Memory effects in Gaussian Collisional Models

Rolando Ramirez Camasca Supervisor: Prof. Dr. Gabriel T. Landi

Universidade de São Paulo December, 2020

Motivation

Closed quantum systems

The state of the system in quantum mechanics is described by the density matrix ρ_s :

- Hermicity: $\rho_s = \rho_s^{\dagger}$,
- Positivity: $\rho_s \ge 0$,
- Normalization: $Tr(\rho_s) = 1$.

We often assumed that the system is isolated, evolving under von Neumman's equation:

$$\frac{d\rho_s(t)}{dt} = -i[H,\rho_s(t)].$$

Breuer & Petruccione (2002). The theory of open quantum systems. Oxford University Press.

Generally, the system ρ_S is interacting with an environment ρ_E . Still, the whole bipartite ρ_{SE} is closed.

$$\frac{d\rho_{SE}(t)}{dt} = -i[H_{SE}, \rho_{SE}(t)],$$

with solution:

 $\rho_{SE}(t) = U(t) \rho_{SE}(0) U^{\dagger}(t),$ where $U(t) = e^{-iH_{SE}t}.$

How do we obtain the evolution for the system only?

Generally, the system ρ_S is interacting with an environment ρ_E . Still, the whole bipartite ρ_{SE} is closed.

$$\frac{d\rho_{SE}(t)}{dt} = -i[H_{SE}, \rho_{SE}(t)],$$

with solution:

 $\rho_{SE}(t) = U(t) \rho_{SE}(0) U^{\dagger}(t),$

where $U(t) = e^{-iH_{SE}t}$.

How do we obtain the evolution for the system only?

We can get an analytic evolution when the interaction is weak enough that information translated from the system to the environment never comes back to the system¹:

$$\frac{d\rho_S}{dt} = -i[H,\rho_S] + \sum_k g_k \Big(L_k \rho_S L_k^{\dagger} - \frac{1}{2} \Big\{ L_k^{\dagger} L_k, \rho_S \Big\} \Big).$$
(1)

More generally, the dynamics can be written as:

$$\frac{d\rho_S}{dt} = -i[H_S, \rho_S] + \int_0^t \mathcal{K}_{t-t'}[\rho_S(t')] dt', \qquad (2)$$

where $\mathcal{K}_{t-t'}$ is a linear superoperator called the memory kernel.

¹Lindblad, G. (1976). On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48(2), 119-130.

Importance of Non-Markovianity

- Realistic quantum systems are open quantum systems evolving under non-unitary evolutions.
- Strong system-environment coupling, finite reservoirs, low temperatures, large initial system-environment correlations, among others.
- Applications of quantum memory: quantum Brownian motion in optomechanical systems, chaotic systems, continuous variable quantum key distribution, quantum metrology, time-invariant quantum discord.

Collisional Model

An alternative description of open quantum systems is through collisional models.

Non-Markovian Collisional Models

We can introduce non-Markovianity in two main ways:

- Ancillas start correlated.
- Environmental collisions.

Dynamics

- The interaction between system and ancilla is given by the unitary U_n.
- The interaction between ancilla and ancilla is given by the unitary V_{n,n+1}.
- The stroboscopic dynamics generated is:

$$\rho^{n} = V_{n,n+1} U_{n} \rho^{n-1} U_{n}^{\dagger} V_{n,n+1}^{\dagger}, \quad (3)$$

where ρ^n is the global state of $SE_1E_2...$ at time n.

Dynamics

► The system S and the ancillas E_n, E_{n+1} are the only involved dynamically with S and E_n in the correlated state ρⁿ⁻¹_{SEn}.

► Thus, the process can be written as:

$$\rho_{SE_nE_{n+1}}^n = V_{n,n+1}U_n(\rho_{SE_n}^{n-1} \otimes \rho_{E_{n+1}})U_n^{\dagger}V_{n,n+1}^{\dagger}.$$

• Tracing out the environment E_n :

$$\rho_{SE_{n+1}}^n = \operatorname{tr}_{E_n}(V_{n,n+1}U_n(\rho_{SE_n}^{n-1} \otimes \rho_{E_{n+1}})U_n^{\dagger}V_{n,n+1}^{\dagger}).$$

This defines a time-local and CP map:

$$\rho_{SE_{n+1}}^n := \Phi(\rho_{SE_n}^{n-1}). \tag{4}$$

Markovian embedding

Basic structure of the Markovian embedding ρⁿ_{SEn+1} = Φ(ρⁿ⁻¹_{SEn}) which is a map from the Hilbert space of SE_n to that of SE_{n+1}.

• We can define \mathcal{E}_n taking ρ_S^0 to ρ_S^n :

$$\rho_{S}^{n} = \mathcal{E}_{n}(\rho_{S}^{0}) = \operatorname{tr}_{E_{n+1}} \Phi^{n}(\rho_{S}^{0} \otimes \rho_{E_{1}}),$$

which is CP. But the map $\mathcal{E}_{m \to n}$ taking ρ_S^m to ρ_S^n is generally not.

Gaussianity

We describe the system S by bosonic annihilation operator a and quadratures $Q = (a + a^{\dagger})/\sqrt{2}$ and $P = i(a^{\dagger} - a)/\sqrt{2}$, and the ancillas by bosonic operators b_1, b_2, \ldots with quadratures q_n, p_n .

• System ancilla:
$$U_n = e^{\lambda_S(a^{\dagger}b_n - b_n^{\dagger}a)}$$

- Ancilla-ancilla: $V_{n,n+1} = e^{\lambda_e (b_n^{\dagger} b_{n+1} b_{n+1}^{\dagger} b_n)}$.
- Ancilla-ancilla: $\tilde{V}_{n,n+1} = e^{\nu_e(b_n^{\dagger}b_{n+1}^{\dagger} b_n b_{n+1})}$.

This defines two types of evolutions:

Beam splitter evolution:

$$\rho^n = V_{n,n+1} U_n \rho^{n-1} U_n^{\dagger} V_{n,n+1}^{\dagger} \qquad (5)$$

Two-mode Squeezing evolution:

$$\rho^{n} = \tilde{V}_{n,n+1} U_{n} \rho^{n-1} U_{n}^{\dagger} \tilde{V}_{n,n+1}^{\dagger} \qquad (6$$

Continuous variable

The evolution of the expectation value of any observable is:

$$\frac{d}{dt}\langle \mathcal{O}\rangle = i\langle [H,\mathcal{O}]\rangle.$$

The Gaussian dynamics is fully characterized by the evolution of the first moments $\vec{y} = (\langle Q \rangle, \langle P \rangle, \langle q_1 \rangle, \langle p_1 \rangle \dots)$, and the covariance matrix $\sigma = \frac{1}{2} \langle \{Y_i, Y_j\} \rangle - \langle Y_i \rangle \langle Y_j \rangle$.

$$\frac{d\vec{y}}{dt} = M\vec{y}, \quad \frac{d}{dt}\sigma = M\sigma + \sigma M^{\mathsf{T}},$$

with solution

$$\vec{y}(t) = S \vec{y}(0), \quad \sigma(t) = S \sigma(0) S^{\mathsf{T}}, \quad S = e^{Mt}.$$

Serafini, A. (2017). Quantum continuous variables: a primer of theoretical methods. CRC press.

► Initial state:

$$\rho^{0} = \rho^{0}_{S} \otimes \rho_{E} \otimes \rho_{E} \otimes \cdots \longrightarrow \sigma^{0} = \operatorname{diag}(\theta^{0}, \epsilon, \epsilon, \dots)$$

Interactions:

$$U_n, V_{n,n+1}, \tilde{V}_{n,n+1} \longrightarrow S_n, S_{n,n+1}, \tilde{S}_{n,n+1}$$

► Dynamics:

$$\frac{d\rho}{dt} = i[H,\rho] \longrightarrow \frac{d\sigma}{dt} = M\sigma + \sigma M^{\mathsf{T}}$$

• Evolution:

$$\rho^n = V_{n,n+1} U_n \rho^{n-1} U_n^{\dagger} V_{n,n+1}^{\dagger} \longrightarrow \sigma^n = S_{n,n+1} S_n \sigma^{n-1} S_n^{\mathsf{T}} S_{n,n+1}^{\mathsf{T}}$$

► Initial state:

$$\rho^{0} = \rho^{0}_{S} \otimes \rho_{E} \otimes \rho_{E} \otimes \cdots \longrightarrow \sigma^{0} = \operatorname{diag}(\theta^{0}, \epsilon, \epsilon, \dots)$$

► Interactions:

$$U_n, V_{n,n+1}, \tilde{V}_{n,n+1} \longrightarrow S_n, S_{n,n+1}, \tilde{S}_{n,n+1}$$

$$\frac{d\rho}{dt} = i[H,\rho] \longrightarrow \frac{d\sigma}{dt} = M\sigma + \sigma M^{\mathsf{T}}$$

• Evolution:

$$\rho^n = V_{n,n+1} U_n \rho^{n-1} U_n^{\dagger} V_{n,n+1}^{\dagger} \longrightarrow \sigma^n = S_{n,n+1} S_n \sigma^{n-1} S_n^{\mathsf{T}} S_{n,n+1}^{\mathsf{T}}$$

► Initial state:

$$\rho^{0} = \rho^{0}_{S} \otimes \rho_{E} \otimes \rho_{E} \otimes \cdots \longrightarrow \sigma^{0} = \operatorname{diag}(\theta^{0}, \epsilon, \epsilon, \dots)$$

► Interactions:

$$U_n, V_{n,n+1}, \tilde{V}_{n,n+1} \longrightarrow S_n, S_{n,n+1}, \tilde{S}_{n,n+1}$$

► Dynamics:

$$\frac{d\rho}{dt} = i[H,\rho] \longrightarrow \frac{d\sigma}{dt} = M\sigma + \sigma M^{\mathsf{T}}$$

• Evolution:

$$\rho^n = V_{n,n+1} U_n \rho^{n-1} U_n^{\dagger} V_{n,n+1}^{\dagger} \longrightarrow \sigma^n = S_{n,n+1} S_n \sigma^{n-1} S_n^{\mathsf{T}} S_{n,n+1}^{\mathsf{T}}$$

► Initial state:

$$\rho^{0} = \rho^{0}_{S} \otimes \rho_{E} \otimes \rho_{E} \otimes \cdots \longrightarrow \sigma^{0} = \mathsf{diag}(\theta^{0}, \epsilon, \epsilon, \dots)$$

► Interactions:

$$U_n, V_{n,n+1}, \tilde{V}_{n,n+1} \longrightarrow S_n, S_{n,n+1}, \tilde{S}_{n,n+1}$$

► Dynamics:

$$\frac{d\rho}{dt} = i[H,\rho] \longrightarrow \frac{d\sigma}{dt} = M\sigma + \sigma M^{\mathsf{T}}$$

► Evolution:

$$\rho^n = V_{n,n+1} U_n \rho^{n-1} U_n^{\dagger} V_{n,n+1}^{\dagger} \longrightarrow \sigma^n = S_{n,n+1} S_n \sigma^{n-1} S_n^{\mathsf{T}} S_{n,n+1}^{\mathsf{T}}$$

Sympletic Matrices

$$U_{n} \longrightarrow S_{n} = \begin{pmatrix} x & 0 & y & 0 \\ 0 & \mathbb{I} & 0 & 0 \\ -y & 0 & x & 0 \\ 0 & 0 & 0 & \mathbb{I} \end{pmatrix},$$
$$V_{n,n+1} \longrightarrow S_{n,n+1} = \begin{pmatrix} \mathbb{I} & 0 & 0 & 0 \\ 0 & z & w & 0 \\ 0 & -w & z & 0 \\ 0 & 0 & 0 & \mathbb{I} \end{pmatrix},$$
$$\tilde{V}_{n,n+1} \longrightarrow \tilde{S}_{n,n+1} = \begin{pmatrix} \mathbb{I} & 0 & 0 & 0 \\ 0 & \tilde{z} & \tilde{w}\sigma_{z} & 0 \\ 0 & \tilde{w}\sigma_{z} & \tilde{z} & 0 \\ 0 & 0 & 0 & \mathbb{I} \end{pmatrix}.$$

where $x = \cos(\lambda_s)$, $y = \sin(\lambda_s)$, $z = \cos(\lambda_e)$, $w = \sin(\lambda_e)$, $\tilde{z} = \cosh(\nu_e)$, $\tilde{w} = \sinh(\nu_e)$. ^{14/33} The step from σ^{n-1} to σ^n involves only *S*, E_n and E_{n+1} :

$$\sigma_{SE_nE_{n+1}}^{n-1} = \begin{pmatrix} \theta^{n-1} & \xi_n^{n-1} & 0\\ \xi_n^{n-1,\mathsf{T}} & \epsilon_n^{n-1} & 0\\ 0 & 0 & \epsilon \end{pmatrix}.$$
 (7)

We then apply to the evolution:

$$\sigma_{SE_{n}E_{n+1}}^{n} = S_{n,n+1}S_{n} \left(\sigma_{SE_{n}E_{n+1}}^{n-1}\right) S_{n}^{\mathsf{T}}S_{n,n+1}^{\mathsf{T}}.$$
(8)

Only three entries are needed for the dynamics: the system θ^n , the ancilla ϵ_{n+1}^n and their correlations ξ_{n+1}^n .

Beam splitter evolution

Let us analyze the beam splitter case:

$$\theta^{n} = x^{2}\theta^{n-1} + y^{2}\epsilon_{n}^{n-1} + xy(\xi_{n}^{n-1} + \xi_{n}^{n-1,\mathsf{T}}),$$

$$\epsilon_{n+1}^{n} = z^{2}\epsilon + w^{2} \Big[x^{2}\epsilon_{n}^{n-1} + y^{2}\theta^{n-1} - xy(\xi_{n}^{n-1} + \xi_{n}^{n-1,\mathsf{T}}) \Big],$$

$$\xi_{n+1}^{n} = w \Big[xy(\theta^{n-1} - \epsilon_{n}^{n-1}) + y^{2}\xi_{n}^{n-1,\mathsf{T}} - x^{2}\xi_{n}^{n-1} \Big].$$

These equations can be recast in terms of the Markovian embedding:

$$\gamma^{n+1} = X\gamma^n X^\mathsf{T} + Y,$$

where

$$\gamma^{n} = \begin{pmatrix} \theta^{n} & \xi_{n+1}^{n} \\ \xi_{n+1}^{n,\mathsf{T}} & \epsilon_{n+1}^{n} \end{pmatrix}, X = \begin{pmatrix} x & y \\ yw & -wx \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 0 & z^{2}\epsilon \end{pmatrix}$$

.

For the two-mode squeezing, we get:

$$\gamma^{n+1} = X\gamma^n X^\mathsf{T} + Y,$$

where

$$\gamma^{n} = \begin{pmatrix} \theta^{n} & \xi_{n+1}^{n} \\ \xi_{n+1}^{n,\mathsf{T}} & \epsilon_{n+1}^{n} \end{pmatrix}, X = \begin{pmatrix} x & y \\ -y\tilde{w}\sigma_{z} & \tilde{w}x\sigma_{z} \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 0 & \tilde{z}^{2}\epsilon \end{pmatrix}$$

System's Evolution

Figure 1: Number of excitations in the system as a function of time. (a,b) BS dynamics with $\lambda_s = 0.5$ and different values of λ_e (with $\lambda_e > 0$ in (a) and $\lambda_e < 0$ in (b)). (c,d) Same, but for the TMS with $\lambda_s = 0.1$ and different values of ν_e (with $\nu_e < \nu_e^{crit}$ in (a) $\nu_e \ge \nu_e^{crit}$ in (b), where $\nu_e^{crit} = \sinh^{-1}(1) \simeq 0.8813$). The ancillas are assumed to start in the vacuum, and the system in a thermal state with $\langle a^{\dagger} a^{0} \rangle = 20$.

Memory effects in Collisional Models

Classically, a process is non-Markovian if the conditional probability of the future states depends on the precedent events.

- Information flow: The backflow of information quantifies the ability of the dynamics to communicate past information to the future.
- Map divisibility: The map *E_n* is CP by construction. However, the intermediate map *E_{m→n}* in general is not CP. Conversely, Markovian maps are always CP.

Rivas, A., Huelga, S. F., & Plenio, M. B. (2014). Quantum non-Markovianity: characterization, quantification and detection. Reports on Progress in Physics, 77(9), 094001.

Memory effects must be related to correlations that develop between system and bath.

- ▶ In the collisional model, the relevant correlations are between S and ancilla E_{n+1} at time n before its explicit interaction.
- ► A useful measure of correlations is the mutual information²:

$$\mathcal{I}^{n}(SE_{n+1}) = S(\rho_{S}^{n}) + S(\rho_{E_{n+1}}^{n}) - S(\rho^{n}),$$

where S is the von Neumann entropy.

• We can compute the MI in terms of the eigenvalues of γ^n .

 $^{^2 \}rm Nielsen, \, M. \, A., \, \& \, Chuang, \, I. (2002). Quantum computation and quantum information.$

Mutual Information

Figure 2: Mutual Information for the BS (a,b) and TMS (c) dynamics. (a,b) BS with $\lambda_s = 0.5$ and different values of λ_e (with $\lambda_e > 0$ in (a) and $\lambda_e < 0$ in (b)). (c) TMS with $\lambda_s = 0.1$ and different values of ν_e (with $\nu_e < \nu_e^{\text{crit}}$ is non-1(1) $\simeq 0.8813$). The ancillas are assumed to start in the vacuum, and the system in a thermal state with $(a^{\dagger}a)^0 = 20$.

Memory Kernel

A much older measure is the memory kernel $\mathcal{K}_{t-t'}^{34}$:

$$\frac{d\rho_S}{dt} = -i[H_S, \rho_S] + \int_0^t \mathcal{K}_{t-t'}[\rho(t')] dt'$$

The collisional model analog will act on the system's CM:

$$\theta^{n+1} = x^2 \theta^n + \sum_{r=0}^{n-1} \mathcal{K}_{n-r-1}(\theta^r) + G_n,$$
(9)

where G_n is a contribution coming from the ancilla initial state, and the memory kernel \mathcal{K}_n on the X matrix with:

$$\mathcal{K}_n(\theta) = \sum_{ij} \kappa_{ij}^n M_i \theta M_j^{\mathsf{T}}.$$
 (10)

where M_i are a complete set of matrices $\{\mathbb{I}_2, \sigma_z, \sigma_+, \sigma_-\}$.

³Nakajima, S. (1958). On quantum theory of transport phenomena. Progress of Theoretical Physics

 $^{^4}$ Zwanzig, R. (1960). Ensemble method in the theory of irreversibility. The Journal of Chemical Physics, 33(5). 22/33

Memory Kernel

We start with the dynamics difference equation:

$$\gamma^{n+1} = X\gamma^n X^{\mathsf{T}} + Y. \tag{11}$$

Vectorizing the difference equation, we get:

$$\vec{\gamma}^{n+1} = (X \otimes X)\vec{\gamma}^n + \vec{Y}.$$
 (12)

We introduce projection matrices on the subspaces:

$$P_S = \begin{pmatrix} \mathbb{I} & 0 \\ 0 & 0 \end{pmatrix}, \quad P_E = \begin{pmatrix} 0 & 0 \\ 0 & \mathbb{I} \end{pmatrix}.$$

We introduce the Nakajima-Zwanzig projection operators $P = P_S \otimes P_S$ and Q = 1 - P:

$$P\vec{\gamma}^{n+1} = P(X \otimes X)P\vec{\gamma}^n + \sum_{r=0}^{n-1}\hat{K}_{n-r-1}P\vec{\gamma}^r + \vec{\mathcal{G}}_n.$$
(13)

Beam splitter MK

Figure 3: The memory Kernel for the BS dynamics. The only non-zero entry is κ_{11}^n , proportional to the identity. The plots are for $\lambda_s = 0.5$ (upper panel) and $\lambda_s = 0.05$ (lower panel), with $\lambda_e > 0$ (left) and $\lambda_e < 0$ (right). 24/33

Two-mode Squeezing MK

Figure 4: The memory Kernel for the (stable) TMS dynamics, with $\lambda_s = 0.1$ and different values of λ_e . Each curve corresponds to a different entry of the memory kernel; namely, κ_{11}^n , κ_{1,σ_z}^n , $\kappa_{\sigma_{z,1}}^n$ and $\kappa_{\sigma_{z,\sigma_z}}^n$. 25/33

Beam splitter MK

Figure 5: Diagrams for the MK of the BS dynamics. Each plot shows κ_{11}^n in the (λ_s, λ_e) plane for a different value of n, from n = 0 to n = 5.

Let us return to map divisibility. Given that the inverse map \mathcal{E}^{-1} exists for all times t > 0, we can define the intermediate maps:

$$\mathcal{E}_{m\to n}=\mathcal{E}_n\circ\mathcal{E}_m^{-1}.$$

Even though \mathcal{E}_n and \mathcal{E}_m are CP by construction, the intermediate map $\mathcal{E}_{m \to n}$ will not necessarily be. Hence, by measuring how much the intermediate map $\mathcal{E}_{m \to n}$ departs from the CP map, we are measuring the degree of non-Markovianity of the time evolution.

CP-Divisibility

At the level of CM, any gaussian CPTP map have the form $\theta \rightarrow \mathcal{X}\theta\mathcal{X}^{\mathsf{T}} + \mathcal{Y}$, where \mathcal{X} and \mathcal{Y} are matrices satisfying⁵:

$$\mathcal{M}[\mathcal{X},\mathcal{Y}] := 2\mathcal{Y} + i\Omega - i\mathcal{X}\Omega\mathcal{X}^{\mathsf{T}} \ge 0$$

We come back to the difference equations and solve them:

$$\gamma^{n} = X^{n} \gamma^{0} (X^{\mathsf{T}})^{n} + \sum_{r=0}^{n-1} X^{n-r-1} Y (X^{\mathsf{T}})^{n-r-1}.$$

▶ The evolution of the system's CM from 0 to *n* is:

$$\theta^n = \mathcal{X}_n \theta^0 \mathcal{X}_n^\mathsf{T} + \mathcal{Y}_n$$

where the matrix $\mathcal{X}_n = (X^n)_{11}$ and the other matrix $\mathcal{Y}_n = (X^n)_{12} \epsilon (X^{nT})_{12} + \sum_{r=0}^{n-1} \left[X^{n-r-1} Y (X^T)^{n-r-1} \right]_{11}.$

 $^{^{5}}$ Lindblad, G. (2000). Cloning the quantum oscillator. Journal of Physics A: Mathematical and General, 33(28). 28/33

CP-Divisibility

► To probe whether the dynamics is divisible, we consider the map taking the system from n to m > n:

$$\theta^m = \mathcal{X}_{mn}\theta^n \mathcal{X}_{mn}^\mathsf{T} + \mathcal{Y}_{mn},$$

where $\mathcal{X}_{mn} = \mathcal{X}_m \mathcal{X}_n^{-1}$, $\mathcal{Y}_{mn} = \mathcal{Y}_m - \mathcal{X}_{mn} \mathcal{Y}_n \mathcal{X}_{mn}^{\mathsf{T}}$.

- ► The dynamics is considered divisible when the intermediate maps are CPTP Gaussian map M[X_{mn}, Y_{mn}] ≥ 0.
- ▶ This can also be used as a figure of merit⁶:

$$\mathcal{N}_{mn} = \sum_{k} \frac{|m_k| - m_k}{2}, \quad \{m_k\} = \operatorname{eigs}\Big(\mathcal{M}[\mathcal{X}_{mn}, \mathcal{Y}_{mn}]\Big).$$

⁶Torre, G., Roga, W., & Illuminati, F. (2015). Non-markovianity of gaussian channels. PRL, 115.

Beam splitter CP-Divisibility

Figure 6: CP-divisibility measure $N_{n+1,n}$ in the (λ_s, λ_e) plane for the BS dynamics. Each plot corresponds to a different values of *n*: in the first 2 lines, *n* ranges from 1 to 10 in steps of 1. In the 3rd line, *n* = 20, 21, 30, 31, 40.

Two-mode squeezing CP-Divisibility

Figure 7: CP-divisibility measure $N_{n+1,n}$ in the (λ_s, ν_e) plane for the TMS dynamics. Each plot corresponds to a different values of n, from 1 to 9 in steps of 1.

Conclusions

Conclusions

- We presented a robust framework for studying non-Markovianity in collisional models from multiple perspectives.
- We showed that the dynamics can be cast in terms of a Markovian embedding of the covariance matrix.
- This yields closed expressions for the mutual information, the memory kernel, and the divisibility monotone.
- We analyzed in detail two types of interactions, a beam splitter and a two-mode squeezing. Yet the results can be easily generalized to other Gaussian interactions.

Results of this work were reported in the preprint:

- Camasca, R.R. and Landi, G.T., 2020. Memory kernel and divisibility of Gaussian Collisional Models. arXiv preprint arXiv:2008.00765.
- ► Python Libraries: https://github.com/gtlandi/gaussianonmark