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Motivation



Closed quantum systems

The state of the system in quantum mechanics is described by the

density matrix ρs :

I Hermicity: ρs = ρ†s ,

I Positivity: ρs ≥ 0,

I Normalization: Tr(ρs) = 1.

ρS

We often assumed that the system is isolated, evolving under von

Neumman’s equation:

dρs(t)

dt
= −i [H, ρs(t)].

Breuer & Petruccione (2002). The theory of open quantum systems. Oxford University Press.
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Open quantum systems

Generally, the system ρS is interacting with an environment ρE .

Still, the whole bipartite ρSE is closed.

dρSE (t)

dt
= −i [HSE , ρSE (t)],

with solution:

ρSE (t) = U(t) ρSE (0)U†(t),

where U(t) = e−iHSE t .

ρS

ρE

How do we obtain the evolution for the system only?
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Markovian vs Non-Markovian Evolution

We can get an analytic evolution when the interaction is weak

enough that information translated from the system to the

environment never comes back to the system1:

dρS
dt

= −i [H, ρS ] +
∑
k

gk

(
LkρSL

†
k −

1

2

{
L†kLk , ρS

})
. (1)

More generally, the dynamics can be written as:

dρS
dt

= −i [HS , ρS ] +

∫ t

0
Kt−t′ [ρS(t ′)] dt ′, (2)

where Kt−t′ is a linear superoperator called the memory kernel.

1
Lindblad, G. (1976). On the generators of quantum dynamical semigroups. Communications in Mathematical

Physics, 48(2), 119-130.
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Importance of Non-Markovianity

I Realistic quantum systems are open quantum systems

evolving under non-unitary evolutions.

I Strong system-environment coupling, finite reservoirs, low

temperatures, large initial system-environment correlations,

among others.

I Applications of quantum memory: quantum Brownian motion

in optomechanical systems, chaotic systems, continuous

variable quantum key distribution, quantum metrology,

time-invariant quantum discord.
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Collisional Model



Collisional Models

An alternative description of open quantum systems is through

collisional models.

S


S
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Non-Markovian Collisional Models

We can introduce non-Markovianity in two main ways:

I Ancillas start correlated.

I Environmental collisions.

E1
 E2
 E3


S
 S


E1
 E2
 E3


S


E1
 E2
 E3


S


E1
 E2
 E3
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Dynamics

I The interaction between system and ancilla

is given by the unitary Un.

I The interaction between ancilla and ancilla

is given by the unitary Vn,n+1.

I The stroboscopic dynamics generated is:

ρn = Vn,n+1Un ρ
n−1 U†n V

†
n,n+1, (3)

where ρn is the global state of SE1E2 . . . at

time n.

En
 En+1


S


En
 En+1


S
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Dynamics

I The system S and the ancillas En, En+1 are

the only involved dynamically with S and

En in the correlated state ρn−1
SEn

.

I Thus, the process can be written as:

ρnSEnEn+1
= Vn,n+1Un

(
ρn−1
SEn
⊗ρEn+1

)
U†n V

†
n,n+1.

I Tracing out the environment En:

ρnSEn+1
= trEn(Vn,n+1Un(ρn−1

SEn
⊗ρEn+1)U†nV

†
n,n+1).

I This defines a time-local and CP map:

ρnSEn+1
:= Φ(ρn−1

SEn
). (4)

En
 En+1


S


En
 En+1


S
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Markovian embedding

I Basic structure of the Markovian

embedding ρnSEn+1
= Φ(ρn−1

SEn
) which

is a map from the Hilbert space of

SEn to that of SEn+1.

I We can define En taking ρ0
S to ρnS :

ρnS = En(ρ0
S) = trEn+1 Φn(ρ0

S ⊗ ρE1),

which is CP. But the map Em→n

taking ρmS to ρnS is generally not.
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Gaussianity

We describe the system S by bosonic annihilation operator a and

quadratures Q = (a + a†)/
√

2 and P = i(a† − a)/
√

2, and the

ancillas by bosonic operators b1, b2, . . . with quadratures qn, pn.

I System ancilla: Un = eλS (a†bn−b†na).

I Ancilla-ancilla: Vn,n+1 = eλe(b†nbn+1−b†n+1bn).

I Ancilla-ancilla: Ṽn,n+1 = eνe(b†nb
†
n+1−bnbn+1).

This defines two types of evolutions:

I Beam splitter evolution:

ρn = Vn,n+1Un ρ
n−1U†n V

†
n,n+1 (5)

I Two-mode Squeezing evolution:

ρn = Ṽn,n+1Un ρ
n−1U†n Ṽ

†
n,n+1 (6)

En
 En+1


S


En
 En+1


S
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Continuous variable

The evolution of the expectation value of any observable is:

d

dt
〈O〉 = i〈[H,O]〉.

The Gaussian dynamics is fully characterized by the evolution of

the first moments ~y = (〈Q〉, 〈P〉, 〈q1〉, 〈p1〉 . . . ), and the

covariance matrix σ = 1
2〈{Yi ,Yj}〉 − 〈Yi 〉〈Yj〉.

d~y

dt
= M~y ,

d

dt
σ = Mσ + σMT,

with solution

~y(t) = S ~y(0), σ(t) = S σ(0)ST, S = eMt .

Serafini, A. (2017). Quantum continuous variables: a primer of theoretical methods. CRC press.
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Equivalence

I Initial state:

ρ0 = ρ0
S ⊗ ρE ⊗ ρE ⊗ · · · −→ σ0 = diag(θ0, ε, ε, . . . )

I Interactions:

Un,Vn,n+1, Ṽn,n+1 −→ Sn,Sn,n+1, S̃n,n+1

I Dynamics:

dρ

dt
= i [H, ρ] −→ dσ

dt
= Mσ + σMT

I Evolution:

ρn = Vn,n+1Unρ
n−1U†nV

†
n,n+1 −→ σn = Sn,n+1Snσ

n−1ST
n S

T
n,n+1
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Un,Vn,n+1, Ṽn,n+1 −→ Sn,Sn,n+1, S̃n,n+1

I Dynamics:

dρ

dt
= i [H, ρ] −→ dσ

dt
= Mσ + σMT

I Evolution:

ρn = Vn,n+1Unρ
n−1U†nV

†
n,n+1 −→ σn = Sn,n+1Snσ

n−1ST
n S

T
n,n+1

13/33



Equivalence

I Initial state:

ρ0 = ρ0
S ⊗ ρE ⊗ ρE ⊗ · · · −→ σ0 = diag(θ0, ε, ε, . . . )

I Interactions:
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Sympletic Matrices

Un −→ Sn =


x 0 y 0

0 I 0 0

−y 0 x 0

0 0 0 I

,

Vn,n+1 −→ Sn,n+1 =


I 0 0 0

0 z w 0

0 −w z 0

0 0 0 I

,

Ṽn,n+1 −→ S̃n,n+1 =


I 0 0 0

0 z̃ w̃σz 0

0 w̃σz z̃ 0

0 0 0 I

.
where x = cos (λs), y = sin (λs), z = cos (λe), w = sin (λe),

z̃ = cosh (νe), w̃ = sinh (νe). 14/33



Sympletic evolution

The step from σn−1 to σn involves only S , En and En+1:

σn−1
SEnEn+1

=


θn−1 ξn−1

n 0

ξn−1,T
n εn−1

n 0

0 0 ε

 . (7)

We then apply to the evolution:

σnSEnEn+1
= Sn,n+1Sn

(
σn−1
SEnEn+1

)
ST
n S

T
n,n+1. (8)

Only three entries are needed for the dynamics: the system θn, the

ancilla εnn+1 and their correlations ξnn+1.
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Beam splitter evolution

Let us analyze the beam splitter case:

θn = x2θn−1 + y2εn−1
n + xy(ξn−1

n + ξn−1,T
n ),

εnn+1 = z2ε+ w2
[
x2εn−1

n + y2θn−1 − xy(ξn−1
n + ξn−1,T

n )
]
,

ξnn+1 = w
[
xy(θn−1 − εn−1

n ) + y2ξn−1,T
n − x2ξn−1

n

]
.

These equations can be recast in terms of the Markovian

embedding:

γn+1 = XγnXT + Y ,

where

γn =

 θn ξnn+1

ξn,Tn+1 εnn+1

 , X =

 x y

yw −wx

 , Y =

0 0

0 z2ε

 .
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Two-mode squeezing evolution

For the two-mode squeezing, we get:

γn+1 = XγnXT + Y ,

where

γn =

 θn ξnn+1

ξn,Tn+1 εnn+1

 , X =

 x y

−yw̃σz w̃xσz

 , Y =

0 0

0 z̃2ε

 .
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System’s Evolution
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Figure 1: Number of excitations in the system as a function of time. (a,b) BS dynamics with λs = 0.5 and

different values of λe (with λe > 0 in (a) and λe < 0 in (b)). (c,d) Same, but for the TMS with λs = 0.1 and

different values of νe (with νe < νcrit
e in (a) νe > νcrit

e in (b), where νcrit
e = sinh−1(1) ' 0.8813). The ancillas

are assumed to start in the vacuum, and the system in a thermal state with 〈a†a〉0 = 20.
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Memory effects in Collisional

Models



Quantum non-Markovianity

Classically, a process is non-Markovian if the conditional probability

of the future states depends on the precedent events.

I Information flow: The backflow of information quantifies the

ability of the dynamics to communicate past information to

the future.

I Map divisibility: The map En is CP by construction. However,

the intermediate map Em→n in general is not CP. Conversely,

Markovian maps are always CP.

Rivas, A., Huelga, S. F., & Plenio, M. B. (2014). Quantum non-Markovianity: characterization, quantification

and detection. Reports on Progress in Physics, 77(9), 094001.
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Mutual Information

Memory effects must be related to correlations that develop

between system and bath.

I In the collisional model, the relevant correlations are between

S and ancilla En+1 at time n before its explicit interaction.

I A useful measure of correlations is the mutual information2:

In(SEn+1) = S(ρnS) + S(ρnEn+1
)− S(ρn),

where S is the von Neumann entropy.

I We can compute the MI in terms of the eigenvalues of γn.

2
Nielsen, M. A., & Chuang, I. (2002). Quantum computation and quantum information.
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Mutual Information
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Figure 2: Mutual Information for the BS (a,b) and TMS (c) dynamics. (a,b) BS with λs = 0.5 and different

values of λe (with λe > 0 in (a) and λe < 0 in (b)). (c) TMS with λs = 0.1 and different values of νe (with

νe < νcrit
e in (c) where νcrit

e = sinh−1(1) ' 0.8813). The ancillas are assumed to start in the vacuum, and the

system in a thermal state with 〈a†a〉0 = 20.
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Memory Kernel

A much older measure is the memory kernel Kt−t′
34:

dρS
dt

= −i [HS , ρS ] +

∫ t

0
Kt−t′ [ρ(t ′)] dt ′

I The collisional model analog will act on the system’s CM:

θn+1 = x2θn +
n−1∑
r=0

Kn−r−1(θr ) + Gn, (9)

where Gn is a contribution coming from the ancilla initial

state, and the memory kernel Kn on the X matrix with:

Kn(θ) =
∑
ij

κnijMiθM
T
j . (10)

where Mi are a complete set of matrices {I2, σz , σ+, σ−}.

3
Nakajima, S. (1958). On quantum theory of transport phenomena. Progress of Theoretical Physics

4
Zwanzig, R. (1960). Ensemble method in the theory of irreversibility. The Journal of Chemical Physics, 33(5). 22/33



Memory Kernel

We start with the dynamics difference equation:

γn+1 = XγnXT + Y . (11)

Vectorizing the difference equation, we get:

~γn+1 = (X ⊗ X )~γn + ~Y . (12)

We introduce projection matrices on the subspaces:

PS =

I 0

0 0

 , PE =

0 0

0 I

 .

We introduce the Nakajima-Zwanzig projection operators

P = PS ⊗ PS and Q = 1− P:

P~γn+1 = P(X ⊗ X )P~γn +
n−1∑
r=0

K̂n−r−1P~γ
r + ~Gn. (13)
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Beam splitter MK

Kn(θ) =
∑
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Figure 3: The memory Kernel for the BS dynamics. The only non-zero entry is κn
11, proportional to the identity.

The plots are for λs = 0.5 (upper panel) and λs = 0.05 (lower panel), with λe > 0 (left) and λe < 0 (right). 24/33



Two-mode Squeezing MK
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Figure 4: The memory Kernel for the (stable) TMS dynamics, with λs = 0.1 and different values of λe . Each

curve corresponds to a different entry of the memory kernel; namely, κn
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, κn
σz ,1

and κn
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Beam splitter MK

Figure 5: Diagrams for the MK of the BS dynamics. Each plot shows κn
11 in the (λs , λe ) plane for a different

value of n, from n = 0 to n = 5.
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CP-Divisibility

Let us return to map divisibility. Given that the inverse map E−1

exists for all times t > 0, we can define the intermediate maps:

Em→n = En ◦ E−1
m .

Even though En and Em are CP by construction, the intermediate

map Em→n will not necessarily be. Hence, by measuring how much

the intermediate map Em→n departs from the CP map, we are

measuring the degree of non-Markovianity of the time evolution.
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CP-Divisibility

I At the level of CM, any gaussian CPTP map have the form

θ → X θXT + Y, where X and Y are matrices satisfying5:

M[X ,Y] := 2Y + iΩ− iXΩXT ≥ 0

I We come back to the difference equations and solve them:

γn = X nγ0(XT)n +
n−1∑
r=0

X n−r−1Y (XT)n−r−1.

I The evolution of the system’s CM from 0 to n is:

θn = Xnθ
0XT

n + Yn

where the matrix Xn = (X n)11 and the other matrix

Yn = (X n)12ε(X
nT)12 +

n−1∑
r=0

[
X n−r−1Y (XT)n−r−1

]
11
.

5
Lindblad, G. (2000). Cloning the quantum oscillator. Journal of Physics A: Mathematical and General, 33(28). 28/33



CP-Divisibility

I To probe whether the dynamics is divisible, we consider the

map taking the system from n to m > n:

θm = Xmnθ
nXT

mn + Ymn,

where Xmn = XmX−1
n , Ymn = Ym −XmnYnXT

mn.

I The dynamics is considered divisible when the intermediate

maps are CPTP Gaussian map M[Xmn,Ymn] ≥ 0.

I This can also be used as a figure of merit6:

Nmn =
∑
k

|mk | −mk

2
, {mk} = eigs

(
M[Xmn,Ymn]

)
.

6
Torre, G., Roga, W., & Illuminati, F. (2015). Non-markovianity of gaussian channels. PRL, 115.
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Beam splitter CP-Divisibility

Figure 6: CP-divisibility measure Nn+1,n in the (λs , λe ) plane for the BS dynamics. Each plot corresponds to a

different values of n: in the first 2 lines, n ranges from 1 to 10 in steps of 1. In the 3rd line, n = 20, 21, 30, 31, 40.
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Two-mode squeezing CP-Divisibility

Figure 7: CP-divisibility measure Nn+1,n in the (λs , νe ) plane for the TMS dynamics. Each plot corresponds to a

different values of n, from 1 to 9 in steps of 1.
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Conclusions



Conclusions

I We presented a robust framework for studying non-

Markovianity in collisional models from multiple perspectives.

I We showed that the dynamics can be cast in terms of a

Markovian embedding of the covariance matrix.

I This yields closed expressions for the mutual information, the

memory kernel, and the divisibility monotone.

I We analyzed in detail two types of interactions, a beam

splitter and a two-mode squeezing. Yet the results can be

easily generalized to other Gaussian interactions.
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Conclusions

Results of this work were reported in the preprint:

I Camasca, R.R. and Landi, G.T., 2020. Memory kernel and

divisibility of Gaussian Collisional Models. arXiv preprint

arXiv:2008.00765.

I Python Libraries: https://github.com/gtlandi/gaussianonmark
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