Memory effects in Gaussian Collisional Models

Rolando Ramirez Camasca
Supervisor: Prof. Dr. Gabriel T. Landi
@cnpq
Conselho Nacional de Desenvolvimento Científico e Tecnológico

Universidade de São Paulo
December, 2020

Motivation

Closed quantum systems

The state of the system in quantum mechanics is described by the density matrix ρ_{s} :

- Hermicity: $\rho_{s}=\rho_{s}^{\dagger}$,
- Positivity: $\rho_{s} \geq 0$,
- Normalization: $\operatorname{Tr}\left(\rho_{s}\right)=1$.

We often assumed that the system is isolated, evolving under von Neumman's equation:

$$
\frac{d \rho_{s}(t)}{d t}=-i\left[H, \rho_{s}(t)\right]
$$

[^0]
Open quantum systems

Generally, the system ρ_{S} is interacting with an environment ρ_{E}. Still, the whole bipartite $\rho_{S E}$ is closed.
$\frac{d \rho_{S E}(t)}{d t}=-i\left[H_{S E}, \rho_{S E}(t)\right]$,
with solution:
$\rho_{S E}(t)=U(t) \rho_{S E}(0) U^{\dagger}(t)$,
where $U(t)=e^{-i H_{S E} t}$.

Open quantum systems

Generally, the system ρ_{S} is interacting with an environment ρ_{E}. Still, the whole bipartite $\rho_{S E}$ is closed.
$\frac{d \rho_{S E}(t)}{d t}=-i\left[H_{S E}, \rho_{S E}(t)\right]$,
with solution:
$\rho_{S E}(t)=U(t) \rho_{S E}(0) U^{\dagger}(t)$,
where $U(t)=e^{-i H_{S E} t}$.

How do we obtain the evolution for the system only?

Markovian vs Non-Markovian Evolution

We can get an analytic evolution when the interaction is weak enough that information translated from the system to the environment never comes back to the system ${ }^{1}$:

$$
\begin{equation*}
\frac{d \rho_{S}}{d t}=-i\left[H, \rho_{S}\right]+\sum_{k} g_{k}\left(L_{k} \rho_{S} L_{k}^{\dagger}-\frac{1}{2}\left\{L_{k}^{\dagger} L_{k}, \rho_{S}\right\}\right) \tag{1}
\end{equation*}
$$

More generally, the dynamics can be written as:

$$
\begin{equation*}
\frac{d \rho_{S}}{d t}=-i\left[H_{S}, \rho_{S}\right]+\int_{0}^{t} \mathcal{K}_{t-t^{\prime}}\left[\rho_{S}\left(t^{\prime}\right)\right] d t^{\prime} \tag{2}
\end{equation*}
$$

where $\mathcal{K}_{t-t^{\prime}}$ is a linear superoperator called the memory kernel.

[^1]
Importance of Non-Markovianity

- Realistic quantum systems are open quantum systems evolving under non-unitary evolutions.
- Strong system-environment coupling, finite reservoirs, low temperatures, large initial system-environment correlations, among others.
- Applications of quantum memory: quantum Brownian motion in optomechanical systems, chaotic systems, continuous variable quantum key distribution, quantum metrology, time-invariant quantum discord.

Collisional Model

Collisional Models

An alternative description of open quantum systems is through collisional models.

Non-Markovian Collisional Models

We can introduce non-Markovianity in two main ways:

- Ancillas start correlated.
- Environmental collisions.

Dynamics

- The interaction between system and ancilla is given by the unitary U_{n}.
- The interaction between ancilla and ancilla is given by the unitary $V_{n, n+1}$.

- The stroboscopic dynamics generated is:

$$
\begin{equation*}
\rho^{n}=V_{n, n+1} U_{n} \rho^{n-1} U_{n}^{\dagger} V_{n, n+1}^{\dagger} \tag{3}
\end{equation*}
$$

where ρ^{n} is the global state of $S E_{1} E_{2} \ldots$ at time n.

Dynamics

- The system S and the ancillas E_{n}, E_{n+1} are the only involved dynamically with S and E_{n} in the correlated state $\rho_{S E_{n}}^{n-1}$.
- Thus, the process can be written as:
$\rho_{S E_{n} E_{n+1}}^{n}=V_{n, n+1} U_{n}\left(\rho_{S E_{n}}^{n-1} \otimes \rho_{E_{n+1}}\right) U_{n}^{\dagger} V_{n, n+1}^{\dagger}$.
- Tracing out the environment E_{n} :

$$
\rho_{S E_{n+1}}^{n}=\operatorname{tr}_{E_{n}}\left(V_{n, n+1} U_{n}\left(\rho_{S E_{n}}^{n-1} \otimes \rho_{E_{n+1}}\right) U_{n}^{\dagger} V_{n, n+1}^{\dagger}\right)
$$

- This defines a time-local and CP map:

$$
\begin{equation*}
\rho_{S E_{n+1}}^{n}:=\Phi\left(\rho_{S E_{n}}^{n-1}\right) \tag{4}
\end{equation*}
$$

Markovian embedding

- Basic structure of the Markovian embedding $\rho_{S E_{n+1}}^{n}=\Phi\left(\rho_{S E_{n}}^{n-1}\right)$ which is a map from the Hilbert space of $S E_{n}$ to that of $S E_{n+1}$.
- We can define \mathcal{E}_{n} taking ρ_{S}^{0} to ρ_{S}^{n} :

$$
\rho_{S}^{n}=\mathcal{E}_{n}\left(\rho_{S}^{0}\right)=\operatorname{tr}_{E_{n+1}} \Phi^{n}\left(\rho_{S}^{0} \otimes \rho_{E_{1}}\right),
$$

which is CP. But the map $\mathcal{E}_{m \rightarrow n}$

Gaussianity

We describe the system S by bosonic annihilation operator a and quadratures $Q=\left(a+a^{\dagger}\right) / \sqrt{2}$ and $P=i\left(a^{\dagger}-a\right) / \sqrt{2}$, and the ancillas by bosonic operators b_{1}, b_{2}, \ldots with quadratures q_{n}, p_{n}.

- System ancilla: $U_{n}=e^{\lambda_{S}\left(a^{\dagger} b_{n}-b_{n}^{\dagger} a\right)}$.
- Ancilla-ancilla: $V_{n, n+1}=e^{\lambda_{e}\left(b_{n}^{\dagger} b_{n+1}-b_{n+1}^{\dagger} b_{n}\right)}$.
- Ancilla-ancilla: $\tilde{V}_{n, n+1}=e^{\nu_{e}\left(b_{n}^{\dagger} b_{n+1}^{\dagger}-b_{n} b_{n+1}\right)}$.

This defines two types of evolutions:

- Beam splitter evolution:

$$
\begin{equation*}
\rho^{n}=V_{n, n+1} U_{n} \rho^{n-1} U_{n}^{\dagger} V_{n, n+1}^{\dagger} \tag{5}
\end{equation*}
$$

- Two-mode Squeezing evolution:

$$
\begin{equation*}
\rho^{n}=\tilde{V}_{n, n+1} U_{n} \rho^{n-1} U_{n}^{\dagger} \tilde{V}_{n, n+1}^{\dagger} \tag{6}
\end{equation*}
$$

Continuous variable

The evolution of the expectation value of any observable is:

$$
\frac{d}{d t}\langle\mathcal{O}\rangle=i\langle[H, \mathcal{O}]\rangle
$$

The Gaussian dynamics is fully characterized by the evolution of the first moments $\vec{y}=\left(\langle Q\rangle,\langle P\rangle,\left\langle q_{1}\right\rangle,\left\langle p_{1}\right\rangle \ldots\right)$, and the covariance matrix $\sigma=\frac{1}{2}\left\langle\left\{Y_{i}, Y_{j}\right\}\right\rangle-\left\langle Y_{i}\right\rangle\left\langle Y_{j}\right\rangle$.

$$
\frac{d \vec{y}}{d t}=M \vec{y}, \quad \frac{d}{d t} \sigma=M \sigma+\sigma M^{\top}
$$

with solution

$$
\vec{y}(t)=S \vec{y}(0), \quad \sigma(t)=S \sigma(0) S^{\top}, \quad S=e^{M t} .
$$

[^2]
Equivalence

- Initial state:

$$
\rho^{0}=\rho_{S}^{0} \otimes \rho_{E} \otimes \rho_{E} \otimes \cdots \longrightarrow \sigma^{0}=\operatorname{diag}\left(\theta^{0}, \epsilon, \epsilon, \ldots\right)
$$

Equivalence

- Initial state:

$$
\rho^{0}=\rho_{S}^{0} \otimes \rho_{E} \otimes \rho_{E} \otimes \cdots \longrightarrow \sigma^{0}=\operatorname{diag}\left(\theta^{0}, \epsilon, \epsilon, \ldots\right)
$$

- Interactions:

$$
U_{n}, V_{n, n+1}, \tilde{V}_{n, n+1} \longrightarrow S_{n}, S_{n, n+1}, \tilde{S}_{n, n+1}
$$

Equivalence

- Initial state:

$$
\rho^{0}=\rho_{S}^{0} \otimes \rho_{E} \otimes \rho_{E} \otimes \cdots \longrightarrow \sigma^{0}=\operatorname{diag}\left(\theta^{0}, \epsilon, \epsilon, \ldots\right)
$$

- Interactions:

$$
U_{n}, V_{n, n+1}, \tilde{V}_{n, n+1} \longrightarrow S_{n}, S_{n, n+1}, \tilde{S}_{n, n+1}
$$

- Dynamics:

$$
\frac{d \rho}{d t}=i[H, \rho] \longrightarrow \frac{d \sigma}{d t}=M \sigma+\sigma M^{\top}
$$

Equivalence

- Initial state:

$$
\rho^{0}=\rho_{S}^{0} \otimes \rho_{E} \otimes \rho_{E} \otimes \cdots \longrightarrow \sigma^{0}=\operatorname{diag}\left(\theta^{0}, \epsilon, \epsilon, \ldots\right)
$$

- Interactions:

$$
U_{n}, V_{n, n+1}, \tilde{V}_{n, n+1} \longrightarrow S_{n}, S_{n, n+1}, \tilde{S}_{n, n+1}
$$

- Dynamics:

$$
\frac{d \rho}{d t}=i[H, \rho] \longrightarrow \frac{d \sigma}{d t}=M \sigma+\sigma M^{\top}
$$

- Evolution:

$$
\rho^{n}=V_{n, n+1} U_{n} \rho^{n-1} U_{n}^{\dagger} V_{n, n+1}^{\dagger} \longrightarrow \sigma^{n}=S_{n, n+1} S_{n} \sigma^{n-1} S_{n}^{\top} S_{n, n+1}^{\top}
$$

Sympletic Matrices

$$
\begin{aligned}
U_{n} \longrightarrow S_{n} & =\left(\begin{array}{cccc}
x & 0 & y & 0 \\
0 & \mathbb{I} & 0 & 0 \\
-y & 0 & x & 0 \\
0 & 0 & 0 & \mathbb{I}
\end{array}\right), \\
V_{n, n+1} \longrightarrow S_{n, n+1} & =\left(\begin{array}{cccc}
\mathbb{I} & 0 & 0 & 0 \\
0 & z & w & 0 \\
0 & -w & z & 0 \\
0 & 0 & 0 & \mathbb{I}
\end{array}\right), \\
\tilde{V}_{n, n+1} \longrightarrow \tilde{S}_{n, n+1} & =\left(\begin{array}{cccc}
\mathbb{I} & 0 & 0 & 0 \\
0 & \tilde{z} & \tilde{w} \sigma_{z} & 0 \\
0 & \tilde{w} \sigma_{z} & \tilde{z} & 0 \\
0 & 0 & 0 & \mathbb{I}
\end{array}\right) .
\end{aligned}
$$

where $x=\cos \left(\lambda_{s}\right), y=\sin \left(\lambda_{s}\right), z=\cos \left(\lambda_{e}\right), w=\sin \left(\lambda_{e}\right)$, $\tilde{z}=\cosh \left(\nu_{e}\right), \tilde{w}=\sinh \left(\nu_{e}\right)$.

Sympletic evolution

The step from σ^{n-1} to σ^{n} involves only S, E_{n} and E_{n+1} :

$$
\sigma_{S E_{n} E_{n+1}}^{n-1}=\left(\begin{array}{ccc}
\theta^{n-1} & \xi_{n}^{n-1} & 0 \tag{7}\\
\xi_{n}^{n-1, T} & \epsilon_{n}^{n-1} & 0 \\
0 & 0 & \epsilon
\end{array}\right)
$$

We then apply to the evolution:

$$
\begin{equation*}
\sigma_{S E_{n} E_{n+1}}^{n}=S_{n, n+1} S_{n}\left(\sigma_{S E_{n} E_{n+1}}^{n-1}\right) S_{n}^{\top} S_{n, n+1}^{\top} . \tag{8}
\end{equation*}
$$

Only three entries are needed for the dynamics: the system θ^{n}, the ancilla ϵ_{n+1}^{n} and their correlations ξ_{n+1}^{n}.

Beam splitter evolution

Let us analyze the beam splitter case:

$$
\begin{aligned}
\theta^{n} & =x^{2} \theta^{n-1}+y^{2} \epsilon_{n}^{n-1}+x y\left(\xi_{n}^{n-1}+\xi_{n}^{n-1, \mathrm{~T}}\right) \\
\epsilon_{n+1}^{n} & =z^{2} \epsilon+w^{2}\left[x^{2} \epsilon_{n}^{n-1}+y^{2} \theta^{n-1}-x y\left(\xi_{n}^{n-1}+\xi_{n}^{n-1, \mathrm{~T}}\right)\right] \\
\xi_{n+1}^{n} & =w\left[x y\left(\theta^{n-1}-\epsilon_{n}^{n-1}\right)+y^{2} \xi_{n}^{n-1, \mathrm{~T}}-x^{2} \xi_{n}^{n-1}\right]
\end{aligned}
$$

These equations can be recast in terms of the Markovian embedding:

$$
\gamma^{n+1}=X \gamma^{n} X^{\top}+Y
$$

where
$\gamma^{n}=\left(\begin{array}{cc}\theta^{n} & \xi_{n+1}^{n} \\ \xi_{n+1}^{n, \top} & \epsilon_{n+1}^{n}\end{array}\right), X=\left(\begin{array}{cc}x & y \\ y w & -w x\end{array}\right), Y=\left(\begin{array}{cc}0 & 0 \\ 0 & z^{2} \epsilon\end{array}\right)$.

Two-mode squeezing evolution

For the two-mode squeezing, we get:

$$
\gamma^{n+1}=X \gamma^{n} X^{\top}+Y
$$

where
$\gamma^{n}=\left(\begin{array}{cc}\theta^{n} & \xi_{n+1}^{n} \\ \xi_{n+1}^{n, \top} & \epsilon_{n+1}^{n}\end{array}\right), X=\left(\begin{array}{cc}x & y \\ -y \tilde{w} \sigma_{z} & \tilde{w} \times \sigma_{z}\end{array}\right), Y=\left(\begin{array}{cc}0 & 0 \\ 0 & \tilde{z}^{2} \epsilon\end{array}\right)$.

System's Evolution

Figure 1: Number of excitations in the system as a function of time. (a,b) BS dynamics with $\lambda_{s}=0.5$ and different values of λ_{e} (with $\lambda_{e}>0$ in (a) and $\lambda_{e}<0$ in (b)). (c,d) Same, but for the TMS with $\lambda_{s}=0.1$ and different values of ν_{e} (with $\nu_{e}<\nu_{e}^{\text {crit }}$ in (a) $\nu_{e} \geqslant \nu_{e}^{c r i t}$ in (b), where $\nu_{e}^{\text {crit }}=\sinh ^{-1}(1) \simeq 0.8813$). The ancillas are assumed to start in the vacuum, and the system in a thermal state with $\left\langle a^{\dagger} a\right\rangle^{0}=20$.

Memory effects in Collisional
Models

Quantum non-Markovianity

Classically, a process is non-Markovian if the conditional probability of the future states depends on the precedent events.

- Information flow: The backflow of information quantifies the ability of the dynamics to communicate past information to the future.
- Map divisibility: The map \mathcal{E}_{n} is CP by construction. However, the intermediate map $\mathcal{E}_{m \rightarrow n}$ in general is not CP. Conversely, Markovian maps are always CP.

[^3]
Mutual Information

Memory effects must be related to correlations that develop between system and bath.

- In the collisional model, the relevant correlations are between S and ancilla E_{n+1} at time n before its explicit interaction.
- A useful measure of correlations is the mutual information ${ }^{2}$:

$$
\mathcal{I}^{n}\left(S E_{n+1}\right)=S\left(\rho_{S}^{n}\right)+S\left(\rho_{E_{n+1}}^{n}\right)-S\left(\rho^{n}\right)
$$

where S is the von Neumann entropy.

- We can compute the MI in terms of the eigenvalues of γ^{n}.

[^4]
Mutual Information

Figure 2: Mutual Information for the BS (a, b) and TMS (c) dynamics. (a, b) BS with $\lambda_{s}=0.5$ and different values of λ_{e} (with $\lambda_{e}>0$ in (a) and $\lambda_{e}<0$ in (b)). (c) TMS with $\lambda_{s}=0.1$ and different values of ν_{e} (with $\nu_{e}<\nu_{e}^{\text {crit }}$ in (c) where $\left.\nu_{e}^{c r i t}=\sinh ^{-1}(1) \simeq 0.8813\right)$. The ancillas are assumed to start in the vacuum, and the system in a thermal state with $\left\langle a^{\dagger} a\right\rangle^{0}=20$.

Memory Kernel

A much older measure is the memory kernel $\mathcal{K}_{t-t^{\prime}}{ }^{34}$:

$$
\frac{d \rho_{S}}{d t}=-i\left[H_{S}, \rho_{S}\right]+\int_{0}^{t} \mathcal{K}_{t-t^{\prime}}\left[\rho\left(t^{\prime}\right)\right] d t^{\prime}
$$

- The collisional model analog will act on the system's CM:

$$
\begin{equation*}
\theta^{n+1}=x^{2} \theta^{n}+\sum_{r=0}^{n-1} \mathcal{K}_{n-r-1}\left(\theta^{r}\right)+G_{n} \tag{9}
\end{equation*}
$$

where G_{n} is a contribution coming from the ancilla initial state, and the memory kernel \mathcal{K}_{n} on the X matrix with:

$$
\begin{equation*}
\mathcal{K}_{n}(\theta)=\sum_{i j} \kappa_{i j}^{n} M_{i} \theta M_{j}^{\top} . \tag{10}
\end{equation*}
$$

where M_{i} are a complete set of matrices $\left\{\mathbb{I}_{2}, \sigma_{z}, \sigma_{+}, \sigma_{-}\right\}$.

[^5]
Memory Kernel

We start with the dynamics difference equation:

$$
\begin{equation*}
\gamma^{n+1}=X \gamma^{n} X^{\top}+Y \tag{11}
\end{equation*}
$$

Vectorizing the difference equation, we get:

$$
\begin{equation*}
\vec{\gamma}^{n+1}=(X \otimes X) \vec{\gamma}^{n}+\vec{Y} \tag{12}
\end{equation*}
$$

We introduce projection matrices on the subspaces:

$$
P_{S}=\left(\begin{array}{ll}
\mathbb{I} & 0 \\
0 & 0
\end{array}\right), \quad P_{E}=\left(\begin{array}{ll}
0 & 0 \\
0 & \mathbb{I}
\end{array}\right)
$$

We introduce the Nakajima-Zwanzig projection operators
$P=P_{S} \otimes P_{S}$ and $Q=1-P:$

$$
\begin{equation*}
P \vec{\gamma}^{n+1}=P(X \otimes X) P \vec{\gamma}^{n}+\sum_{r=0}^{n-1} \hat{K}_{n-r-1} P \vec{\gamma}^{r}+\overrightarrow{\mathcal{G}}_{n} \tag{13}
\end{equation*}
$$

Beam splitter MK

Figure 3: The memory Kernel for the BS dynamics. The only non-zero entry is κ_{11}^{n}, proportional to the identity. The plots are for $\lambda_{s}=0.5$ (upper panel) and $\lambda_{s}=0.05$ (lower panel), with $\lambda_{e}>0$ (left) and $\lambda_{e}<0$ (right).

Two-mode Squeezing MK

Figure 4: The memory Kernel for the (stable) TMS dynamics, with $\lambda_{s}=0.1$ and different values of λ_{e}. Each curve corresponds to a different entry of the memory kernel; namely, $\kappa_{11}^{n}, \kappa_{1, \sigma_{z}}^{n}, \kappa_{\sigma_{z}, 1}^{n}$ and $\kappa_{\sigma_{z}, \sigma_{z}}^{n}$.

Beam splitter MK

Figure 5: Diagrams for the $M K$ of the $B S$ dynamics. Each plot shows κ_{11}^{n} in the $\left(\lambda_{s}, \lambda_{e}\right)$ plane for a different value of n, from $n=0$ to $n=5$.

CP-Divisibility

Let us return to map divisibility. Given that the inverse map \mathcal{E}^{-1} exists for all times $t>0$, we can define the intermediate maps:

$$
\mathcal{E}_{m \rightarrow n}=\mathcal{E}_{n} \circ \mathcal{E}_{m}^{-1}
$$

Even though \mathcal{E}_{n} and \mathcal{E}_{m} are CP by construction, the intermediate map $\mathcal{E}_{m \rightarrow n}$ will not necessarily be. Hence, by measuring how much the intermediate map $\mathcal{E}_{m \rightarrow n}$ departs from the CP map, we are measuring the degree of non-Markovianity of the time evolution.

CP-Divisibility

- At the level of CM, any gaussian CPTP map have the form $\theta \rightarrow \mathcal{X} \theta \mathcal{X}^{\top}+\mathcal{Y}$, where \mathcal{X} and \mathcal{Y} are matrices satisfying ${ }^{5}$:

$$
\mathcal{M}[\mathcal{X}, \mathcal{Y}]:=2 \mathcal{Y}+i \Omega-i \mathcal{X} \Omega \mathcal{X}^{\top} \geq 0
$$

- We come back to the difference equations and solve them:

$$
\gamma^{n}=X^{n} \gamma^{0}\left(X^{\top}\right)^{n}+\sum_{r=0}^{n-1} X^{n-r-1} Y\left(X^{\top}\right)^{n-r-1}
$$

- The evolution of the system's CM from 0 to n is:

$$
\theta^{n}=\mathcal{X}_{n} \theta^{0} \mathcal{X}_{n}^{\top}+\mathcal{Y}_{n}
$$

where the matrix $\mathcal{X}_{n}=\left(X^{n}\right)_{11}$ and the other matrix

$$
\mathcal{Y}_{n}=\left(X^{n}\right)_{12} \epsilon\left(X^{n \top}\right)_{12}+\sum_{r=0}^{n-1}\left[X^{n-r-1} Y\left(X^{\top}\right)^{n-r-1}\right]_{11}
$$

[^6]
CP-Divisibility

- To probe whether the dynamics is divisible, we consider the map taking the system from n to $m>n$:

$$
\theta^{m}=\mathcal{X}_{m n} \theta^{n} \mathcal{X}_{m n}^{\top}+\mathcal{Y}_{m n}
$$

where $\mathcal{X}_{m n}=\mathcal{X}_{m} \mathcal{X}_{n}^{-1}, \mathcal{Y}_{m n}=\mathcal{Y}_{m}-\mathcal{X}_{m n} \mathcal{Y}_{n} \mathcal{X}_{m n}^{\top}$.

- The dynamics is considered divisible when the intermediate maps are CPTP Gaussian map $\mathcal{M}\left[\mathcal{X}_{m n}, \mathcal{Y}_{m n}\right] \geq 0$.
- This can also be used as a figure of merit ${ }^{6}$:

$$
\mathcal{N}_{m n}=\sum_{k} \frac{\left|m_{k}\right|-m_{k}}{2}, \quad\left\{m_{k}\right\}=\operatorname{eigs}\left(\mathcal{M}\left[\mathcal{X}_{m n}, \mathcal{Y}_{m n}\right]\right)
$$

[^7]
Beam splitter CP-Divisibility

Figure 6: CP-divisibility measure $\mathcal{N}_{n+1, n}$ in the (λ_{s}, λ_{e}) plane for the BS dynamics. Each plot corresponds to a different values of n : in the first 2 lines, n ranges from 1 to 10 in steps of 1 . In the 3 rd line, $n=20,21,30,31,40$.

Two-mode squeezing CP-Divisibility

Figure 7: CP-divisibility measure $\mathcal{N}_{n+1, n}$ in the (λ_{s}, ν_{e}) plane for the TMS dynamics. Each plot corresponds to a different values of n, from 1 to 9 in steps of 1 .

Conclusions

Conclusions

- We presented a robust framework for studying nonMarkovianity in collisional models from multiple perspectives.
- We showed that the dynamics can be cast in terms of a Markovian embedding of the covariance matrix.
- This yields closed expressions for the mutual information, the memory kernel, and the divisibility monotone.
- We analyzed in detail two types of interactions, a beam splitter and a two-mode squeezing. Yet the results can be easily generalized to other Gaussian interactions.

Conclusions

Results of this work were reported in the preprint:

- Camasca, R.R. and Landi, G.T., 2020. Memory kernel and divisibility of Gaussian Collisional Models. arXiv preprint arXiv:2008.00765.
- Python Libraries: https://github.com/gtlandi/gaussianonmark

[^0]: Breuer \& Petruccione (2002). The theory of open quantum systems. Oxford University Press.

[^1]: ${ }^{1}$ Lindblad, G. (1976). On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48(2), 119-130.

[^2]: Serafini, A. (2017). Quantum continuous variables: a primer of theoretical methods. CRC press.

[^3]: Rivas, A., Huelga, S. F., \& Plenio, M. B. (2014). Quantum non-Markovianity: characterization, quantification and detection. Reports on Progress in Physics, 77(9), 094001.

[^4]: ${ }^{2}$ Nielsen, M. A., \& Chuang, I. (2002). Quantum computation and quantum information.

[^5]: ${ }^{3}$ Nakajima, S. (1958). On quantum theory of transport phenomena. Progress of Theoretical Physics
 ${ }^{4}$ Zwanzig, R. (1960). Ensemble method in the theory of irreversibility. The Journal of Chemical Physics, 33(5).

[^6]: ${ }^{5}$ Lindblad, G. (2000). Cloning the quantum oscillator. Journal of Physics A: Mathematical and General, 33(28). 28/33

[^7]: ${ }^{6}$ Torre, G., Roga, W., \& Illuminati, F. (2015). Non-markovianity of gaussian channels. PRL, 115.

