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New questions:  
• Probability cycle is of type X? 
• Entropy production of each cycle? 
• How long does a cycle take? Waiting 

time distribution. 
• How are cycles correlated with each 

other? Cycle bunching/anti-bunching.  
• How many bounces between something 

useful? Intermittency.
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FIG. 3. (a-d) Statistics of cycles in three-level maser from Fig. 2. (a) Probability of observing a cycle X within a duration ω
[Eq. (9)] at resonance εd = εh→εc and Th/Tc = 10. (b) Total probability of observing a cycle X [Eq. (10)] and (c) expectation
values for cycle duration [Eqs. (11), (12)] as a function of the ratio of bath temperatures. A vertical line at Th/Tc = εh/εc

separates the refrigerator and engine regimes. The inset shows all expectation values nearly converge at resonance. (d) Mean of
intervening idle cycles between useful cycles and ratios of fraction of idle-to-useful times against bath gradient. The parameters
are fixed (in units of Tc = 1) at ϑh = ϑc ↑ ϑ = 0.05, εh = 8, εc = 2, εd = 4, ϖ = 0.5 unless mentioned otherwise.

tropy production currents, as Q̇h = ωhIex, Q̇c = →ωcIex,
Ẇ = ωdIex and !̇ = εIex, where ε = ωh/Th → ωc/Tc.
The second law !̇ ↑ 0 confirms the conditions for engine
and refrigeration regimes, depending on the sign of ε.

On the level of individual stochastic events, idle cycles
(X = 3, 4) are entropy-neutral, while engine (X = 1) and
refrigeration (X = 2) cycles produce entropy ±ε, respec-
tively. The average entropy produced per cycle is there-
fore E(!cyc) = ε(p1 → p2), which relates to the steady-
state entropy production rate as !̇ = E(!cyc)/E(ϑ). The
variance in entropy production within each cycle reads

Var(!cyc) = ε2
[
(1→ pid)→ (p1 → p2)

2
]
, (15)

where pid := p3 + p4 is the probability of idle cycles.
This variance vanishes in the absence of coherent drive
(ϖ = 0 implying pid = 1, p1 = p2 = 0) and is bounded
by ε2(1 → pid) when p1 = p2. Thus, the fluctuations in
entropy production are directly related to how often the
machine fails to produce useful cycles.

Intermittency of a machine.— These findings show
that thermodynamic quantities can vary significantly be-
tween individual cycles, highlighting the role of the ma-
chine’s regularity or intermittency in its performance.
Despite this variability, due to Q̇h = ωhIex and Q̇c =
→ωcIex, these fluctuations leave the steady-state e”-
ciency una#ected, with ϱ = 1 + Q̇c/Q̇h = 1 → ωc/ωh.
This perspective aligns with Ref. [76], wherein the need
for a complementary metric to characterize small-scale
machines was suggested.

Intermittency as a measure should capture the distri-
bution of idle cycles as a proxy for consistency in heat
flow. Concretely, intermittency can be characterized by
the average number of idle cycles between two useful
ones. Since the typical thermodynamic variables cannot
witness idle cycles, their presence is inferred from only
the time the machine spends abstained from transferring
heat. Thus, in a manner analogous to the previous defi-
nition, the average fraction of time spent performing idle

cycles provides another aspect of intermittency, particu-
larly when idle cycles occur on a di#erent timescale than
useful ones. A perfectly regular machine — one where
only useful cycles occur — would have zero intermittency.
For the three-level maser, characterizing intermittency

is greatly simplified since cycles are independent. In
other words, these cycles form renewal processes. The
trajectory probability from Eq. (6) factors into a prod-
uct because the post-injection subspace is singleton (|2↓).
The average number of idles n between useful ones, and
the fraction of average idle-to-useful times T appear as
[62]

↔n↓ = pid
pu

=
p3 + p4
p1 + p2

, T =
p3E(ϑ |3) + p4E(ϑ |4)
p1E(ϑ |1) + p2E(ϑ |2) , (16)

both of which are plotted in Fig. 3 (d). Assuming ςh =
ςc, we find ↔n↓ ↑ 1 and thus the machine operates ir-
regularly. Selecting an appropriate ratio of bath temper-
atures, e.g., Th/Tc ↗ 9, enables quicker cycle comple-
tion but results in a higher participation of idle cycles.
This emphasizes the subtle trade-o#s involved in balanc-
ing two aspects of intermittency. The case for thermal
machines whose cycles are not independent is treated in
Sec. S5 of [62].
Conclusions.— We showed how to unravel the time-

dependent statistics of quantum thermal machines, en-
abling classification of stochastic dynamics into distinct
cycles based on how they interact with di#erent resource
reservoirs, determination of cycle occurrence frequencies,
and cycle durations. Our results encompass all statis-
tical correlations between cycles, and also connect with
known results in FCS for the average excitation current
and dynamical activity. This approach provides a new
avenue for characterizing quantum thermal machines us-
ing experimentally accessible data. In particular, our for-
malism could be readily employed to analyze, e.g., meso-
scopic transport in quantum dot experiments shedding
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