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Motivation



The state of the system in quantum mechanics is described by the
density matrix ps:

» Hermicity: p, = pl,

» Positivity: ps > 0,
» Normalization: Tr(pg) = 1.

We often assumed that the system is isolated, evolving under von

Neumman's equation:

dffd;lfl‘) = —i[H, ps(2)].

Breuer & Petruccione (2002). The theory of open quantum systems. Oxford University Press.
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Generally, the system pg is interacting with an environment pg.
Still, the whole bipartite pge is closed.

dp.‘;_l:;(t) = —i[Hse, pse(t)];

with solution:

pse(t) = U(t) pse(0) U'(1),

where U(t) = e /Hset,
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Generally, the system pg is interacting with an environment pg.
Still, the whole bipartite pge is closed.

dp.‘;_l:;(t) = —i[Hse, pse(t)];

with solution:
pse(t) = U(t) pse(0) U' (1),

where U(t) = e /Hset,

How do we obtain the evolution for the system only?
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We can get an analytic evolution when the interaction is weak
enough that information translated from the system to the
environment never comes back to the system?:

% = —i[H, ps] + Zk:gk<LkP5LZ - %{LLLk’pS}) (1)

More generally, the dynamics can be written as:

d . ‘
95 _ il ps) + /0 Ke_elps(t)] dt, 2)

where IC;_4 is a linear superoperator called the memory kernel.

1Lindblad, G. (1976). On the generators of quantum dynamical semigroups. Communications in Mathematical
Physics, 48(2), 119-130.
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» Realistic quantum systems are open quantum systems
evolving under non-unitary evolutions.

» Strong system-environment coupling, finite reservoirs, low
temperatures, large initial system-environment correlations,
among others.

» Applications of quantum memory: quantum Brownian motion
in optomechanical systems, chaotic systems, continuous
variable quantum key distribution, quantum metrology,

time-invariant quantum discord.
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Collisional Model



An alternative description of open quantum systems is through
collisional models.
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We can introduce non-Markovianity in two main ways:

» Ancillas start correlated.
» Environmental collisions.

Ei E: Ei E:
Ei E: Ei E:
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» The interaction between system and ancilla
is given by the unitary U,.

» The interaction between ancilla and ancilla
is given by the unitary V, n41.

» The stroboscopic dynamics generated is:
P = VaniaUnp" UL VY ias (3)

where p" is the global state of SE1E; ... at

time n.



» The system S and the ancillas E,,, E 41 are
the only involved dynamically with S and
E, in the correlated state pggl

» Thus, the process can be written as:
ng,,E,,+1 = Vint1Un (ng:®pEn+l) U:rw Vr11.,n+1‘
» Tracing out the environment Ej:
P3g,.; = trE,(Vant1Un (PSE,, ®pE,,,) ULV, n+1)-

» This defines a time-local and CP map:

PSE,. = P(0EE,). (4)



» Basic structure of the Markovian
embedding pZg = ®(plzT) which
is a map from the Hilbert space of
SE, to that of SE, 1.

» We can define &, taking pos to ps:

o
—vd
o
O

¥
/.1

pe = En(p%) = trE,,, P"(p% @ pE,),

which is CP. But the map &,
taking p¢' to ps is generally not.

o0 0 ©

@
@
(]
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We describe the system S by bosonic annihilation operator a and
quadratures Q = (a+ a')/v/2 and P = i(a' — a)/v/2, and the
ancillas by bosonic operators by, by, ... with quadratures q,, p,.

. t
» System ancilla: U, = e*s(a'bn—bna)

. . T
> Ancilla-ancilla: Vj, p1 = ete(Brboea=bniibn), °
Ve(bibz+1——bnbn+1)_

» Ancilla-ancilla: \7,,,,,+1 =e 1
This defines two types of evolutions: . .
» Beam splitter evolution: B B
-1
P = VaniaUnp" TUL V] (5) e
» Two-mode Squeezing evolution: .”.
Ex Ens1

p" = Vn,n—i—l Un Pn_l UrJg Vr:r,n—l-l (6)
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The evolution of the expectation value of any observable is:

d

dt
The Gaussian dynamics is fully characterized by the evolution of
the first moments y = ((Q), (P), (q1), (p1) ...), and the
covariance matrix o = 3({Y;, Y;}) — (Yi)(Y)).

(0) = i{[H, O]).

dy ... d T
E—My, EO’—MO’-FUM,

with solution

y(t) = Sy(0), o(t)=Sa(0)ST, S=eM

Serafini, A. (2017). Quantum continuous variables: a primer of theoretical methods. CRC press.

12/33



» |nitial state:

P =p R pe@pe@-- — 0¥ =diag(6%,¢,¢,...)
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» |nitial state:
0o_ 0 0 _ 0
P =p3RPEQPE®--- — o° =diag(6” €€, ...)

» Interactions:

Una Vn,n+1, Vn,n+1 — Sna Sn,n+17 Sn,n-|-1
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» |nitial state:
P =p R pe@pe@-- — 0¥ =diag(6%,¢,¢,...)
» Interactions:

Una Vn,n+1, Vn,n+1 — Sna Sn,n+17 Sn,n-|-1

» Dynamics:
dp

o = i[H, ]—>d—_Ma+aMT

dt
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P Initial state:
P =p R pe@pe@-- — 0¥ =diag(6%,¢,¢,...)
» Interactions:
Uny Vi1, Vant1 — Sny Snnt1, Snnti
» Dynamics:

dp

o = i[H, ]—>d—_Ma+aMT

dt
» Evolution:

pn _ Vn,n—l—l Unpn—l Uj; VT 1 — 0" =5, n+15 o" S,TS,-,I:,,+1
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Vn,n+1 — Sn,n—l—l =

Vn,n+1 — Sn,n+1 =

x 0
0 I
0

0 0
I o
0
0 —w
0 O
I 0
0 =z
0 wo,
0 0

o X O X
= O O O

o N S O
= O O O

0
wWo,

z

0

= O O O

where x = cos (As), y = sin(\s), z=cos(Xe), w =sin(Xe),

Z = cosh (ve), w = sinh (ve).
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The step from 0"~ to o involves only S, E, and E,y1:
en—l n—1 0
n

n—1 n—1,T n—1
0se g,y = | én en 0]. (7)

We then apply to the evolution:

n _ n—1 TcT
OSE Ep1 = Sn,n+15n (USE,,E,,H) Sn 5n,n+1- (8)

Only three entries are needed for the dynamics: the system 6", the
ancilla €5, 1 and their correlations £, ;.

15/33



Let us analyze the beam splitter case:
en:X29n 1+y2€n 1—|—Xy(f _‘_gn lT)
nay = 2+ w2 [ Pen™ 4 207 (e 67T,

Ena = w0 — ) + 2T - e,

These equations can be recast in terms of the Markovian

embedding:
'7n+1 — X’ynXT + Y,
where
" ;174—1 X 3% 0 O
n __ . —_
’)/ B n,T n ’ X B ’ Y - 2
é.n—|—1 €nt1 yw  —wx 0 z¢¢
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For the two-mode squeezing, we get:
"}/'H_l — X,}/nxT + Y,
where
0" Y X y 0 O

"= , X = , Y =
n7T n vy vy "2
§n+1 €ni1 —yWo, WXxoy 0 Z%
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Figure 1: Number of excitations in the system as a function of time. (a,b) BS dynamics with As = 0.5 and
different values of Ae (with Ae > 0in (a) and Ae < 0 in (b)). (c,d) Same, but for the TMS with A; = 0.1 and
different values of ve (with ve < ug'it in(a) ve > V;'it in (b), where V;'it = sinh—!(1) ~ 0.8813). The ancillas
are assumed to start in the vacuum, and the system in a thermal state with (af a)0 = 20.
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Memory effects in Collisional
Models




Classically, a process is non-Markovian if the conditional probability
of the future states depends on the precedent events.

» Information flow: The backflow of information quantifies the
ability of the dynamics to communicate past information to
the future.

» Map divisibility: The map &, is CP by construction. However,
the intermediate map &, in general is not CP. Conversely,

Markovian maps are always CP.

Rivas, A., Huelga, S. F., & Plenio, M. B. (2014). Quantum non-Markovianity: characterization, quantification
and detection. Reports on Progress in Physics, 77(9), 094001.
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Memory effects must be related to correlations that develop

between system and bath.

» |n the collisional model, the relevant correlations are between
S and ancilla E,11 at time n before its explicit interaction.

» A useful measure of correlations is the mutual information?:
Z"(SEn+1) = S(ps) + S(pg,.,) — S(p"),

where S is the von Neumann entropy.

» We can compute the Ml in terms of the eigenvalues of ~".

2Nielsen, M. A., & Chuang, . (2002). Quantum computation and quantum information.
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Figure 2: Mutual Information for the BS (a,b) and TMS (c) dynamics. (a,b) BS with As = 0.5 and different
values of Xe (with Ae > 0in (a) and Ae < 0in (b)). (c) TMS with As = 0.1 and different values of v (with
ve < ng in (c) where ug"it = sinh~!(1) ~ 0.8813). The ancillas are assumed to start in the vacuum, and the
system in a thermal state with (aT 2)0 = 20.
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A much older measure is the memory kernel K,_3%:

dps . ‘ / /
. = i[Hs, psl +/ Ke—v[p(t)] dt
0

» The collisional model analog will act on the system’s CM:
n—1

0" =x0" + > Kpr-1(6") + G, (9)
r=0
where G, is a contribution coming from the ancilla initial
state, and the memory kernel K, on the X matrix with:

Kn(0) =Y wpMoMS. (10)
ij
where M; are a complete set of matrices {I5,0,,04,0_}.

3Nakajima, S. (1958). On quantum theory of transport phenomena. Progress of Theoretical Physics
4Zwanzig, R. (1960). Ensemble method in the theory of irreversibility. The Journal of Chemical Physics, 33(5). 22/33



We start with the dynamics difference equation:

AT = XA XT 4+ Y, (11)
Vectorizing the difference equation, we get:
7 = (X @ X)y" (12)
We introduce projection matrices on the subspaces:
I 0 00
Ps = , Pe=
00 0 I

We introduce the Nakajima-Zwanzig projection operators
P=Ps®Psand Q=1-P:
n—1
P = P(X @ X)PY"+> Ko r1PY +Gn  (13)
r=0
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Kn(0) =D wGMOMT, M;=Tp,0,,0,,0-
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Figure 3: The memory Kernel for the BS dynamics. The only non-zero entry is n'l’l, proportional to the identity.
The plots are for A = 0.5 (upper panel) and As = 0.05 (lower panel), with Ae > 0 (left) and Ae < O (right). 24/33



Kn(0) =D wGMOMT, M;=Tp,0,,0,,0-
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Figure 4: The memory Kernel for the (stable) TMS dynamics, with As = 0.1 and different values of Ae. Each

curve corresponds to a different entry of the memory kernel; namely, r{y, w1 , . K5 qand kg, . 25/33
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Figure 5: Diagrams for the MK of the BS dynamics. Each plot shows f; in the (As, Ae) plane for a different
value of n, fromn =0ton=>5.
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Let us return to map divisibility. Given that the inverse map £}
exists for all times t > 0, we can define the intermediate maps:

Emsn = Eno EL.

Even though &, and &, are CP by construction, the intermediate
map Em—n Will not necessarily be. Hence, by measuring how much
the intermediate map &,,_., departs from the CP map, we are
measuring the degree of non-Markovianity of the time evolution.
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» At the level of CM, any gaussian CPTP map have the form
6 — XOXT + ), where X and ) are matrices satisfying®:
M[X, V] =2V +iQ —ixQXT >0

» We come back to the difference equations and solve them:
n—1
,yn — Xn,yO(XT)n + an—r—l Y(XT)n—r—l‘
r=0
» The evolution of the system’s CM from 0 to n is:
0" = X,000T + Y,
where the matrix X, = (X")11 and the other matrix

n—1
yn _ (Xn)12€(XnT)12 + 20 [Xn—r—l Y(xT)n—r—l] "

5Lindblad, G. (2000). Cloning the quantum oscillator. Journal of Physics A: Mathematical and General, 33(28). 28/33



» To probe whether the dynamics is divisible, we consider the
map taking the system from nto m > n:

0m = angnx;—n + ymna

where X, = Xan_la Vmn = YVm — mnyan-l;n-
» The dynamics is considered divisible when the intermediate
maps are CPTP Gaussian map M[Xmn, Ymn| > 0.

» This can also be used as a figure of merit®:

|mi| — my

N = Ek: R N eigs(M[an,ymn]>.

6Torre, G., Roga, W., & llluminati, F. (2015). Non-markovianity of gaussian channels. PRL, 115.
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Figure 6: CP-divisibility measure Nn+1,n in the (As, Ae) plane for the BS dynamics. Each plot corresponds to a
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Figure 7: CP-divisibility measure /\/',,_,.1’,7 in the (As, ve) plane for the TMS dynamics. Each plot corresponds to a
different values of n, from 1 to 9 in steps of 1.
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Conclusions




» \We presented a robust framework for studying non-
Markovianity in collisional models from multiple perspectives.

» We showed that the dynamics can be cast in terms of a
Markovian embedding of the covariance matrix.
» This yields closed expressions for the mutual information, the

memory kernel, and the divisibility monotone.

» \We analyzed in detail two types of interactions, a beam
splitter and a two-mode squeezing. Yet the results can be
easily generalized to other Gaussian interactions.
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Results of this work were reported in the preprint:

» Camasca, R.R. and Landi, G.T., 2020. Memory kernel and
divisibility of Gaussian Collisional Models. arXiv preprint
arXiv:2008.00765.

» Python Libraries: https://github.com/gtlandi/gaussianonmark
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