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2nd law at the quantum level

e« Consider a physical system § with an arbitrary initial state pg

and interacting with a bath E prepared in a thermal state
pE::efﬂﬁ&/Zf via an arbitrary unitary U:

PéE = U(ps ® PE)UT

e This describes a very broad class of processes!

e from an atom interacting with the electromagnetic vacuum..
e ..to a red-hot sword being dipped 1n a bucket of water.
e The unitary may be insanely complicated.

e But the map will still be of this form.

GITL and M. Paternostro, “Irreversible entropy production,
from quantum to classical”, arXiv:2009.07/668



e Let S(pg) = —tr(pglnpg) denote the entropy of the system.

e It was shown by Esposito and Lindenberg that

S := ASg — SOz > 0

where Qp = (Hp)' —(Hy) is the heat that entered the bath.

e This 1mplies that the changes in entropy of the system
are not independent of the heat flux to the bath.

e 2 1is called the entropy production.
e This 1s the 2nd law in a fully quantum formulation.
v It can be extended to multiple baths.

v And reproduces classical results 1in the appropriate
Limits.

€6 1

M. Esposito, K. Lindenberg, C. Van den Broeck,

2. can be expressed as a fully
iInformation-theoretic quantity:

> =1(5: E)+ S(p| | pp)

where

I'(S - E) = 5(pg) + 5(pp) — S(pgp)

S(i| 1 pg) = tr(pgInpp — ppIn py)

Entropy production as correlation

between system and reservoir”. New Journal of Physics, 18, 013013 (2010).



e 2 measures how irreversible a process is.

e Hxample:

e The efficiency of a heat engine can be written as
T'CZ

N =1c , Nne=1-T./T,

0, +

e Since 2>0 (2nd law), it follows that n< e G
e Hxample: J
e Suppose U is generated by an infinitesimal quench H(0) — H(1l) = H(0O) + 0H.

e Then work (W) ~ S8H but X ~ SH;.

M. Scandi, H.J.D. Miller, J. Anders and M. Perarnau-Llobet, “Quantum work statistics
close to equilibrium”, Phys. Rev. Research &, 023377 (2020).



Production/flux in non-equilibrium settings

e The idea of entropy production, as a gauge e This can always be written as
of irreversibility can also be extended
beyond thermal environments. > = ASS+ ()
e The map continues to have the form: where
P = Ulps ® pp)U’ @ = tr{ (o~ pp)in py |

but with arbitrary pg. is called the entropy flux.

e The entropy production is still defined as e ® depends only on E. It measures the

o / change in the “thermodynamic potential”
2=1I(S:E)+ S0l lpp) Inp, of the environment.

e For thermal baths, ® coincides with the
heat flux.



Conditional entropy production



Conditional entropy production

e Part of the 1irreversibility stems from our e What 1s the entropy production and
ignorance about the environment. flux, conditioned on these outcomes?
That 1s, we are looking for something
like

e Suppose we measure E after 1t interacted with
S.

2y = S(pg) — S(pg) + Dy
Psg = P§E|k = (1 ®M)pgr(1 &® M,D
e Or, focusing on the average over all
outcomes,

pr=1t FE(MngPIY«j)

{M,} = generalized measurement operators 2 = Zka(Pém)_S(PS)"'(Dc
acting on E: k

How to define 2, ®_?

This 1s a conditional state. It 1s the state of
SE, conditioned on the measurement outcome

being k.



« A natural generalization of ¢>::trE{(pE——péﬂn¢yé} is

O, = tre{(pgp — ppnpg

e Averaging over p, yields

O, = Zpkq)k =@ = t"{(ﬂE — ﬁE)lnPE}a PE= ZPkﬂfﬂk
k k

e If the measurement is non-disturbing then pp = pr.

e In this case the conditional and unconditional fluxes coincide.

e This makes sense: 1f this 1s to be a flux, then it shouldn’t depend on the subjective
information one has about the measurement.

e It can still depend on a possible disturbance caused by the measurement. But we are
going to assume this 1s not the case.



e The unconditional and conditional X’s are thus e One may show that

X = S(pg) — S(ps) + @ O<2. <2

.= ) piS(g) — Slpg) + @
k

e Thus, the conditional entropy production
still satisfies a 2nd law (2.2 0).

e Whence, e But it is also smaller than the

, unconditional one:
Z“c — 2 _%M(pS)

where  Conditioning makes the process more
reversible.
P9 = S0P — Y PSPs) = D PSPyl 109
k k

is the Holevo quantity (4.

K. Funo, Y. Watanabe and M. Ueda, “Integral quantum fluctuation theorems
under measurement and feedback control”. PRE, 88, 052121 (2013).

GTL and M. Paternostro, “Irreversible entropy production,
from quantum to classical”, arXiv:2009.07668

M. Naghiloo, J. J. Alonso, A. Romito, E. Lutz, K. Murch,
“Information Gain and Loss for a Quantum Maxwell’s Demon”. PRL 181, 030604 (2018).



4 Continuous weak measurements



4 Continuous weak measurements

e What about systems that are continuously monitored by a weak probe?
e Things become more complicated because now we have the entire measurement record to take into account.

e For instance, there will be both integral and differential information gains.
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H. M. Wiseman and G. J. Milburn, “Quantum Measurement and Control” .
K. Jacobs, “Quantum Measurement Theory”.



 Gaussian continuous weak measurements

e The theory of continuous measurements is further developed, and can go much deeper,

N
the case of continuous variables undergoing Gaussian-preserving dynamics.

e Let x=1(q,P;»9», P> -..) denote the vector of quadrature operators. Gaussian systems are
fully characterized by their 2 first moments:

« the average X = (x)

| | 1
. and the covariance matrix (CM) aljzz({xi,xj})—(xi)(xj).

e We must track both the conditional and unconditional dynamics.

e Unconditional means we monitor (there 1i1s still backaction) but we don’t care about the
results. Described by a Lindblad MEq.

Conditional dynamics 1is stochastic because we condition on random outcomes. Described
by a stochastic MEq.

A. Serafini, “Quantum Continuous Variables: A Primer of Theoretical Method” .

M. G. Genoni, L. Lami, and A. Serafini,

“Conditional and unconditional Gaussian quantum dynamics”,
Contemp. Phys. 8%, 331 (2016).



e The continuous measurement will cause the mean

X. to evolve stochastically according to the

e Unconditional variables evolve as 1n a ) .
Langevin equation:

Lindblad master equation:

_ dx, _
d;;u AT+ —< = (AT, +b) + (0.CT + TTE®)

, where C,I" are matrices and &(¢) is a vector of
where A,b depend on both unitary and white noises 40

dissipative dynamics.

e The CM, on the other hand, evolves

e Similarly, the CM evolves according to the deterministically:
Lyapunov equation :
d e — Ao+ 0 AT+ D (6.)
9] =Ac.+o0 — y(o
- :Aau_l_GuAT'l'D dt ‘ ‘ ¢
dt
where D is called the diffusion matrix. where

7(©0)=(6.C'+TH(Co+T) >0

describes the information gained due to the
measurement.

M. G. Genoni, L. Lami, and A. Serafini, “Conditional and unconditional Gaussian quantum dynamics”,
Contemp. Phys. 8%, 331 (2016).



Thermodynamics of Gaussian CMs

e In the case of continuous measurements, the relevant quantity i1s the entropy production
rate.

e We formulate the thermodynamics of this model using a semi-classical representation 1n
terms of the Wigner function W(x) (standard approach does not work).

e The Wigner function, conditioned on a given outcome for the average, 1s VK(X\X).

e The variable X is classical, with probability distribution p(Xx).

e The conditional and unconditional Wigner functions are thus associated by a Kalman
filter:

W, (x) = JWC(X | D)p(E)dx

A. Belenchia, L. Mancino,GTL and M. Paternostro, “Entropy Production in Continuously Measured
Quantum Systems”, arXiv:1908.09382. Accepted in npj Quantum Information.



e As an alternative representation of entropy, we can use

= — JWM(X)ln W (x)dx

and

= Jp(@dchWC(x | 5)ln W.(x | H)dx

e Their difference represents the net amount of information acquired by the measurement
record:

I=S,-S.>0

e This is the phase-space analog of the Holevo quantity. Exactly the same idea 4.

G. Adesso, D. Girolami, A. Serafini, "Measuring gaussian quantum information and correlations using the Rényi
entropy oforder 2”. PRL 109, 190502 (2012).



LJ Unconditional production/flux

e The unconditional Wigner function evolves

according to a Fokker-Planck equation: e The stochastic MEg 1s translated into

a stochastic Fokker-Planck equation :

ow ow.
E=d1V[J JStO] at

where where

=div|J+ Jsto

J = (Ax+b)W—§VW Jsto = W(o,CT +T)E®)

1S a quasi-probability current.
e One can show that the flux does not

e The entropy production and flux rates are change:
" dx O =0
,=2|—J'DJ>0 ©
J W,

as intuitively expected.

O = - 2JJTD‘1A dx

J. P. Santos, GTL, M. Paternostro, “The Wigner entropy productionrate”, PRL 118, 220601 (2017).



e Hence, as before, we will have

=5+, |
| M.=1I1 — 1
.=S +®,

e In particular, the netrate of information gain can be shown to be

I = %tr [D(Gc_l — au_l)] — %tr [)((GC)GC_I] =L-G

v/ The 1st term is the information lossrate due to the dissipation (x D).
v/ The 2nd term is the information gainrate, due to the update matrix y(o.)

e In the steady-state [=0. But this does not mean we are no longer acquiring information.

e What it means is that G =L: the information acquired 1is balanced by the information
dissipated.

Informational steady-state
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= Copenhagen setup 101 Homodyne | i
—~ [ Receiver
A
) —
e (Optomechanical system continuously monitored by an optical © —
field.
e Competition: Thermal bath vs. Measurement. 1;
| | | |
e Quadratures of the mechanical mode: x = (q,p) 0 100 200 300 400

Time (us)
e CM 0 |

e Unconditional dynamics tends to X, =0
6,=n+1/2+T,,I/T,

e Conditional dynamics evolves instead to Informational steady-state:

Conditional dynamics relaxes
X+ \/ 4;7Fqbaoc(t)§(t) to a colder state, 6. < 0,

which can only be maintained
by continuously monitoring S.

dx 1,
dt 2
do

C

dt

=1,(0,—0,) - 4’7Fqba0§



H=wa"a+ (— + —w xz) + ga'ax
2m 2
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FIG. 2. Stochastic entropy flux and production rates. a, The
stochastic entropy flux rates (light blue) for a sample of 10
trajectories. The dark blue line is the ensemble average over
all the trajectories. b, The stochastic entropy production rates
(light blue) and the ensemble average (dark blue), for the same
sample of trajectories.
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FIG. 3. Informational contribution to the entropy produc-
tion rate. We obtain the informational contribution (dark blue)
from the entropy production. The dashed (dot-dashed) line is
the differential gain of information due to the measurement
(loss of information due to noise input by the phonon bath).



Conclusions

e Knowing something about the bath makes the process less irreversible.
e The conditional entropy production quantifies this effect.
e But quantifying this for continuously monitored quantum systems is not trivial.
e We put forth a framework for GCV systems.
e Rich and clear physical interpretation.

e We also provide an experimental assessment of the entropy production
at the level of stochastic trajectories 1n a
quantum optomechanical system.
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