

Σ = ΔSS + Φ

Φ = trE{(ρE − ρ′ E)ln ρE}

Φ

ln ρE

Φ



🛂 Conditional entropy production



🛂 Conditional entropy production

• Part of the irreversibility stems from our 
ignorance about the environment.  

• Suppose we measure E after it interacted with 
S. 
 
         
 
 
         
 

 = generalized measurement operators 
acting on E: 
 
 
This is a conditional state. It is the state of 
SE, conditioned on the measurement outcome 
being .

ρ′ SE → ρ′ SE|k = (1 ⊗ Mk)ρ′ SE(1 ⊗ M†
k )

pk = trE(M†
k Mkρ′ E)

{Mk}

k

• What is the entropy production and 
flux, conditioned on these outcomes? 
That is, we are looking for something 
like 
 
        

• Or, focusing on the average over all 
outcomes, 
 
 
        

 
How to define ?

Σk = S(ρ′ S|k) − S(ρS) + Φk

Σc = ∑
k

pkS(ρ′ S|k) − S(ρS) + Φc

Σc, Φc



• A natural generalization of  is  
 
 
          

• Averaging over  yields  
 
 
         

• If the measurement is non-disturbing then .  

• In this case the conditional and unconditional fluxes coincide. 

• This makes sense: if this is to be a flux, then it shouldn’t depend on the subjective 
information one has about the measurement. 

• It can still depend on a possible disturbance caused by the measurement. But we are 
going to assume this is not the case.  

Φ = trE{(ρE − ρ′ E)ln ρE}
Φk = trE{(ρE − ρ′ E|k)ln ρE}

pk

Φc = ∑
k

pkΦk = Φ = tr{(ρE − ρ̃E)ln ρE}, ρ̃E = ∑
k

pkρ′ E|k

ρ̃E = ρ′ E



• The unconditional and conditional  are thus  
 
 
           
 
           

• Whence,  
 
           
 
where 
 
        

 
is the Holevo quantity ✅.

Σ′ s

Σ = S(ρ′ S) − S(ρS) + Φ

Σc = ∑
k

pkS(ρ′ S|k) − S(ρS) + Φ

Σc = Σ − χM(ρ′ S)

χM(ρ′ S) = S(ρ′ S) − ∑
k

pkS(ρ′ S|k) = ∑
k

pkS(ρ′ S|k | |ρ′ S)

K. Funo, Y. Watanabe and M. Ueda, “Integral quantum fluctuation theorems  
under measurement and feedback control”. PRE, 88, 052121 (2013). 

GTL and M. Paternostro, “Irreversible entropy production,  
from quantum to classical”, arXiv:2009.07668 
 
M. Naghiloo, J. J. Alonso, A. Romito, E. Lutz, K. Murch,  
“Information Gain and Loss for a Quantum Maxwell’s Demon”. PRL 121, 030604 (2018). 

• One may show that  
 
 
           

• Thus, the conditional entropy production 
still satisfies a 2nd law ( ).  

• But it is also smaller than the 
unconditional one:  

• Conditioning makes the process more 
reversible.

0 ⩽ Σc ⩽ Σ

Σc ⩾ 0



🔍 Continuous weak measurements



🔍 Continuous weak measurements
• What about systems that are continuously monitored by a weak probe? 

• Things become more complicated because now we have the entire measurement record to take into account. 

• For instance, there will be both integral and differential information gains.

ρ0 ρ1 ρ2

H. M. Wiseman and G. J. Milburn, “Quantum Measurement and Control”. 
K. Jacobs, “Quantum Measurement Theory”.



📀 Gaussian continuous weak measurements
• The theory of continuous measurements is further developed, and can go much deeper, in 

the case of continuous variables undergoing Gaussian-preserving dynamics.  

• Let  denote the vector of quadrature operators. Gaussian systems are 
fully characterized by their 2 first moments:  

• the average  

• and the covariance matrix (CM) . 

• We must track both the conditional and unconditional dynamics.  

• Unconditional means we monitor (there is still backaction) but we don’t care about the 
results. Described by a Lindblad MEq. 

• Conditional dynamics is stochastic because we condition on random outcomes. Described 
by a stochastic MEq.

x = (q1, p1, q2, p2, …)

x̄ = ⟨x⟩

σij =
1
2

⟨{xi, xj}⟩ − ⟨xi⟩⟨xj⟩

A. Serafini, “Quantum Continuous Variables: A Primer of Theoretical Method”. 
 
M. G. Genoni, L. Lami, and A. Serafini, “Conditional and unconditional Gaussian quantum dynamics“,  
Contemp. Phys. 57, 331 (2016).



• Unconditional variables evolve as in a 
Lindblad master equation: 
 
 

          

 
 
where  depend on both unitary and 
dissipative dynamics. 

• Similarly, the CM evolves according to the 
Lyapunov equation: 
 
 

          

 
where  is called the diffusion matrix. 

dx̄u

dt
= Ax̄u + b

A, b

dσu

dt
= Aσu + σuAT + D

D

• The continuous measurement will cause the mean 
 to evolve stochastically according to the 

Langevin equation:  
 
 

        

 
 
where  are matrices and  is a vector of 
white noises. 

• The CM, on the other hand, evolves 
deterministically: 
 
 

       

 
 
where  
 
       
 
 
describes the information gained due to the 
measurement. 

x̄c

dx̄c

dt
= (Ax̄c + b) + (σcCT + ΓT)ξ(t)

C, Γ ξ(t)

dσc

dt
= Aσc + σcAT + D − χ(σc)

χ(σ) = (σcCT + ΓT)(Cσ + Γ) ⩾ 0

M. G. Genoni, L. Lami, and A. Serafini, “Conditional and unconditional Gaussian quantum dynamics“,  
Contemp. Phys. 57, 331 (2016).



🔁 Thermodynamics of Gaussian CMs

• In the case of continuous measurements, the relevant quantity is the entropy production 
rate. 

• We formulate the thermodynamics of this model using a semi-classical representation in 
terms of the Wigner function  (standard approach does not work).  

• The Wigner function, conditioned on a given outcome for the average, is .  

• The variable  is classical, with probability distribution . 

• The conditional and unconditional Wigner functions are thus associated by a Kalman 
filter: 
 

               

W(x)

Wc(x | x̄)

x̄ p(x̄)

Wu(x) = ∫ Wc(x | x̄)p(x̄)dx̄

A. Belenchia, L. Mancino,GTL and M. Paternostro, “Entropy Production in Continuously Measured 
Quantum Systems”, arXiv:1908.09382. Accepted in npj Quantum Information.



• As an alternative representation of entropy, we can use  
 
 

           

 
and 
 

           

• Their difference represents the net amount of information acquired by the measurement 
record: 
 
           

• This is the phase-space analog of the Holevo quantity. Exactly the same idea ✅.  
 

     

Su = − ∫ Wu(x)ln Wu(x)dx

Sc = − ∫ p(x̄)dx̄∫ Wc(x | x̄)ln Wc(x | x̄)dx

I = Su − Sc ⩾ 0

(χM(ρ′ S) = S(ρ′ S) − ∑
k

pkS(ρ′ S|k))
G. Adesso, D. Girolami, A. Serafini, “Measuring gaussian quantum information and correlations using the Rényi 
entropy of order 2”. PRL 109, 190502 (2012). 



🅿 Unconditional production/flux
• The unconditional Wigner function evolves 

according to a Fokker-Planck equation: 
 
 

         

 
where 
 

           

 
is a quasi-probability current. 

• The entropy production and flux rates are 
 

       

 

      

∂W
∂t

= div[J + Jsto]

J = (Ax + b)W −
D
2

∇W

Πu = 2∫
dx
Wu

JTD−1J ⩾ 0

Φu = − 2∫ JTD−1A dx

J. P. Santos, GTL, M. Paternostro, “The Wigner entropy production rate”, PRL 118, 220601 (2017).

• The stochastic MEq is translated into 
a stochastic Fokker-Planck equation: 
 

       

 
where 
 
       

• One can show that the flux does not 
change: 
 
         
 
as intuitively expected.

∂Wc

∂t
= div[J + Jsto]

Jsto = Wc(σcCT + ΓT)ξ(t)

Φc = Φu



• Hence, as before, we will have 
 
 
     
                        
     

• In particular, the net rate of information gain can be shown to be 
 
 

        

✓ The 1st term is the information loss rate due to the dissipation ( ).  

✓ The 2nd term is the information gain rate, due to the update matrix  

• In the steady-state . But this does not mean we are no longer acquiring information.  

• What it means is that : the information acquired is balanced by the information 
dissipated. 

Πu = ·Su + Φu
∴ Πc = Πu − ·I

Πc = ·Sc + Φu

·I =
1
2
tr[D(σ−1

c − σ−1
u )] −

1
2
tr[χ(σc)σ−1

c ] := ·L − ·G

∝ D

χ(σc)

·I = 0
·G = ·L

Informational steady-state



arXiv:2005.03429



🇩🇰 Copenhagen setup
• Optomechanical system continuously monitored by an optical 

field.  

• Competition: Thermal bath vs. Measurement. 

• Quadratures of the mechanical mode:  

• CM  

• Unconditional dynamics tends to   
 
            

• Conditional dynamics evolves instead to  
 
 

         

 

        

x = (q, p)

σ ∝ 𝕀

x̄u = 0

σu = n̄ + 1/2 + Γqba/Γm

dx
dt

= −
Γm

2
x + 4ηΓqbaσc(t)ξ(t)

dσc

dt
= Γm(σu − σc) − 4ηΓqbaσ2

c

σ(
t)

Informational steady-state: 

Conditional dynamics relaxes 
to a colder state, , 
which can only be maintained 
by continuously monitoring S.

σc < σu



H = ωa†a + ( p
2m

+
1
2

ω2x2) + ga†ax



Production and flux at the 
trajectory level

Information gain/loss rates 
characterizing the information 

steady-state



Conclusions
• Knowing something about the bath makes the process less irreversible.  

• The conditional entropy production quantifies this effect. 

• But quantifying this for continuously monitored quantum systems is not trivial.  

• We put forth a framework for GCV systems. 

• Rich and clear physical interpretation.  

• We also provide an experimental assessment of the entropy production  
at the level of stochastic trajectories in a  
quantum optomechanical system.
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