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Ernest Hemingway once wrote: “The world is a fine place and worth fighting
for.” I agree with the second part.

— Se7en (1995)
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To my grandfather...

ii



Abstract

Memory effects in the dynamics of open systems have been the subject of significant in-
terest in the last decades. The methods involved in quantifying this effect, however, are
often difficult to compute and may lack analytical insight. With this in mind, we study
collisional models where non-Markovianity is introduced by means of additional interac-
tions between neighboring environmental units. We show that the dynamics can be cast in
terms of a Markovian Embedding of the covariance matrix, which yields closed form ex-
pressions for the memory kernel that governs the dynamics, a quantity that can seldom be
computed analytically. The same is also possible for a divisibility monotone, based on the
complete positivity of intermediate maps. By focusing on continuous-variables Gaussian
dynamics, we are able to analytically study models of arbitrary size. We analyze in detail
two types of interactions, a beam-splitter implementing a partial SWAP and a two-mode
squeezing, which entangles the ancillas and, at the same time, feeds excitations into the
system. By analyzing the memory kernel and divisibility for these two representative sce-
narios, our results help to shed light on the intricate mechanisms behind memory effects
in the quantum domain.

Keywords: Open Quantum Systems; Collisional Model; Non-Markovianity; Memory
Kernel; Map Divisibility.
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Resumo

Os efeitos da memória na dinâmica dos sistemas abertos têm sido objeto de grande inter-
esse nas últimas décadas. Os métodos envolvidos na quantificação desse efeito, no en-
tanto, muitas vezes são difíceis de calcular e podem carecer de uma visão analítica. Com
isso em mente, estudamos modelos colisionais em que a não markovianidade é intro-
duzida por meio de interações adicionais entre unidades ambientais vizinhas. Mostramos
que a dinâmica pode ser moldada em termos de um Embedding Markoviano da matriz
de covariância, que produz expressões de forma fechada para o kernel de memória que
governa a dinâmica, uma quantidade que raramente pode ser calculada analiticamente.
O mesmo também é possível para uma divisibilidade monótona, baseada na positividade
completa dos mapas intermediários. Ao focarmos na dinâmica gaussiana de variáveis
contínuas, podemos estudar analiticamente modelos de tamanho arbitrário. Analisamos
em detalhes dois tipos de interações, um beam splitter implementando um SWAP parcial
e uma compressão de dois modos, que emaranha as ancillas e, ao mesmo tempo, alimenta
excitações no sistema. Ao analisar o kernel de memória e a divisibilidade para esses
dois cenários representativos, nossos resultados ajudam a lançar luz sobre os intrincados
mecanismos por trás dos efeitos da memória no domínio quântico.

Keywords: Sistemas quânticos abertos; Modelos colisionais; Não-Markovianidade; Ker-
nels de memoria; CP-Divisibilidade.
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Chapter 1

Introduction

The theory of open quantum systems is the backbone of modern research in quantum

mechanics and its applications. Some examples include the decay of unstable states in

nuclei, transport of electrons through quantum dots, molecular networks, nanophotonic

structures, among others. This is because, in real life phenomena, the systems are never

isolated, but are constantly interacting with its surrounding environment. In some cases,

when the effects of the environment are negligible, the closed system description is ac-

curate, described by the well-known Liouvillian equation. Nevertheless, more often than

not, it is not possible. Obtaining the most general microscopic description of the open

system dynamics is a very difficult problem, one that is yet to be solved.

One instance we can get a microscopic derivation is when we assume that the system-

environment interaction is weak but also that the bath correlation functions decay quickly.

This is known as the Born-Markov approximation [1–3]. Typically, when the system

interacts with the environment, information about the former is translated to the latter.

When the environment is very large and complex, this information may never return. In

this case the dynamics is called Markovian. This is characterized by the Lindblad equation

given by [4]:

d

dt
ρS = − i

~
[H, ρS] +

∑
k

gk

(
LkρSL

†
k −

1

2

{
L†kLk, ρS

})
, (1.1)

where ρS is the system’s density matrix, H is the Hamiltonian, and Lk are arbitrary oper-

ators. In general, however, there may be a partial backflow of information which charac-

1



Chapter 1. Introduction

terizes the non-Markovian evolution [5]. The dynamics of the open quantum systems in

the non-Markovian regime can generally be written as [6, 7]:

dρS
dt

= −i[HS, ρS] +

t∫
0

Kt−t′ [ρS(t′)] dt′, (1.2)

where Kt−t′ , called the memory kernel (MK), is a linear superoperator condensing all

the information on how the evolution of ρS at time t depends on its past values. We see

that the Markovian case (1.1) is recovered when Kt−t′ ∝ δ(t − t′). The MK has been

intensively studied in recent years, as it provides clear insights onto the inner workings of

non-Markovianity [8–13]. From the point of view of causality, this backflow quantifies

the ability of the dynamics to communicate past information to the future [14]. Non-

Markovianity therefore touches at the core of information processing where the notion of

information flow is fundamental.

Considerable attention was given in recent years on how to characterize and quantify

non-Markovianity in the quantum domain [15, 16]. Due to the richness involved, how-

ever, there is no single approach capable of capturing its full essence. The most important

notion is that of map divisibility: non-Markovianity requires that the underlying dynam-

ical map should not be divisible [17, 18]. The notion of information flow, on the other

hand, relies on information-theoretic quantifiers and is thus not uniquely defined. The

most widely used measures involve the trace distance [17–20] between different initial

states or entanglement [21] between the system and an ancilla. Several other quantifiers

have also been explored [22–30]. However, analyzing non-Markovianity for general envi-

ronments is in general an extremely difficult task. First, the calculations quickly become

impractical when the size of the bath is large. And second, realistic baths often have many

additional features which tend to mask the effects one is interested in. This motivates the

search for controllable models, where the degree of non-Markovianity can be finely tuned.

One way to accomplish this, which has seen an enormous surge in popularity in recent

years, are through the so-called collisional models [31–42]. Usually, a common configu-

ration to study non-Markovianity is to consider the system S coupled to N environmental

units En all at the same time (e.g. the Caldeira-Legett model [43]). In the collisional

models setup instead only a small part of the environment is interacting with the sys-

2
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tem at each instant of time. Afterwards, this part leaves and returns to the bath where it

will collide with the other bath units and thermalize, forgetting all information about the

system. We model this by replacing the open dynamics of a system by a series of se-

quential interactions between the system S and small environmental units E1, E2, E3 . . .

(henceforth referred to as ancillas). All ancillas are prepared in the same state and each

interaction only lasts for a fixed time, after which they never interact again. This therefore

leads to a stroboscopic dynamics for the system.

Although seemingly artificial, collisional models actually faithfully describe some ex-

perimentally relevant situations, for instance when a system is coupled to a 1D waveg-

uide [44–47]. The dispersion relation of 1D waveguides allows one to discretize the field

operator into time bins, so that the interaction at each time interval only involves one bin

operator. The picture that emerges is then exactly that of a collisional model. Moreover,

this model is in general non-Markovian by construction, which depends on the input state

of the electromagnetic field, as well as on the nature of the interaction. The specific con-

ditions determining whether the ensuing dynamics will be Markovian or not are discussed

in detail in a recent review on the subject [48].

The advantage of collisional models is that non-Markovianity can be introduced in a

fully controllable manner. There are two main ways to do so. The first is to consider that

the ancillas already start correlated [49–53]. The other one is to assume information is

transmitted between them during the process [54–62]. In this dissertation, we shall focus

on the second case. That is, we consider a scenario where neighboring ancillas EnEn+1

interact with each other in between the interactions SEn and SEn+1. (see Fig. 1.1(a)).

This additional interaction signals information from the past to the future, so that when

the SEn+1 interaction arrives, the ancilla En+1 will already contain some information

about the system.

In particular, we focus on continuous-variable collisional models, undergoing Gaussian-

preserving dynamics [63–71]. The advantages that come with the Gaussian toolbox al-

lows us to construct a complete framework for the study of non-Markovianity, which: (i)

encompass a broad range of scenarios; (ii) can be easily use to compute the mutual infor-

mation; (iii) allows for the explicit construction and computation of the memory kernel

and (iv) provides access to a CP-divisibility monotone, which can be directly compared

3
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Figure 1.1: Non-Markovian collisional models. (a) First few steps of the dynamics. The
system-ancilla interactions SEn are interspersed by ancilla-ancilla interactions EnEn+1,
which propagate information forward, making the dynamics non-Markovian in a fully
controllable way. (b) Basic structure of the Markovian embedding dynamics, which is a
map from the Hilbert space of SEn to that of SEn+1. (c) Mutual information. Previous
interactions SEn and EnEn+1 correlate the system S and the ancilla En+1 even before
explicitly interacting. (d) The memory kernel quantifies how different instants of the past
affect the evolution at present times. (e) CP-divisibility. The maps in gray, from time 0
to tn or tm are, by construction, CPTP. But the intermediate map from tn to tm > tn may
not necessarily be.

with the memory kernel. The framework is also amenable to analytical calculations and

extremely efficient from a numerical perspective. Thus, despite being restricted to Gaus-

sian interactions, it offers multiple advantages over more general maps. We also provide

a complete numerical library for efficiently simulating Gaussian collisional models in

Python [72]. All plots were generated with this code.

The dissertation is divided as follows. We begin in Chapter 2 by introducing impor-

tant concepts of open quantum systems and review the different methods to describe the

open system’s dynamics. Particularly, we consider a qubit interacting with a bosonic en-

vironment to exemplify the approximations needed to obtain a microscopic derivation.

Next, we study the continuous variable formalism in Chapter 3. Specifically, we examine

Gaussian states and maps as they will become cornerstone for this work. The following

chapters are the most important of the dissertation. They represent the original contribu-

tion from the authors to the field of non-Markovianity in collisional models. The general

framework is developed in Chapter 4. We show that the full non-Markovian dynamics

4



Chapter 1. Introduction

can be cast as a Makorvian embedding, involving a Markovian map at a higher dimension

(Fig. 1.1(b)). We then specialize this to the case of Gaussian models, where the embed-

ding is written as a set of matrix-difference equations with clear physical interpretation.

Throughout this chapter our exposition will be example-oriented, with a focus on two

specific types of interactions. The framework, however, is general and we will specify, in

each part, how to properly make this generalization. Following, in Chapter 5, we review

non-Markovianity in the quantum domain as well as the quantifiers we will use for our

collisional model. Armed with all these results, in Chapter 6 we provide a full charac-

terization of the memory effects using the mutual information (Fig. 1.1(c)), the memory

kernel (Fig. 1.1(d)) and the map divisibility (Fig. 1.1(e)). Finally, in Chapter 7 we draw

our conclusions and our perspectives on future works which can be done using this robust

framework.

5



Chapter 2

Open Quantum Systems

2.1 States and Dynamics

Quantum mechanics is the fundamental theory that describes the behavior of nature at the

micro scale [73–78]. However, it is often assumed that the quantum system is isolated,

overlooking the effects of the interaction with its surroundings. Such effects can lead

to dramatic changes in the system’s dynamics such as the dissipation of the quantum

correlations, making them necessary for an accurate depiction of real phenomena. The

field that studies this kind of phenomenon is called open quantum systems [1–3].

The description of open quantum systems starts by defining what the object of study

is: the states. In quantum mechanics, we were interested in kets |ψi〉 which live in a

Hilbert space H. Analogously, open quantum systems is interested in the density matrix

ρ =
∑
ci |ψi〉〈ψi| which lives in L(H), the state space of linear operators from H to H.

This density matrix ρ satisfies the following properties:

Hermicity: ρ = ρ†,

Positivity: ρ ≥ 0,

Normalization: Tr(ρ) = 1.

Besides these properties, we also want to know how a state ρ evolves in time. For that

purpose, we look at the evolution of isolated systems which evolve through Schörindger’s

6



Chapter 2. Open Quantum Systems

ρSE : System+ Environment HS ⊗HE

ρE : Environment HE

ρS : System HS

S

Figure 2.1: Schematics of an open quantum system. The system S is interacting with the
environment while the whole bipartite system ρSE is consider as closed.

equation:

∂t |ψ(t)〉 = − i
~
H(t) |ψ(t)〉 . (2.1)

The analogue evolution in the density matrix formalism is known as von Neumann’s equa-

tion:
dρ(t)

dt
= − i

~
[H(t), ρ(t)]. (2.2)

This result holds only for closed systems. The next step is to obtain a description of

the open system’s dynamics. One way to achieve this is to consider a bipartite system ρSE

which contemplates both the system S and an environmentE, as a closed system evolving

under von Neumann’s equation, as depicted in Fig. 2.1. Tracing out the environment E

will then lead to an effective description of the system’s density matrix ρS dynamics. Un-

fortunately, this is a complicated task, often relying on multiple approximation schemes

to obtain analytical results. We study this procedure in detail in the next sections.

2.2 Memory Kernel

We follow the seminal works of Nakajima and Zwanzig throughout this subsection [6,

7]. We consider the complete density matrix ρSE of a system S plus an environment E

initially uncorrelated ρSE(t0) = ρS(t0) ⊗ ρE(t0) evolving under a Hamiltonian HSE =

7
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HS +HE + V :
dρSE(t)

dt
= − i

~
[HSE, ρSE(t)]. (2.3)

It is convenient to formulate (2.3) in the interaction picture ρISE = eiH0t ρSE e
−iH0t with

respect to H0 = HS +HE:

dρISE(t)

dt
= − i

~
[
VI(t), ρ

I
SE(t)

]
:= LtρISE(t), VI = eiH0tV e−iH0t, (2.4)

where we defined the superoperator Lt. From here on, we will loose the superscript I in

ρISE for notational convenience.

Our goal is to obtain the master equation for the system ρS(t) = TrE(ρSE(t)). To that

end, we define a pair of orthogonal projection operators P and Q

PρSE = TrE(ρSE)⊗ ρ∗E, QρSE = ρSE − TrE(ρSE)⊗ ρ∗E, (2.5)

where ρ∗E is an arbitrary environmental density matrix, not necessarily related to the state

of the environment. Being projection operators, they satisfy PQ = QP = 0 and P+Q =

I which follow from the definition. Applying P to Eq. (2.4) we obtain

d

dt
PρSE(t) = PLtρSE(t). (2.6)

We can then introduce the identity I = P +Q to get a differential equation for PρSE(t)

d

dt
PρSE(t) = PLt

(
P +Q

)
ρSE(t) = PLtPρSE(t) + PLtQρSE(t). (2.7)

Similarly, we can obtain a differential equation for QρSE(t) applying Q to Eq. (2.3)

d

dt
QρSE(t) = QLtQρSE(t) +QLtPρSE(t). (2.8)

We now have two coupled differential equations. We solve Eq. (2.8) for QρSE(t),

QρSE(t) = G(t, t0)QρSE(t0) +

∫ t

t0

dt′G(t, t′)QLt′PρSE(t′), (2.9)

8
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where G(t, t′) is the Green’s function G(t, t0) = T exp
( ∫ t

t0
dt′QLt′

)
. Inserting (2.9) in

(2.7) leads to the Nakajima-Zwanzig master equation

d

dt
PρSE(t) = PLt

(
PρSE(t)+G(t, t0)QρSE(t0)+

∫ t

t0

dt′G(t, t′)QLt′PρSE(t′)
)
. (2.10)

This is a reduced equation forPρSE(t) after integrating out the environment. Most impor-

tantly, this equation is exact. We can further reduce this expression by fixing the arbitrary

ρ∗E to be the environment’s initial state ρE(t0). This selection implies that QρSE(t0) = 0,

leading to

d

dt
ρS(t)⊗ρE(t0) = PLtPρSE(t)+

t∫
t0

dt′ TrE
(
LtG(t, t′)QLt′

(
ρS(t′)⊗ρE(t0)

))
⊗ρE(t0).

(2.11)

Finally, if [ρE(t0), HE] = 0 we can redefine the interaction such that PLtPρSE(t) = 0,

thus arriving to:

d

dt
ρS(t) =

∫ t

t0

dt′Kt,t′ρS(t′), Kt,t′ = TrE
(
LtG(t, t′)QL′t(...⊗ ρE(t0))

)
, (2.12)

where Kt,t′ is the memory kernel, a linear superoperator condensing all the information

on how the evolution of ρS(t) depends on its past values.

2.3 Microscopic derivation:

Eq. (2.12) still involves a superoperator, which is quite generally difficult to compute

analytically. Approximations are then needed to obtain a more manageable equation, one

which will be more useful under certain conditions. We start by re-scaling the interaction

term VI to αVI by a dimensionless small parameter α. The assumption that α is small is

usually called the Born approximation. Expanding the memory kernel to second order,

we get

Kt,t′ = α2 TrE
(
LtQLt′P

)
+O

(
α3
)
, (2.13)

9
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which leads to an equation of motion of second order for ρS(t)

d

dt
ρS(t) = α2

∫ t

t0

dt′ TrE
(
LtLt′ρS(t′)⊗ ρE(t0)

)
. (2.14)

Putting the explicit expressions for the superoperator Lt we get

d

dt
ρS(t) = −

∫ t

t0

dt′ TrE [VI(t), [VI(t
′), ρS(t′)⊗ ρE(t0)]]. (2.15)

Next, we proceed with the Markovian approximation. We assume that the environ-

ment’s correlations decays much faster than the system’s so that the state of the system at

time t only depends on the present state ρS(t). To that end, we make the previous equation

time local by replacing ρS(t′) by ρS(t):

d

dt
ρS(t) = −

∫ t

t0

dt′ TrE [VI(t), [VI(t
′), ρS(t)⊗ ρE(t0)]]. (2.16)

This is called the Redfield equation. Still this equation is not yet Markovian since the time

evolution depends upon the initial time t0. We can make the substitution t′ by t − t′ in

Eq. (2.16) and integrate up to infinity. This is possible as we are assuming that the time

scale over which the state of the system varies is large compared to the time scale of the

decay of the environment’s correlations. Without loss of generally, we can set t0 = 0 and

obtain
d

dt
ρS(t) = −

∫ ∞
0

dt′ TrE [VI(t), [VI(t− t′), ρS(t)⊗ ρE(0)]]. (2.17)

The result is an integro-equation for ρS(t) which we can calculate by plugging in the

interaction potential in the interaction picture. Even so, we will often need to add more

approximations to obtain a differential equation for the ρS(t).

2.4 Qubit interacting with bosonic environment

One interesting model which simulates the effects an environment can have on the system

is a two-level system interacting with a bosonic bath. For example, this describes an atom

10
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interacting with the many modes of a radiation field. The Hamiltonian of this model is:

H =
1

2
ω0σz +

∑
k

ωkb
†
kbk +

∑
k

gk(σ+bk + σ−b
†
k), (2.18)

where we are modeling the environment as infinite harmonic oscillators, all with different

frequencies ωk. The interaction between our qubit system and the environment is of the

form of a typical exchange: creates an excitation on the system/bath by destroying one on

the bath/system with strength gk.

S


Figure 2.2: Qubit system S interchanging excitations with infinite bosonic environments.
The environmental units are modeled as harmonic oscillators with frequency ωk interact-
ing only with the system proportional to the coupling strength gk.

We move to the interaction picture to get VI(t):

VI(t) = eiH0tV e−iH0t =
∑
k

gk
(
ei∆ktσ+bk + e−i∆ktσ−b

†
k

)
, (2.19)

where ∆k = ω0 − ωk, and compute the commutator term inside the trace of Eq. (2.17).

d

dt
ρS(t) = −

∫ ∞
0

dt′ TrE
(
VI(t)ρS(t)ρEVI(t−t′)−ρS(t)ρEVI(t−t′)V (t)

)
+h.c. (2.20)

where h.c. stands for hermitian conjugate. We focus on the first term inside the integral

11
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TrE VI(t)ρS(t)ρEVI(t− t′):

∑
k,q

gkgq

(
ei(∆k+∆q)t−i∆qt′σ+ρSσ+〈bqbk〉+ ei(∆k−∆q)t+i∆qt′σ+ρSσ−〈b†qbk〉

e−i(∆k−∆q)t−i∆qt′σ−ρSσ+〈bqb†k〉+ e−i(∆k+∆q)t+i∆qt′σ−ρSσ−〈b†qb†k〉
)
.

To compute the correlations, we need to know the state of the environment. We assume

that the bath is in a thermal state, meaning that:

〈bqbk〉 = 〈b†qb†k〉 = 0, 〈b†qbk〉 = 〈bkb†q〉 − δkq = δkqnωk , (2.21)

where nωk is the bosonic occupation distribution 1/(eβωk − 1). This leads to:

TrE VI(t)ρSρEVI(t−t′) =
∑
k

g2
k

(
ei∆kt

′
nωkσ+ρSσ−+e−i∆kt

′
(nωk+1)σ−ρSσ+

)
. (2.22)

It is useful to define a quantity called the spectral density of the bath:

J(ω) = 2π
∑
k

g2
kδ(ω − ωk), (2.23)

such that the first term in Eq. (2.20) now looks like:

∫ ∞
0

dt′
∫ ∞

0

dω

2π
J(ω)

(
ei(ω0−ω)t′nωσ+ρSσ− + e−i(ω0−ω)t′(nω + 1)σ−ρSσ+

)
. (2.24)

To compute the integral we use the known identity:

∫ ∞
0

dt′

2π
ei(ω0−ω)t′ =

1

2
δ(ω0 − ω)− i

2
P

(
1

ω0 − ω

)
, (2.25)

where P is the Cauchy principal value. This term only accounts to a rescaling of the

frequency ω0 to ω0 + ∆ in the unitary dynamics. This net effect is called the Lamb shift.

On the other hand, the first term will lead to new terms in the evolution of ρS which are

of dissipative nature. Focusing on this term we then get:

∞∫
0

dω

2
J(ω)δ(ω0−ω)

(
nωσ+ρSσ−+(nω+1)σ−ρSσ+

)
=
J(ω0)

2

(
nω0σ+ρSσ−+(nω0+1)σ−ρSσ+

)
.

12
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A similar precedure can be done to the other terms in Eq. (2.20), resulting in equal terms

up to some permutations of the operators. Plugging them back, we get:

d

dt
ρS(t) = γn̄

(
σ+ρSσ−−

1

2
{σ−σ+, ρS}

)
+ γ(n̄+ 1)

(
σ−ρSσ+−

1

2
{σ+σ−, ρS}

)
. (2.26)

Going back to the Schrödinger picture simply reintroduces the unitary contribution and

we thus finally arrive at

d

dt
ρS(t) = − i

~

[
ω0 + ∆

2
σz, ρS(t)

]
+D(ρS(t)), (2.27)

where the first term is the familiar unitary term andD(ρS(t)) is the dissipative contribution

found in Eq. (2.26). By comparison with the closed system’s evolution, the effects of

tracing out the environment results in new additional terms. Still, several approximations

and assumptions were needed to arrive to this equation, most of which do not hold in real

experiments.

2.5 Lindblad Equation

Suppose the evolution of the system is time local,

d

dt
ρS(t) = RtρS(t), (2.28)

for some superoperator Rt. We then ask: What is the general structure of Rt required to

ensure that starting with a density matrix ρ(0), the evolved state ρ(t) is always a genuine

density matrix for all later times t? Let us start with a simpler question. Suppose the

solution is given by a linear map of the form:

ρS(t) = Vt(ρS(0)), (2.29)

for some superoperator Vt. The question now becomes: What conditions shall Vt fulfill

in order for ρS(t) be a density matrix? The answer is that the map should be a quantum

operation, one that is completely positive trace preserving (CPTP) [79]. This can be

13
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represented by the operator-sum representation

Vt(ρS(0)) =
∑
k

MkρS(0)M †
k ,

∑
k

M †
kMk = 1, (2.30)

where the set of Mk are called the Kraus operators [80].

Returning now to the original question, if (2.29) is to be the solution of (2.28) then Vt
must satisfy the semi-group property

Vt2Vt1 = Vt2+t1 . (2.31)

The semi-group property, together with the restriction that Vt must be a quantum oper-

ation, completely determines the basic structure of Rt. The generator of any quantum

operation satisfying the semigroup property must have the form [4]

d

dt
ρS = − i

~
[H, ρS] +

∑
k

gk

(
LkρSL

†
k −

1

2

{
L†kLk, ρS

})
, (2.32)

where H is an Hermitian operator, Lk are arbitrary operators and gk ≥ 0. This is

called Lindblad’s theorem and master equations having this structure are called Lindblad

equations. We can see that our microscopic derivation of the system’s density evolution

Eq. (2.27) already has this structure.

We proceed to formally proof Lindblad’s theorem. The semigroup property ensures

that the evolution of the density matrix for an infinitesimal ∆t is

ρS(t+ ∆t) =
∑
k

Mk(∆t)ρS(t)M †
k(∆t), (2.33)

and expanding ρS(t+ ∆t) to first order in ∆t, we find

ρS(t+ ∆t) = ρS(t) + ∆t
d

dt
ρS(t) +O

(
∆t2
)
. (2.34)

This fixes the correct scaling of the Mk on ∆t. We choose the k = 0 term to be pro-

portional to the identity which will guarantee that in the limit of ∆t → 0 we get the

correct result. Similarly, the other terms are proportional to
√

∆t to ensure that products

14
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Mk(. . .)M
†
k are of order ∆t. That is, we take

M0 = I +G∆t, Mk =
√

∆tLk, k 6= 0, (2.35)

where G and Lk are arbitrary operators. Normalization of the Kraus operators leads to

∑
k

M †
kMk=

(
I +G†∆t

)(
I +G∆t

)
+ ∆t

∑
k 6=0

L†kLk, (2.36)

= I + (G+G†)∆t+ ∆t
∑
k 6=0

L†kLk +O
(
∆t2
)
. (2.37)

We can parametrize G = K − iH where K and H are both Hermitian. It follows from

the normalization condition

K = −1

2

∑
k 6=0

L†kLk. (2.38)

We now substitute our results into Eq. (2.33) to finally get:

ρS(t+ ∆t)=
(
I +G∆t

)
ρS
(
I +G†∆t

)
+ ∆t

∑
k 6=0

LkρSL
†
k, (2.39)

= ρS(t) + ∆t
(
GρS + ρSG

†)+ ∆t
∑
k 6=0

LkρSL
†
k, (2.40)

= ρS(t)− i

~
∆t[H, ρS] +

∑
k 6=0

(
LkρSL

†
k −

1

2

{
L†kLk, ρS

})
. (2.41)

Rearranging and taking the limit ∆t→ 0 we get:

ρS(t+ ∆t)− ρS(t)

∆t
=

d

dt
ρS = − i

~
[H, ρS] +

∑
k 6=0

(
LkρSL

†
k −

1

2

{
L†kLk, ρS

})
, (2.42)

which is exactly Eq. (2.32).
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Continuous Variable Formalism

3.1 Coherent States

A useful set of physical states are the coherent states. This basis allows the description

of several experiments, most prominently in quantum optics where the electromagnetic

field is described by quantized harmonic oscillators [2, 81]; it allows for the description

of quantum many-body phenomena by means of the coherent path integral [82–86]; and,

specially in quantum information, they represent a cornerstone in all facets of information

processing [63, 79, 87, 88].

The coherent states |α〉 are defined as the eigenstates of the anhilation operator a:

a |α〉 = α |α〉 , |α〉 = eαa
†−α∗a |0〉 , (3.1)

where we will henceforth refer to |0〉 as the vacuum state. Although not crucial, it will be

useful to state some properties of the coherent states [2, 73, 82]:

• Taking the hermitian conjugate of Eq. (3.1), we get the bra 〈α| which is a left

eigenstate of the creation operator a†,

〈α| a† = 〈α|α∗, (3.2)

where α∗ is the complex conjugate of α.
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• The action of the creation operator a on the coherent state yields

a† |α〉 = ∂α |α〉 . (3.3)

• The overlap between two coherent states is given by

〈µ|α〉 = eµ
∗α− 1

2
|µ|2− 1

2
|α|2 . (3.4)

In particular, the norm of a coherent state is |〈α|α〉|2 = 1.

• Most importantly, the coherent states form an overcomplete set of states:

∫
d2α

π
|α〉〈α| = 1, (3.5)

where d2α = dReα d Imα.

• The trace of a density matrix ρ in the coherent basis is given by

Tr(ρ) =

∫
d2α

π
〈α| ρ |α〉 . (3.6)

• The expectation value of any operator O in the coherent basis is

〈O〉 = Tr(ρO) =

∫
d2α

π
〈α|ρO|α〉 . (3.7)

The coherent basis is particularly useful when representing the density matrix in quan-

tum phase space, the quantum analogue of classical phase space. Among the different

representations, we choose the Husimi-Q function [89]. This is defined as the expectation

value of the density matrix ρ in the coherent basis |α〉

Q(α, α∗) =
1

π
〈α|ρ|α〉 . (3.8)

As an example, let us take ρ to be the thermal Gibbs state

ρ =
e−βωa

†a

Tr
(
e−βωa†a

) . (3.9)
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Its Husimi function will be

Q(α, α∗) =
1− e−βω

π

∞∑
n=0

e−βωn 〈α|n〉 〈n|α〉 =
1

π(n̄+ 1)
e−
|α|2
n̄+1 , (3.10)

where n̄ = (eβω − 1)−1 is the bosonic occupation number. We plot in Fig. 3.1 the Gibbs

state with ñ = 20.

We can also use the Husimi function to calculate the expectation value of anti-normally

ordered operators. That is operators of the form

〈
ak(a†)l

〉
=

∫
d2α αk(α∗)lQ(α, α∗), (3.11)

which reduces to an integral in the complex plane of α.

3.2 Gaussian States and Maps

The Gibbs state is an example of a Gaussian state. These are characterized by their repre-

sentation in quantum phase space where its Husimi-Q function is a Gaussian function of

the coherent variables

Q(α, α∗) =
1

π
√
|Θ|

exp
(
− 1

2
~α†Θ−1~α

)
, ~α = (α, α∗), (3.12)

where Θ is called the covariance matrix and |Θ| is the determinant of such matrix.
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Figure 3.1: Husimi-Q function of the thermal Gibbs state with occupation number n̄ = 20.
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Related to Gaussian states is the concept of Gaussian maps [67–69, 71, 90]. Gaussian

maps are transformations that preserves Gaussianity. That is, that take Gaussian states

into Gaussian states. Dynamically, this is achieved by imposing certain restrictions in the

Lindblad equation (2.32):

• The Hamiltonian H must be at most quadratic in a and a†. Thus, the most general

Gaussian preserving Hamiltonian has the form

H = ωa†a+ γa†a† + γ∗aa+ fa† + f ∗a. (3.13)

• The Lindblad generators Lk must be linear on a and a†. As an example the thermal

bath generator

D(ρ) = γn̄
(
a†ρa− 1

2

{
aa†, ρ

})
+ γ(n̄+ 1)

(
aρa† − 1

2

{
a†a, ρ

})
, (3.14)

is a Gaussian preserving map.

Gaussian states and Gaussian maps are an important tool since they simplify dramat-

ically a potentially unsolvable problem. While, in general, continuous variable systems

require an infinite dimensional Hilbert space, Gaussian states are fully determined by the

first and second moments. Moreover, using Gaussian maps allows the dynamics to be

described by a finite set of parameters. The reason is that for a Gaussian map, the equa-

tions for the first and second moments are closed, therefore reducing the complexity of

the problem which otherwise would be intractable.

Even though we could, in principle, tackle the one-mode problem numerically, the ap-

proach becomes obsolete as we start considering multi-mode states. Gaussianity becomes

esential to obtain analytical solutions.

3.3 Multi-mode States

We consider N bosonic modes with algebra given by

[
ai, a

†
j

]
= δij,

[
ai, aj

]
= 0, (3.15)
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and quadratures by

qi =
1√
2

(ai + a†i ), pi =
i√
2

(a†i − ai). (3.16)

We would like to merge all these relations into a single condition. For this reason, we

define two 2N dimensional vectors

~X =
(
a1, a

†
1, a2, a

†
2, ... aN , a

†
N

)
, ~Y =

(
q1, p1, q2, p2, ... qN , pN

)
. (3.17)

These two vectors are equivalent representations of the N bosonic modes. It will be

convenient to write down the basic results for both of them. The connection between

these two vectors is given by

~Y = Λ ~X, Λ =
N⊕
i=1

 1√
2

1√
2

− i√
2

i√
2

 , (3.18)

where Λ is a unitary transformation analogue to (3.16). Additionally, the multi-mode

commutation relations (3.15) are now condensed in the vector commutators

[
~X, ~X

T]
=

N⊕
i=1

1 0

0 −1

 ,
[
~Y , ~Y

T]
=

N⊕
i=1

 0 1

−1 0

 , (3.19)

where the vector commutator is defined as
[
~A, ~B

T]
= ~A ⊗ ~B

T − ( ~B
T ⊗ ~A)

T . Equations

(3.17)-(3.19) establishes the algebra of the group of operators.

As mentioned in the previous section, we are interested in the first and second mo-

ments. We define the first moments ~x and ~y related to ~X and ~Y as simply xi = 〈Xi〉 and

yi = 〈Yi〉. More interesting, we define the covariance matrices (CM) as

Θ =
1

2
〈
{
Xi, X

†
j

}
〉 − 〈Xi〉 〈X†j 〉, σ =

1

2
〈{Yi, Yj}〉 − 〈Yi〉 〈Yj〉 , (3.20)

where by construction Θ is Hermitian, and σ is real and symmetric. For example, for two
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modes the covariance matrices would look like:

σ =



〈q2
1〉 1

2
〈{q1, p1}〉 〈q1q2〉 〈q1p2〉

1
2
〈{q1, p1}〉 〈p2

1〉 〈p1q2〉 〈p1p2〉

〈q2q1〉 〈q2p1〉 〈q2
2〉 1

2
〈{q2, p2}〉

〈p2q1〉 〈p2p1〉 1
2
〈{q2, p2}〉 〈p2

2〉


, (3.21)

and

Θ =



〈a†1a1〉+ 1
2

〈a1a1〉 〈a1a
†
2〉 〈a1a2〉

〈a†1a†1〉 〈a†1a1〉+ 1
2

〈a†1a†2〉 〈a†1a2〉

〈a†1a2〉 〈a1a2〉 〈a†2a2〉+ 1
2

〈a2a2〉

〈a†1a†2〉 〈a1a
†
2〉 〈a†2a†2〉 〈a†2a2〉+ 1

2


, (3.22)

where is implicitly assumed that 〈ai〉 = 0. Notice that the covariance matrix is structured

in 2 × 2 blocks where the diagonal blocks are the CMs of modes 1 and 2, while the off-

diagonal blocks represent their correlations. These two matrices are also related via the

unitary transformation (3.18), namely

σ = Λ Θ Λ†. (3.23)

3.4 Gaussian Dynamics

We now focus on the dynamical evolution of Gaussian states subject to the Lindblad

equation:
d

dt
ρ = −i[H, ρ] +D(ρ), (3.24)

where H is a Gaussian Hamiltonian and D is a Gaussian preserving dissipator. Given the

master equation, we can obtain the evolution of any observable by taking the expectation

value of such operator:

d

dt
〈O〉 = i〈[H,O]〉+ Tr(OD(ρ)). (3.25)
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Using the cyclic property of the trace, we can write

Tr
(
O
(
LρL† − 1

2

{
L†L, ρ

}))
= 〈L†OL− 1

2

{
L†L,O

}
〉 := 〈D̃(O)〉. (3.26)

Hence, we can rewrite Eq. (3.25) as:

d

dt
〈O〉 = i〈[H,O]〉+ 〈D̃(O)〉. (3.27)

So far we haven’t use the fact that the evolution is described by Gaussian maps. Im-

posing Gaussianity results in the equations for the first and second moments to close.

That means that the expected values of operators like 〈ai〉 or 〈a†iaj〉 − 〈a†i〉〈aj〉 will only

depend on the elements of the vector ~x and the covariance matrix Θ. In contrast, in the

non-Gaussian scenario the equations for these moments will depend also on the higher

moments, leading to an infinite hierarchy of coupled equations. Thus, the Gaussian dy-

namics will be encapsulated in the evolution of the vector of averages and the covariance

matrix.

Taking the evolution of the vector of averages ~x and ~y into Eq. (3.27) we get

d

dt
~x = W~x− ~f,

d

dt
~y = M~y − ~g, (3.28)

where W and M depend on the choice of Hamiltonian H while ~f and ~g on the choice of

dissipator D. Similarly, we get for the covariance matrices:

d

dt
Θ = WΘ + ΘW † + F,

d

dt
σ = Mσ + σM

T
+G, (3.29)

where the matrices F and G depend only on the dissipatorD whereas the matrices W and

M are the same as Eq. (3.28).

Let us illustrate the procedure with two simple examples that we will further explore in

Chapter 4. Suppose we have two bosonic modes a1 and a2 interacting via a beam-splitter

Hamiltonian

HBS = ig(a†1a2 − a†2a1). (3.30)

This will create/destroy a particle in one mode and destroy/create a particle in the other
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mode, conserving always the total number of particlesN = a†1a1+a†2a2. We use Eq. (3.27)

to get the first moments evolution

d〈a1〉
dt

= 〈i
[
HBS, a1

]
〉 = g〈a2〉, (3.31)

d〈a†1〉
dt

= 〈i
[
HBS, a

†
1

]
〉 = g〈a†2〉, (3.32)

d〈a2〉
dt

= 〈i
[
HBS, a2

]
〉 = −g〈a1〉, (3.33)

d〈a†2〉
dt

= 〈i
[
HBS, a

†
2

]
〉 = −g〈a†1〉. (3.34)

The matrix W associated to this beam-splitter Hamiltonian is given by

WBS =


0 0 g 0

0 0 0 g

−g 0 0 0

0 −g 0 0

 . (3.35)

The solution for the first moments vector ~x(t) is thus

~x(t) = VBS(t) ~x0, (3.36)

where the VBS matrix introduced is

VBS(t) := eWBSt =


cos (gt) 0 sin (gt) 0

0 cos (gt) 0 sin (gt)

− sin (gt) 0 cos (gt) 0

0 − sin (gt) 0 cos (gt)

 . (3.37)

It will be useful to re-state this matrix in terms of 2× 2 blocks

VBS(t) =

 cos (gt)I sin (gt)I

− sin (gt)I cos (gt)I

 , (3.38)

where I is the 2× 2 identity matrix.
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We can also obtain the ~y(t) solution by the interdependence relation (3.18),

~y(t) = SBS(t) ~y0, SBS(t) = Λ† VBS(t) Λ =

 cos (gt)I sin (gt)I

− sin (gt)I cos (gt)I

 . (3.39)

Likewise, the solution for the covariance matrices are:

Θ(t) = VBS(t) Θ0 V
†
BS(t), σ(t) = SBS(t)σ0 S

T

BS(t). (3.40)

Particularly, we will be interested in obtaining the solution of one of the modes (the sys-

tem) by tracing out the other modes (environment). This is achieved by looking at the

system’s block term in Eq. (3.40). As an example, let us take the first mode as the system

and the second mode as the environment. Tracing out the second mode, we get:

σ1(t) = cos2(gt)σ1(0) + sin2(gt)σ2(0). (3.41)

This equation can be also expressed as:

σ1(t) = Xσ1(0)XT + Y, (3.42)

whereX = cos(gt) I, and Y = sin2(gt)σ2(0). This is the Gaussian analogue of Eq. (2.30)

and it is known as a Gaussian CPTP map.

Another Gaussian Hamiltonian we will be interested in is the two-mode squeezing

HSQ = iµ(a†1a
†
2 − a2a1). (3.43)

In opposition to the beam-splitter, this Hamiltonian does not conserve the total number of

particles N : it creates/destroys a particle in both modes with strength µ.
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The equations of motion for the first moments are:

d〈a1〉
dt

= 〈i
[
HSQ, a1

]
〉 = µ〈a†2〉, (3.44)

d〈a†1〉
dt

= 〈i
[
HSQ, a

†
1

]
〉 = µ〈a2〉, (3.45)

d〈a2〉
dt

= 〈i
[
HSQ, a2

]
〉 = µ〈a†1〉, (3.46)

d〈a†2〉
dt

= 〈i
[
HSQ, a

†
2

]
〉 = µ〈a1〉. (3.47)

The matrix W associated with this Hamiltonian is

WSQ =


0 0 0 µ

0 0 µ 0

0 µ 0 0

µ 0 0 0

 . (3.48)

Similar solutions (3.36)-(3.40) are obtained for the two-mode squeezing provided we

change VBS with the corresponding VSQ matrix

VSQ(t) := eWSQt =

 cosh (µt)I sinh (µt)σx

sinh (µt)σx cosh (µt)I

 , (3.49)

and change SBS with SSQ

SSQ(t) = Λ† VSQ(t) Λ =

 cosh (µt)I sinh (µt)σz

sinh (µt)σz cosh (µt)I

 , (3.50)

where σx and σz are the familiar 2× 2 Pauli Matrices.

Finally, we can get the CPTP Gaussian map (3.42) for the two-mode squeezing:

σ1(t) = cosh2 (µt)σ1(0) + sinh2(µt)σz σ2(0)σz, (3.51)

where X = cosh (µt) I, and Y = sinh2 (µt)σz σ2(0)σz.
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Chapter 4

Collisional Models

This chapter contains one of the main original results developed in this dissertation. It

presents the theoretical model to be studied in these last chapters. The exposition here

follows closely Sec. II of the submitted arXiv preprint [91].

4.1 Motivation

As we have seen previously, obtaining a microscopic description of the open quantum

system’s dynamics is a really complicated task, often relying on approximation schemes

to get analytical results. We particularly analyzed the case of a qubit interacting with

a bosonic environment and realized how many approximations were made to obtain the

system’s evolution. This motivates the search for alternative models, where analytic equa-

tions can be obtained without resourcing to such severe approximations. One way to ac-

complish this, which has seen an enormous surge in popularity in recent years, are through

the so-called collisional models [31–42, 91]. The basic idea is to replace the open dynam-

ics of a system by a series of sequential interactions between the system S and small

environmental units E1, E2, E3 ... (also referred to as ancillas). All interactions lasts for

a fixed time after which they never interact again. This therefore leads to a stroboscopic

dynamics for the system.

The collisional model we are interested in this work is the one depicted in Fig. 4.1.

That is, we consider a scenario where neighboring ancillas EnEn+1 interact with each

other in between the interactions SEn and SEn+1. This additional interaction signals
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Figure 4.1: First few steps of the collisional model dynamics. The system-ancilla in-
teractions SEn are interspersed by ancilla-ancilla interactions EnEn+1, which propagate
information forward, making the dynamics non-Markovian in a fully controballe way.

information from the past to the future, so that when the SEn+1 interaction arrives, the

ancilla En+1 will already contain some information about the system.

4.2 Formal Framework

Here we consider the collisional model scenario presented in Fig. 4.1. A system S is put

to interact sequentially with an arbitrary number of environment ancillas E1, E2, E3 ...

The ancillas are independent and identically prepared, each with the initial density matrix

ρE . The interaction between S and En is described by a unitary Un. After this, S and

En never interact again. After the collision SEn but before the SEn+1, we put ancillas

En and En+1 to interact with each other by means of another unitary Vn,n+1. Since En

already interacted with S, it contains some information about each other, obtained from

En. Past information about S can thus backflow at SEn+1.

Let ρ0 = ρS⊗ρE1⊗ρE2⊗ ... denote the initial state of the composite system SE1E2 ...

We count time in integer steps, such that at time n the collisions SEn andEnEn+1 already

took place. That is, at time n the system has already interacted with its corresponding
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ancilla En and this ancilla has already passed down its information to the next one. The

map taking the composite system SE1E2 ... from n− 1 to n reads

ρn = Vn,n+1Un ρ
n−1 U †nV

†
n,n+1. (4.1)

To avoid confusion we henceforth use superscripts to denote time so that ρn refers to

the global state of SE1E2 ... at time n. The map (4.1) involves only SEnEn+1. All

ancillas Em with m ≥ n + 2 did not yet participate in the process and therefore remain

in a product state with everything else. In addition, the ancillas with m < n will never

participate again and hence can be traced out (discarded). The process (4.1) can thus be

equivalently written as

ρnSEnEn+1
= Vn,n+1Un

(
ρn−1
SEn
⊗ ρEn+1

)
U †nV

†
n,n+1, (4.2)

where ρn−1
SEn

is the state of SEn at time n− 1 and ρEn+1 = ρE refers to the initial state of

En+1. This also holds for the first step, provided one recalls that ρ0
SE1

= ρ0
S ⊗ ρE1 . After

the interaction (4.2), one may trace out En, leading to

ρnSEn+1
= TrEn

(
Vn,n+1Un

(
ρn−1
SEn
⊗ ρEn+1

)
U †nV

†
n,n+1

)
:= Φ(ρn−1

SEn
). (4.3)

This can now be fed again to Eq. (4.2) to evolve to the next step. This equation also

defines the quantum channel Φ(.), which is a map from the Hilbert space of SEn to that

of SEn+1. Moreover, since we are assuming that the unitaries Un and Vn,n+1 are the same

for all collisions, the map Φ itself is actually independent of n; the only n dependence is

in the input ρn−1
SEn

.

Crucially, we see that the map Φ(.) is both time-local and completely positive since it

is written as a Stinespring dilation [92]. Hence, it represents an entirely Markovian evo-

lution. Eq. (4.3) is known as a Markovian embedding of the dynamics [59]: it expresses

a non-Markovian evolution as a Markovian one at the expense of working with maps that

act between different Hilbert spaces and also have a higher dimension.

It is convenient to define the more compact notation %n = ρnSEn+1
for the joint state

of SEn+1 at time n. The entire dynamics can then be captured by the stroboscopic,
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Figure 4.2: Basic structure of the Markovian embedding dynamics (4.20), which is a map
from the Hilbert space of SEn to that of SEn+1

Markovian, CPTP evolution:

%n+1 = Φ(%n), (4.4)

and the corresponding sequence of states %0, %1, %2, ... that it generates. At each step,

the reduced state of the system is always available as ρnS = TrEn+1 %
n. The Markovian

embedding (4.4) will be central to this work.

Since initially the system is uncorrelated from all ancillas, it is possible to define a

CPTP map taking ρ0
S → ρnS:

ρnS = En(ρ0
S) = TrEn+1 Φn(ρ0

S ⊗ ρE1). (4.5)

Even though this map is CPTP, the map taking ρmS → ρnS will not generally be CPTP due

to the non-Markovian dynamics.

4.3 Gaussian Collisional Model

We are interested in obtaining analytical results. To accomplish this, we therefore spe-

cialize now to the case of continuous-variable systems undergoing Gaussian-preserving

dynamics reviewed in Chapter 3. Our exposition, in what follows, will be example ori-

ented. However, the final results will be quite general [Eqs. (4.19), (4.20) and (4.22)].
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We assume the system S is described by bosonic annhilation operator a and corre-

sponding quadrature Q = (a + a†)/
√

2 and P = i(a† − a)/
√

2. Similarly, the ancillas

are described by bosonic annhilation operators b1, b2, ... with corresponding quadratures

qn, pn. The generalization to multimode system is straightforward. We take the system-

ancilla interaction Un in Eq. (4.2) to be a simple beam-splitter-type unitary

Un = eλs(a
†bn−b†na), (4.6)

described by a parameter λs. One can view (4.6) as an interaction with a Hamiltonian

ig(a†bn − b†na) that lasts for a time τ such that gτ = λs. Since we are only interested

in the stroboscopic dynamics, we can omit the internal details for simplicity. As for the

EnEn+1 collision unitary Vn,n+1, we shall explore two possibilities. The first is again a

beam-splitter map

Vn,n+1 = eλe(b
†
nbn+1−b†n+1bn), (4.7)

with interaction strength λe. We shall henceforth refer to this as the BS dynamics. In

addition, we shall also look at a two-mode squeezing interaction (TMS),

Ṽn,n+1 = eνe(b
†
nb
†
n+1−bn+1bn), (4.8)

with strength νe and view (4.8) as coming from a Hamiltonian ig(b†nb
†
n+1 − bn+1bn) for a

time τ such that gτ = νe. The reason behind this choice is related to the fact that two-

mode squeezing interactions generate stronger forms of correlations (e.g. entanglement)

between the ancillas.

The unitaries (4.6)-(4.8) are Gaussian preserving. If we assume that the initial state

is Gaussian, the dynamics will then be completely characterized by the first and second

moments. We assume for simplicity that the first moments are initially zero so that they

will remain so throughout. The covariance matrix of the initial state is block-diagonal, of

the form

σ0 = diag(θ0, ε, ε, ...), (4.9)

where each block is 2 × 2: θ0 is the arbitrary initial CM of the system and ε is the initial

CM of the ancillas (which are all the same, since we are assuming the ancillas are iid).
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The global dynamics of SE1E2 . . . is unitary. As a consequence, the map (4.1) is

translated into a symplectic evolution for the CM:

σn = Sn,n+1Sn σ
n−1ST

nS
T
n,n+1, (4.10)

where Sn and Sn,n+1 are the symplectic matrices associated with the unitaries Un and

Vn,n+1. The symplectic matrix associated to the beam-splitter interaction (4.6) is remark-

ably simple because all entries are proportional to the 2×2 identity (3.39) [this is partially

because of the choice of phase in the exponent of (4.6)]. For instance, the interaction S2

between the S and E2 reads

S2 =



x 0 y 0 . . .

0 1 0 0 . . .

−y 0 x 0 . . .

0 0 0 1 . . .
...

...
...

... . . .


, (4.11)

where each entry is a 2×2 matrix, with x = cos(λs) and y = sin(λs). The same structure

also holds for the BS unitary Vn,n+1 between EnEn+1 [Eq. (4.7)], except that now the

position of the non-zero entries changes. For instance,

S1,2 =



1 0 0 0 . . .

0 z w 0 . . .

0 −w z 0 . . .

0 0 0 1 . . .
...

...
...

... . . .


, (4.12)

where z = cos(λe) and w = sin(λe). The TMS interaction (4.8) is slightly more compli-

cated since some entries are proportional to the identity, while others are proportional to
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the Pauli matrix σz as seen in (3.50). For instance,

S̃1,2 =



1 0 0 0 . . .

0 z̃ w̃σz 0 . . .

0 w̃σz z̃ 0 . . .

0 0 0 1 . . .
...

...
...

... . . .


, (4.13)

with z̃ = cosh(νe) and w̃ = sinh(νe).

The BS dynamics is completely characterized by the pair (λs, λe), while the TMS

dynamics is characterized by (λs, νe). On top of that, one also has the choice of ancilla

initial state ε. More general Gaussian maps will continue to have a similar structure. The

symplectic Sn will have the form

S2 =



A 0 B 0 . . .

0 1 0 0 . . .

C 0 D 0 . . .

0 0 0 1 . . .
...

...
...

... . . .


, (4.14)

for block matrices A,B,C,D. The matrices Sn for other values of n are obtained by sim-

ply placing A,B,C,D at the correct positions. Note also that the condition that S must

be symplectic imposes constraints on A,B,C,D which, however, are not particularly

illuminating. Similarly, the EnEn+1 interaction reads

S̃1,2 =



1 0 0 0 . . .

0 E F 0 . . .

0 G J 0 . . .

0 0 0 1 . . .
...

...
...

... . . .


, (4.15)

for block matrices E,F,G, J . Note that these two expressions also naturally contemplate

the case where either the system or each ancilla are, individually, composed of multiple
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modes (which would simply affect the size of the matrices A, . . . , J).

4.4 Markovian Embedding

The biggest advantage of Gaussian collisional models, as we will now show, is that the

full evolution can be converted into a simple system of matrix difference equations for

only a handful of entries of the full CM σn. As already discussed below Eq. (4.2), the

step from σn−1 to σn involves only S, En and En+1. At time n − 1 the ancilla En+1 is

still uncorrelated from the rest, whereas S and En are already correlated because of the

previous step. Thus, the tripartite CM of SEnEn+1, at time n − 1, will have the block

structure

σn−1
SEnEn+1

=


θn−1 ξn−1

n 0

ξn−1,T
n εn−1

n 0

0 0 ε

 , (4.16)

where εn−1
n is the state of ancilla En at time n − 1, which is no longer the original value

ε because it already interacted with En−1 in the previous step. Moreover, ξn−1
n are the

correlations between SEn that were developed in the previous step. We then apply the

map (4.10) to Eq. (4.16), using the matrices in Eqs. (4.11)-(4.13)

σnSEnEn+1
= Sn,n+1Sn

(
σn−1
SEnEn+1

)
S

T

nS
T

n,n+1. (4.17)

This will lead to a matrix σn with many non-zero entries. However, as far as the dynamics

of S is concerned, only three entries are needed: the state of the system θn, the state εnn+1

of ancilla En+1 and the correlations ξnn+1 between S and En+1.

To gain intuition, let us first analyze the BS case, which is simple since all blocks in

Eq. (4.12) are proportional to the identity. Using Eqs. (4.11) and (4.12) in (4.17), one
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finds the following system of matrix difference equations:

θn = x2θn−1 + y2εn−1
n + xy(ξn−1

n + ξn−1,T
n ),

εnn+1 = z2ε+ w2
[
x2εn−1

n + y2θn−1 − xy(ξn−1
n + ξn−1,T

n )
]
, (4.18)

ξnn+1 = w
[
xy(θn−1 − εn−1

n ) + y2ξn−1,T
n − x2ξn−1

n

]
.

This provides a neat illustration of the map Φ( · ) in Eq. (4.3): the quantities on the left-

hand and right-hand side refer to different ancillas: for instance, εnn+1 is the state of ancilla

En+1 at time n, whereas εn−1
n is the state of En at time n − 1. Of course, one could also

compute εnn, but this is not necessary for describing the dynamics of S.

The system of matrix difference equations (4.18) contains the minimum amount of

information required to fully account for the dynamics of S. These equations can also be

recast in a more compact form in terms of the Markovian embedding (4.4). We define the

reduced CM of SEn+1 at time n as

γnn+1 ≡ γn =

 θn ξnn+1

ξn,Tn+1 εnn+1

 , (4.19)

where the notation γn will be used to simplify the expressions. Eq. (4.18) can then be

written compactly as

γn+1 = XγnXT + Y, (4.20)

where the time index was shifted by 1. Here X and Y are 4× 4 matrices with block form

X =

 x y

yw −wx

 , Y =

0 0

0 z2ε

 , (4.21)

where, again, each block is proportional to the identity.

Eq. (4.20) beautifully illustrates the notion of Markovian embedding. It has the struc-

ture of a typical Gaussian CPTP map (3.40), being Markovian (time-local) by construc-

tion. However, this Markovian dynamics takes place at the larger space of the system plus

one ancilla (which one, in specific, changes at each collision). Thus, we have embedded
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the non-Markovian dynamics into a Markovian dynamics at a larger space. Notice how

the size of the space is directly related to the fact that we chose En to only interact with

its nearest neighbor En+1. That is, we fixed the memory length to be 1, which defines the

size of the minimal space required for the embedding [59].

The matrices (4.21) refer to the beam-splitter unitary (4.7). The generalization to the

arbitrary Gaussian interactions (4.14) and (4.15) is similar, albeit more cumbersome. The

result is

X =

 A B

GC GD

 , Y =

0 0

0 JεJT

 . (4.22)

For instance, in the case of the TMS interaction, Eq. (4.13), one has G = w̃σz and J = z̃,

in addition to A = D = x, B = y and C = −y (which come from Sn in (4.11)). One

then finds that

X =

 x y

−yw̃σz w̃xσz

 , Y =

0 0

0 z̃2ε

 . (4.23)

The blocks in X are therefore no longer proportional to the identity, but some are propor-

tional to σz.

To summarize, the general non-Markovian dynamics will be described by the embed-

ding (4.20), with γn defined in (4.19), and withX and Y given by (4.22). This framework

therefore provides a quite general platform, enabling one to study a broad range of situa-

tions.

4.5 Example Dynamics

Eqs (4.20)-(4.23) are the first main results of this work. They provide a compact and

efficient way of describing the non-Markovian dynamics of a bosonic mode in terms of

a simple matrix difference equation for the augmented CM γn. The reduced state of

the system is always readily accessible from the first 2 × 2 block [Eq. (4.19)]. Before

proceeding to quantify the non-Markovianity of the process, we first illustrate the typical

behavior of the BS and TMS maps, by plotting the average system occupation 〈a†a〉 as

a function of time for different values of the EnEn+1 interaction strength λe (for the BS

case) or νe (for the TMS case). We choose the system to start in a thermal state with
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occupation number 〈a†a〉0 = 20, while the ancillas start in the vacuum, ε = I2/2. The

results are summarized in Fig. 4.3 for the BS evolution and in Fig. 4.4 for the TMS

evolution.

The BS dynamics is sensitive to the relative signs between λs and λe (and, conse-

quently, of y = sin(λs) and w = sin(λe)). This is an interference effect, which occurs

due to the fact we are combining two beam-splitters [Eqs. (4.6) and (4.7)]. A similar effect

was also observed in Refs [61, 62]. We emphasize this in Fig. 4.3 by comparing λe > 0

and λe < 0, with λs > 0. In both cases we see that for small λe the system’s excitations

[Fig. 4.3(a,b)] tend to decay monotonically, which is what one would expect of a Marko-

vian BS interaction with a vacuum bath. For larger λe, on the other hand, the occupations

present oscillations. Since the interaction conserves the number of quanta, these revivals

in excitations must necessarily be due to a backflow caused by the non-Markovian behav-

ior. That is, some of the excitations that leave the system towards En are transferred from

En to En+1 and then make it back into the system in the SEn+1 interaction. The nature of

these oscillations, however, is different whether λe > 0 or λe < 0, being fast in the former

and slow in the latter. Irrespective of the value of λe, however, after an infinite time the

system will always thermalize to the ancilla’s state, which in this case means 〈a†a〉∞ = 0

[the only exception is at λe = ±π/2, which is somewhat pathological]. Despite its re-

semblance with the system’s behavior, the ancilla’s excitations [Fig. 4.3(c,d)] will have

some unique features. First, the excitations spike at the first steps and then tend to decay

monotonically. There are no lost particles yet and the ancilla gets the maximum amount

from the system. And second, the number of excitations oscillates in the opposite manner

to the system’s oscillations. This is due to the conservation of total number of quanta:

the amount that the system loses, the ancilla gains it. Finally, we can also look at the

correlations build between the system and the nth ancilla [Fig. 4.3(e,f)]. The modulus of

the correlations will be influenced by the number of total excitations. This is related to the

fact that, in order to correlate the system with the ancilla, there needs to be intermediary

ancilla’s excitations acting as messengers for the parties.

Results for the TMS interaction are shown in Fig. 4.4. In this case the relative signs

are immaterial, but the dynamics becomes more sensitive on the magnitude of νe, since

z̃ and w̃ are hyperbolic functions. The TMS interaction entangles EnEn+1, even if both
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are initially in the vacuum. As a consequence, it also spontaneously create excitations,

so that the number of quanta is not preserved. At each EnEn+1 collision the net number

of excitations therefore increases. Part of these excitations are lost when the ancillas are

discarded and part flow to the system. As a consequence, depending on the rate at which

excitations are created, the dynamics can be either stable or unstable. This occurs at

the critical point νcrit
e = sinh−1(1) ' 0.8813, which is when w̃ = 1, thus marking the

situation where the total number of excitations grow unboundedly [c.f. Eq. (4.23)]. When

νe < νcrit
e the dynamics will be stable and both, the system and the ancilla, will converge

to an uncorrelated steady-state value 〈a†a〉 = sinh2 νe(1−sinh2 νe)
−1 independently of λs

[Fig. 4.4(a,c,e)]. Conversely, for νe > νcrit
e , the dynamics becomes unstable. Therefore,

the number of excitations and correlations diverge [Fig. 4.4(b,d,f)]. These asymptotic

values can be understood from arguments of stability theory, as shown in Appendix A.
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Figure 4.3: Second moments as a function of time, computed from Eq. (4.20) for the BS
dynamics (4.21) with λs = 0.5 and different values of λe (with λe > 0 on the left column
and λe < 0 on the right column). The ancillas are assumed to start in the vacuum, and
the system in a thermal state with 〈a†a〉0 = 20. (a,b) Number of excitations in the system
〈a†a〉. (c,d) Number of excitation in the nth ancilla 〈b†nbn〉. (e,f) Correlation function
between the system and the nth ancilla 〈a†bn〉.
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Figure 4.4: Second moments as a function of time, computed from Eq. (4.20) for the
TMS dynamics (4.23) with λs = 0.1 and different values of νe (with νe < νcrit

e on the
left column and νe ≥ νcrit

e on the right column, where νcrit
e = sinh−1(1)). The ancillas are

assumed to start in the vacuum, and the system in a thermal state with 〈a†a〉0 = 20. (a,b)
Number of excitations in the system 〈a†a〉. (c,d) Number of excitations in the nth ancilla
〈b†nbn〉. (e,f) Correlation function between the system and the nth ancilla 〈a†bn〉.
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Chapter 5

Non-Markovianity

5.1 Quantum non-Markovianity

In Chapter 2, we reviewed the dynamics of open quantum systems, in which we describe

the system’s evolution by a Lindblad master equation (2.32). We found out in Sec. 2.3

that a microscopic derivation was possible provided we resort to some approximation

schemes, for example the Born-Markov approximation. However, these approximations

cannot be employed to many processes in open quantum systems and thus, the system’s

dynamics cannot be described by a divisible dynamical map. Typically, this is because the

environment’s correlation time scale is not small compared to the system’s decoherence

time, rendering the Markov approximation impossible. Examples are the cases of strongly

correlated systems, low temperatures, finite reservoirs, or large initial correlations for

which some experimental demonstrations can be found in [93–97]. These processes are

called non-Markovian.

Non-Markovianity first arose in the theory of classical stochastic processes [98–101].

Its classical definition is based on classical probability theory where we say that a process

is non-Markovian if the conditional probability of the future states of the process depends

on the sequence of events that preceded it. Quantum theory, however, cannot be formu-

lated as a statistical theory on classical probability space [1, 102]. Therefore, the concept

of quantum non-Markovianity cannot be based on the classical notions only.

On the one hand, there’s the notion of information flow between the system and the

surrounding environment. In the quantum realm, information leaks are much more effi-
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cient, so that when a system interacts with an environment, information about the former

is inevitably transferred to the latter. When the environment is very large and complex,

this information may never return. In general, however, there may be a partial backflow

of information, which characterizes a non-Markovian evolution. From the point of view

of causality, this backflow quantifies the ability of the dynamics to communicate past in-

formation to the future. On the other hand, there’s the notion of map divisibility. For

instance, considering the case of collisional models studied in Chapter 4, the map from

ρ0
S → ρnS in Eq. (4.5) is always CPTP by construction. One may also define more gen-

eral maps Em→n taking the density matrix ρmS to ρnS (m < n). Assuming that the inverse

E−1
n exists, they are defined as En ◦ E−1

m . Albeit mathematically well defined, these maps

are in general not CP. Markovian maps, conversely, are CP by construction. This defines

the notion of CP-divisibility, which provides a widely used criteria for characterization of

non-Markovianity: a map is CP-divisible when the intermediate maps Em→n are CP.

Considerable attention was given in recent years on how to characterize and quan-

tify non-Markovianity in the quantum domain (for recent reviews, see [15, 16]). Due

to the richness involved, however, there is no single approach capable of capturing its

full essence. Several quantifiers have been studied: dynamical divisibility [22, 103–105],

trace distance [17, 19, 20], mutual information [23], relative entropy [24, 25], memory

kernel [8–10], among others [26–30]. In this work, we will be particularly interested

on the ones best suited for the collisional model setup described in Chapter 4. We will

explore them in detail in the following sections.

5.2 Mutual Information

The first approach to quantum non-Markovianity to be discussed is based on the idea

that memory effects in the open quantum system’s dynamics are linked to the exchange

of information between the system and its environment. While in a Markovian process

the open system continuously loses information to the environment, a non-Markovian

process is characterized by a flow of information from the environment back into the

system. In this way, quantum non-Markovianity is associated with a notion of quantum

memory, namely, information which has been transferred to the environment, in the form
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of system-environment correlations or changes in the environmental states, and is later

recovered by the system.

Non-Markovianity and backflow of information must be related to correlations that

develop between system and bath. However, when a system interacts with multiple modes

of the bath at the same time, there are many different correlations one may consider,

between the system and all possible parts of the bath. And it is not clear which of these

correlations are relevant for the non-Markovian evolution. For instance, the correlation

with a part of the bath the system will never interact again is irrelevant, as far as non-

Markovianity is concerned. But in the standard scenario, it is in general not possible to

identify which are the relevant correlations.

In a collisional model picture, on the other hand, this is unambiguous: the relevant

correlations are those between S and ancilla En+1 at time n (see Fig. 4.1). These are the

correlations that ancilla En transferred to En+1 after its interaction. Hence, they represent

the only possible source of information backflow at each collision. Conveniently, this is

also exactly what the Markovian embedding (4.4) offers. A useful measure of correla-

tions, for instance, is the quantum mutual information (MI), defined as

In(SEn+1) = S(ρnS) + S(ρnEn+1
)− S(%n), (5.1)

where S(ρ) = − tr(ρ ln ρ) is the von Neumann entropy. The states ρnS and ρnEn+1
are

both computed from %n by taking the appropriate partial trace. Thus, by monitoring %n

as a function of time, one has direct access to the relevant measure of correlation. Of

course, In(SEn+1) is not the only relevant measure of correlation. Different choices,

from two-point functions, to quantifiers of entanglement and quantum discord, may also

be of interest. The relevant point is that any such measure will, necessarily, be contained

in %n.

5.3 Memory Kernel

A much older notion of non-Markovianity is that of a memory kernel, as present already

in the seminal works of Nakajima and Zwanzig [6, 7]. The basic idea is that the open
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dynamics of a system’s density matrix ρS can, quite generally, be written as

dρS
dt

= −i[HS, ρS] +

t∫
0

Kt−t′ [ρ(t′)] dt′, (5.2)

where Kt−t′ , called the memory kernel (MK), is a linear superoperator condensing all

the information on how the evolution of ρ at time t depends on its past values. The MK

has been studied intensively in recent years [8–13], as it provides clear insights onto the

inner workings of non-Markovianity. It can also be given an operational interpretation, in

terms of the so-called transfer tensors [106], rendering it accessible to experiments [107].

However, being a superoperator, it is generally difficult to compute it analytically. We

also mention in passing that, the broader notion of process tensor, which includes also all

possible input and output operations performed in the system [108–110].

In the original formulation of Nakajima and Zwanzig [6, 7], the memory kernel

(MK) was represented as a single-parameter continuous superoperator Kt that quanti-

fies the memory that is retained about the system’s configuration a time t in the past [c.f.

Eq. (5.2)]. The collisional model analog of that will be a superoperatorKn, labeled by the

discrete time index n. Thus, the stroboscopic analog of Eq. (5.2) should be of the form

ρnS =
n−1∑
m=0

Kn−m(ρmS ). (5.3)

For instance, ρ3
S = K1(ρ2

S) + K2(ρ1
S) + K3(ρ0

S). The term K1(ρn−1
S ) describes the short-

term memory from the very last step, while Kn(ρ0
S) describes the long-term memory all

the way from the initial state. An explicit formula for the MK can be constructed using a

reasoning similar to that used for transfer tensors in Ref. [106]: Starting with the reduced

map En in Eq. (4.5), we define the MK recursively from

Kn = En −
n−1∑
m=1

Kn−mEm. (5.4)

That this is indeed the correct formula can now be verified by substituting it back in

Eq. (5.3). For instance, K1 = E1, K2 = E2 − K1E1, K3 = E3 − K2E1 − K1E2, and so on.

Eq. (5.4) provides an algorithmic method for computing the MK. However, this requires
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heavy numerics, even in simple cases. For instance, K3 = E3 − E2E1 − E1E2 + E1E1E1,

and the complexity of the formulas only grow from there. One of the main results in this

work will be to show that, for the case of Gaussian collisions, it is possible to write down

a closed and compact formula for Kn (Sec. 6.2), which provides valuable insight into the

inner workings of the memory kernel.

5.4 CP-Divisibility

Lastly, let us return to the idea of the divisibility of the map. Given that the inverse map

E−1 exists for all times t > 0, we can define the family of intermediate maps Em→n from

state ρmS to state ρnS (m < n)

Em→n = En ◦ E−1
m . (5.5)

The existence of the inverse is what allows the notion of divisibility. Even though En and

Em are completely-positive by construction, the intermediate map Em→n will not neces-

sarily be. This is because the inverse map E−1
m of the completely-positive map Em need

not to be positive.

Now, if these maps (5.5) are CP for all m, the evolution is Markovian. For non-

Markovianity to occur there must exist a m value to not be completely positive. Hence,

by measuring how much the intermediate map Em→n departs from the CP map, we are

measuring the degree of non-Markovianity of the time evolution. Testing CP divisibility,

however, is not always easy. For instance, it may it require analyzing the distance between

different pairs of initial conditions ρ0
S [16]. According to the data processing inequality,

these distances are always contractive for CP maps. Violations of contractivity are thus

identified as violations of divisibility. This, however, requires a maximization over all

possible initial conditions. In Sec. 6.3 we discuss the Gaussian version of this concept

and show that the maximization is replaced by an alternative condition, that provides a

clean and easily applicable formula for quantifying CP-divisibility.
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Memory effects in Gaussian Collisional

Models

This chapter continues with the remaining original results obtained in this dissertation.

The exposition here follows closely Sec. III and IV of the submitted arXiv preprint [91].

6.1 Gaussian Mutual Information

The Gaussian framework developed in Sec. 4.3 makes the mutual information (5.1) read-

ily accessible from the CM γn in Eq. (4.19). Correlations are related to the off-diagonal

blocks ξnn+1 (the MI would be zero if γn was block-diagonal). The three entropies in

Eq. (5.1) can be readily computed in terms of the symplectic eigenvalues of γn [63]. Il-

lustrative results are shown in Fig. 6.1, for the same collection of parameters as Fig. 4.3

and Fig. 4.4. As a sanity check, the MI is identically zero when λe = νe = 0. It also tends

to be larger for short times, tending to zero as n grows. The only exception is the unsta-

ble dynamics in Fig. 6.1(d), where the MI grows unboundedly. The oscillatory patterns

in 〈a†a〉 are also present in the MI. The mutual information will also be highly depen-

dent on the total number of excitations, as intermediary ancilla excitations are needed for

information backflow (See also Sec. 4.5).

To better understand the role of the MI in the non-Markovian dynamics we present in

Fig. 6.2 a comparison between the occupation number 〈a†a〉 of Fig. 4.3(a) and the MI of

Fig. 6.1 for the BS dynamics. We focus on early times (small n) and also compare 〈a†a〉

45



Chapter 6. Memory effects in Gaussian Collisional Models

0 10 20 30 40
n

0.0

0.5

1.0

1.5

2.0
n (

S
:E

n
+

1)
(a) 0.0

0.3
0.5
0.7
0.9
1.1

0 10 20 30 40
n

0.0

0.5

1.0

1.5

2.0

2.5

n (
S

:E
n

+
1)

(b) 0.0
-0.3
-0.5
-0.7
-0.9
-1.1

0 50 100 150
n

0.00

0.05

0.10

0.15

0.20

0.25

n (
S

:E
n

+
1)

(c) 0.0
0.4
0.5
0.6
0.8

0 20 40 60 80
n

0.0

0.5

1.0

1.5
n (

S
:E

n
+

1)

(d)0.89
0.9
0.91
0.92
0.93

Figure 6.1: Quantum Mutual Information (5.1) for the BS (a,b) with λs = 0.5 (λe > 0
in (a) and λe < 0 in (b)), and TMS (c,d) dynamics with λs = 0.1 (νe < νcrit

e in (a) and
νe ≥ νcrit

e in (b)). Other parameters are the same as Fig. 4.3 and Fig. 4.4.
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Figure 6.2: Comparison between Markovian and non-Markovian dynamics and role of the
Mutual Information. In blue circles we show the early dynamics of 〈a†a〉 vs. n for the BS
dynamics with (a) λe = 1.1 and (b) λe = 0.3, with fixed λs = 0.5 [c.f. Fig. 4.3(a)]. The
corresponding Markovian case (λe = 0) is shown in orange triangles. These curves are
to be compared with the MI (5.1), shown by green squares in the two cases [Fig. 6.1(a)].
The heights of each curve were adjusted for better visibility.
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with the corresponding Markovian dynamics (λe = 0). The difference between the non-

Markovian (blue circles) and Markovian (orange triangles) dynamics reflects the extent

to which the backflow of information affects the evolution. This, as can be seen in the

figure, is directly correlated with the MI (green squares) of the previous step. That is, a

large MI in a given step implies a large difference between the blue and orange curves in

the following one. This is particularly clear in Fig. 6.2(a) and serves to illustrate how the

correlations built between SEn+1, at step n, affect the future interaction between S and

En+1 at the next step.

6.2 Memory Kernel

The Memory Kernel (MK) discussed in Eqs. (5.2) and (5.3), and Sec. 5.3, is perhaps

the most physically transparent way of analyzing non-Markovianity. Starting from any

global map between system and bath, one can always write down a differential equation

for the reduced density matrix ρS of the system. This equation, however, will in general

be time-non-local; i.e., it will be an integro-differential equation of the form (5.2), where

Kt−t′ [ρS(t′)] describes how dρS(t)/dt depends on ρS(t′) in previous times t′ < t. The MK

therefore contains all the information about the dynamics, with non-Markovianity being

related to its overall dependence on t − t′: the slower the decay of Kt−t′ with t − t′, the

longer the memory and hence the more non-Markovian is the dynamics. The Markovian

case is recovered when Kt−t′ ∝ δ(t− t′).

The memory kernel Kt−t′ is a superoperator acting on the full Hilbert space of the

system. Computing it is thus, in general, a very difficult task. Within our framework,

however, one may equivalently formulate a memory kernel acting only in the system’s

CM θn. This can be accomplished starting from Eq. (4.20) and writing down a difference

equation for θn only. As we will demonstrate below, this equation will have the form

(contrast with (2.12) and (5.3)):

θn+1 = x2θn +
n−1∑
r=0

Kn−r−1(θr) +Gn, (6.1)
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where Gn is a contribution that depends only on the initial state of the ancillas 1 and Kn
is the memory kernel. The way we define the MK is such that K0 measures how the step

from θn to θn+1 is affected by θn−1 and Kn−1 measures how it is affected by θ0. Kn is

still a superoperator, but one which acts on the space of 2×2 CMs. One can write it more

explicitly in terms of a Kraus operator-sum representation [88, 111]

Kn(θ) =
∑
ij

κnijMiθM
T
j , (6.2)

where κnij are coefficients that depend on time and {Mi} are a complete set of 2 × 2

matrices; a convenient choice is the set of Pauli matrices {I2, σz, σ+, σ−}. A general

recipe to compute the coefficients κnij in Eq. (6.2) is given below in Eq. (6.21). Crucially,

as we show, it depends only on the matrix X of the Markovian embedding (4.20).

The memory itself is contained in the dependence of κnij on n. The dependence on

i, j determines how different elements of θr affect θn. For instance, as we will show

below, in the case of the BS map [Eq. (4.21)], the only non-zero coefficient will be the

one proportional to I2θI2 = θ, which we refer to as κn11; that is, the memory kernel is

actually a c-number,Kn(θ) = κn11θ. This implies that the MK is the same for all entries of

θn and each entry (θn)ij is only affected by the corresponding entry (θr)ij at past times.

Conversely, in the TMS map there will be four non-zero coefficients, corresponding to

combinations of M1 = I2 and M2 = σz; we refer to them as κn11, κn1,z, κ
n
z,1 and κnz,z.

This means that the memory kernel of (θn)11 will be different from that of (θn)2,2 and so

on (each entry will have its own memory kernel). Finally, a memory kernel containing

a dependence on σ± would imply that (θn)11 would depend on the past values of other

entries, such as (θr)12 and (θr)22.

6.2.1 General derivation of the Memory Kernel

We now carry out the derivation of the memory kernel for the Gaussian collisional model.

We consider here a more general scenario, which relies only on the structure of the Marko-

vian embedding in Eq. (4.20). We also assume that the system and ancillas are each

1In principle one could also interpret Gn as being part of the memory kernel. However, we have opted
not to do so, since Gn refers only to the states of the ancillas, while the actual dependence on the state of
the system, which is what one expects from a memory kernel to model, is fully contained in Kn.
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composed of an arbitrary number of modes NS and NE [Eqs. (4.21) and (4.23) are recov-

ered for NS = NE = 1]. More specifically, we take the matrices X and Y to have the

following block structure,

X =

X11 X12

X21 X22

 , Y =

0 0

0 Y22

 , (6.3)

where e.g., X11 and X22 are of size 2NS and 2NE respectively. This therefore contem-

plates both multimode system and ancillas, as well as collisions with longer memory. For

instance, if En collides with En+1 and En+2, then we would have NS = 1 and NE = 2.

Our derivation follows the general approach of Nakajima and Zwanzig [6, 7], but

adapted to the present context. We begin by noting the following property [112]: the

solution of a generic difference equation of the form

ψ(n+ 1) = αψ(n) + g(n), (6.4)

is given by

ψ(n) = αnψ(0)+

n−1∑
r=0

αn−r−1g(r). (6.5)

This solution holds for arbitrary objects ψ, provided α is a linear operator. It therefore

holds when ψ is a vector and α is a matrix, or when ψ is a matrix and α is a superoperator.

Thus, for instance, the solution of Eq. (4.20) is

γn = Xnγ0(XT)n +
n−1∑
r=0

Xn−r−1Y (XT)n−r−1. (6.6)

Here the notation γn, to denote the time index, becomes a bit ambiguous since Xn is the

matrix X to the power n. But there is no room for confusion, since Xn will be the only

quantity where the superscript does not refer to the time.

We now introduce the vectorization operation [113], which transforms a matrixA into
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a vector ~A = vec(A) by stacking its columns. For instance,

vec

a b

c d

 =


a

c

b

d

 . (6.7)

One may verify that, for any three matrices A, B, C,

vec(ABC) = (CT ⊗ A)vec(B). (6.8)

With this, the matrix difference equation (4.20) is converted into a vector difference equa-

tion

~γ n+1 = (X ⊗X)~γ n + ~Y . (6.9)

We also introduce projection matrices onto the subspaces of system and ancilla,

PS =

I2NS 0

0 0

 , PE =

0 0

0 I2NE

 , (6.10)

which are of size 2NS + 2NE . In the larger space relevant for vectorization there are

four possible projections, PS(. . .)PS , PS(. . .)PE and so on. These operations chop the

covariance matrix γn in 4 blocks, as in Eq. (4.19). Our interest is in PS(γn)PS , as it

contains the system CM θn. We therefore also introduce

P = PS ⊗ PS, (6.11)

together with its complement Q = 1− P . Note, though, that Q 6= PE ⊗ PE .

We now multiply Eq. (6.9) by P and use that P + Q = 1, together with the fact that

P ~Y = 0 [c.f. Eq. (6.3)]. We then get

P~γ n+1 = P (X ⊗X)P~γ n + P (X ⊗X)Q~γ n. (6.12)
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Similarly, multiplying Eq. (6.9) by Q we find

Q~γ n+1 = Q(X ⊗X)Q~γ n +Q(X ⊗X)P~γ n + ~Y . (6.13)

Now comes the crucial idea of the Nakajima and Zwanzig method [6, 7]. We interpret

Eqs. (6.12) and (6.13) as two coupled equations for the variables P~γ n andQ~γ n. Since our

interest is in P~γ n, we first solve Eq. (6.13), assuming a given P~γ n, and then substitute

the result in Eq. (6.12). Eq. (6.13) is of the form (6.4) with α = Q(X ⊗X) and g(n) =

Q(X ⊗X)P~γ n + ~Y . Eq. (6.5) then gives

Q~γ n = (Q(X ⊗X))nQ~γ 0 +
n−1∑
r=0

(Q(X ⊗X))n−r−1
[
Q(X ⊗X)P~γ r + ~Y

]
.

Plugging this in Eq. (6.12) we then arrive at

P~γ n+1 = P (X ⊗X)P~γ n +
n−1∑
r=0

K̂n−r−1P~γ
r + ~Gn, (6.14)

where

K̂n−r−1 = P (X ⊗X)[Q(X ⊗X)]n−r−1Q(X ⊗X), (6.15)

is the memory kernel in vectorized form (i.e., as a matrix of size (2NS+2NE)2). The term

~Gn, on the other hand, is a function that depends only on the initial state of the ancillas

and reads

~Gn = P (X ⊗X)[Q(X ⊗X)]nQ~γ 0 +
n−1∑
r=0

P (X ⊗X)[Q(X ⊗X)]n−r−1~Y .

What is left is to rewrite Eq. (6.14) as an equation for the evolution of the system’s

CM θn only. We introduce the (2NS)2× (2NS +2NE)2 rectangular matrix π defined such

that π~γ n = ~θ n. For instance, in the case NS = NE = 1, the matrix π will be 4 × 16, of
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the form (for more intuition on this matrix, see Appendix B)

π =


1 0 0 0 0 0 0 0 . . . 0

0 1 0 0 0 0 0 0 . . . 0

0 0 0 0 1 0 0 0 . . . 0

0 0 0 0 0 1 0 0 . . . 0

 (6.16)

We also notice that P = πTπ and ππT = I(2NS)2 . Multiplying Eq. (6.14) on the left by π

we then get

~θ n+1 = (X11 ⊗X11)~θ n +
n−1∑
r=0

K̂n−r−1
~θ r + ~Gn, (6.17)

where we also used the fact that π(X ⊗X)πT = X11 ⊗X11. Here ~Gn = π~Gn is again a

term that depends only on the initial conditions of the ancillas, whereas

K̂n = πK̂nπ
T = π(X ⊗X)

[
Q(X ⊗X)

]n+1
πT,

is the memory kernel, now expressed as a matrix of size (2NS)2 × (2NS)2 acting on ~θ r.

This can also be written more symmetrically, by exploiting the fact that Q2 = Q. We can

then arrange it as

K̂n = π(X ⊗X)Q
[
Q(X ⊗X)Q

]n
Q(X ⊗X)πT. (6.18)

The extra Q’s outside the square brackets are placed simply to ensure the result also holds

for n = 0. This is the final form of the MK. Crucially, notice how it depends only on the

matrix X of the Markovian embedding (4.20).

To obtain a matrix difference equation for θn we must “unvec” Eq. (6.17); that is,

apply the inverse map of (6.7). Unvecing the first term is trivial since, by Eq. (6.8),

unvec
[
(X11 ⊗X11)~θ n

]
= X11θ

nXT
11.

The memory kernel (6.18), on the other hand, cannot be unvecked as a single product of

52



Chapter 6. Memory effects in Gaussian Collisional Models

AθnB. Instead, it is convenient to express it as

K̂n =
∑
ij

κnijMj ⊗Mi, (6.19)

where κnij are real coefficients and {Mi} are a set of operators spanning the vector space

of 2NS-dimensional real matrices. Decomposed in this form, the unvecked version of the

memory kernel will then be, from (6.8),

Kn(θ) =
∑
ij

κnijMiθM
T
j . (6.20)

Finally, the form of the coefficients κnij can be found if we assume that the Mi form an

orthogonal basis with respect to the Hilbert-Schmidt norm (A|B) = tr(ATB) (which is

the case of the Pauli basis, for instance). Multiplying Eq. (6.19) by Mj ⊗Mi and tracing

then yields, by orthogonality,

κnij =
tr
[
(MT

j ⊗MT
i )K̂n

]
tr(MT

i Mi) tr
(
MT

jMj

) . (6.21)

This, together with Eq. (6.18), is all that is required to compute the memory kernel. With

all these definitions, one may now finally unvec Eq. (6.17), leading to

θn+1 = X11θ
nXT

11 +
n−1∑
r=0

Kn−r−1(θr) +Gn, (6.22)

where Gn = unvec(~Gn) = unvec(π~Gn) is, again, a term depending only on the initial

states of the ancillas.

6.2.2 Memory Kernel for the BS dynamics

We now illustrate the memory kernel for the two maps considered in Sec. 4.3, starting with

the BS dynamics. In general, the structure of the memory kernel will be quite complicated.

For the BS dynamics [Eq. (4.21)], however, the only non-zero coefficient in Eq. (6.21) is

κn11, the term proportional to the identity. In this case the memory kernel is therefore rather

simple, as it is just a c-number multiplying all entries of θr. A more compact formula for
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the MK in this case is given in Appendix B.

Results for the BS dynamics are shown in Fig. 6.3. The upper panel corresponds to

λs = 0.5, which is similar to Fig. 4.3. As can be seen, for λe > 0 (Fig. 6.3(a)) the memory

kernel’s decay is oscillatory, with an exponential envelope. For λe < 0, oscillations are

also observed, but these are rather different in nature and more asymmetrical with respect

to the horizontal axis. When λs = 0.05 the situation changes (Figs. 6.3(c) and (d)). The

dynamics of 〈a†a〉 is still quite similar to that of λs = 0.5, shown in Fig. 4.3, except

that the time-scales become much longer. But in the MK one sees something entirely

different. In particular, one finds that while κn11 continues to oscillate when λe > 0, it now

becomes exclusively negative for λe < 0. In this case therefore, all past values of θr tend

to contribute negatively to the evolution.

Negative values in the memory kernel are rather important, as they are associated

with faster convergence. The reason is that the CM is a positive matrix and the first
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Figure 6.3: The memory Kernel for the BS dynamics, Eq. (4.21). In this case the only
non-zero entry in Eq. (6.2) is κn11, the term proportional to the identity. The plots are for
λs = 0.5 (upper panel) and λs = 0.05 (lower panel), with λe > 0 (left) and λe < 0 (right).
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term in (6.2) is always positive. The negativities observed in Fig. 6.3 therefore represent

an accelerated draining of excitations from the system. This sheds light on some of the

behaviors previously observed for the number operator (Fig. 4.3) and mutual information

(Fig. 6.1).

It is possible to condensed a lot of information about the memory kernel by plotting

κn11 in the (λs, λe) plane, for different values of n. This is shown in Fig. 6.4. Each plot

corresponds to a different value of n, from 0 up to 8. The dependence on the relative signs

of λs and λe is clearly visible, as is the overall damping of the memory with increasing n.

Figure 6.4: Diagrams for the memory kernel of the BS dynamics. Each plot shows κn11 in
the (λs, λe) plane for a different value of n, from n = 0 to n = 8.
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Particularly interesting, this map is able to very clearly pinpoint the regions have negative

memory kernels, something which is found to be highly non-trivial.

6.2.3 Memory Kernel for the TMS dynamics

Next we turn to the TMS case (4.23). In this case it is found that there are, in total,

Kn(θ) = κn11θ + κn1zθσz + κnz1σzθ + κnzzσzθσz. (6.23)

These quantities are plotted in Fig. 6.5 for the stable dynamics (νe < νcrit
e ), with λs = 0.1.

All four coefficients are found to decay in time in an oscillatory fashion.

The physics of each coefficient, however, is not necessarily transparent. In order to
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Figure 6.5: The memory Kernel for the (stable) TMS dynamics, Eq. (4.23) with λs =
0.1 and different values of λe. Each curve corresponds to a different entry of Eq. (6.2);
namely, κn11, κn1,σz , κ

n
σz ,1 and κnσz ,σz .
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Figure 6.6: The MK for 〈Q2〉 and 〈P 2〉, Eq. (6.24), for the TMS dynamics. Other param-
eters are the same as Fig. 6.5.

gain better intuition, let us focus on the diagonal entries of θn. In this case one finds that

(
Kn(θ)

)
11

=
(
κn11 + κn1z + κnz1 + κnzz

)
θn11 := κnq θ

n
11,

(6.24)(
Kn(θ)

)
22

=
(
κn11 − κn1z − κnz1 + κnzz

)
θn22 := κnpθ

n
22.

The coefficients κnq and κnp therefore describe the individual memory kernels of 〈Q2〉 and

〈P 2〉, which are different in the TMS dynamics.

These two contributions are shown in Fig. 6.6, for the same parameters as in Fig. 6.5.

We also present diagrams in the (λs, νe) plane in Figs. 6.7 and 6.8. The plots in Fig. 6.6

reveal an extremely interesting asymmetry between the two quadratures. We see that the

memory associated with 〈Q2〉 is oscillatory, whereas that associated with 〈P 2〉 is always

negative and decays monotonically. This asymmetry is a consequence of our choice of

two-mode squeezing in the TMS interaction (4.8). Figs. 6.7 and 6.8, however, show that

the situation is more intricate. Indeed, for fixed (λs, νe), κq is found to oscillate with n.

But for κp this is not necessarily the case.

Finally, in Fig. 6.9 we compare the previous result with the case of νe in the vicinity,

and larger than, νcrit
e = 0.8813; i.e., in the situation where the dynamics diverges. As

can be seen, in this case both κq and κp diverge as well (notice the different scale of the

horizontal axis). This is therefore contrary to our usual notion of memory: It means that
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Figure 6.7: Diagrams for the memory kernel coefficient κnq [Eq. (6.24)] of the TMS dy-
namics, in the (λs, νe) place, for n = 0, . . . , 3.

Figure 6.8: Similar to Fig. 6.7, but for κnp .
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Figure 6.9: Similar to Fig. 6.6, but for values of νe close to, and larger than, νcrit
e = 0.8813.

the system retains a stronger memory from events in the distant past, than those in the

recent one. In other words, the relative importance of past events accumulate.
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6.3 Gaussian CP-Divisibility

Even though the MK explicitly shows the dependence on previous states, this alone does

not necessarily imply a non-Markovian dynamic [11]. It is therefore important to contrast

the MK with an actual test of non-Markovianity. Here we focus on CP-divisibility of

intermediate maps, introduced in Sec. 5.4. The formulation for Gaussian dynamics, at the

level of the covariance matrix, in Refs. [104, 105]. Any Gaussian CPTP map, as seen in

Sec. 3.4, must have the form θ → X θX T +Y , where X and Y are matrices satisfying [63,

114]

M[X ,Y ] := 2Y + iΩ− iXΩX T ≥ 0, (6.25)

with Ω = iσy the symplectic form. Here M ≥ 0 means the matrix must be positive

semidefinite.

In our case, the evolution of the system’s CM, from time 0 to n, must therefore also

be of this form:

θn = Xnθ0X T
n + Yn. (6.26)

The matrices Xn and Yn can be read from the (1, 1) block of the general solution (6.6)

and are independent of the initial state θ0; viz.,

Xn = (Xn)11, (6.27)

Yn = (Xn)12ε(X
nT)12 +

n−1∑
r=0

[
Xn−r−1Y (XT)n−r−1

]
11

, (6.28)

where the subscripts i, j refer here to specific blocks. This easiness in reading of the

corresponding map matrices is another significant advantage of the Markovian embedding

representation (4.20).

To probe whether the dynamics is divisible, we consider the map taking the system

from n to m > n. Assuming that Xn and Yn are invertible, which is true in our case, this

will have the form [104]

θm = XmnθnX T
mn + Ymn, (6.29)

where

Xmn = XmX−1
n , Ymn = Ym −XmnYnX T

mn. (6.30)
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The dynamics is then considered divisible when the intermediate maps (6.29) are a proper

CPTP Gaussian map. That is, whenM[Xmn,Ymn] ≥ 0 [Eq. (6.25)].

The above criteria can be used not only as a dichotomic measure of divisibility, but

also as a figure of merit [104]. This is accomplished by defining

Nmn =
∑
k

|mk| −mk

2
, {mk} = eigs

(
M[Xmn,Ymn]

)
. (6.31)

This quantity is always non-negative and the map is divisible iff Nmn ≡ 0 for all m,n.

Otherwise, the magnitude of Nmn quantifies the extent to which divisibility is broken for

that choice of m,n.
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Figure 6.10: Example of the divisibility criteria for the BS dynamics. The plots show
Nmn in the (n,m) plane, with the size of each point reflecting the magnitude ofNmn. All
curves are for λs = 1.1 and (a) λe = 0.75, (b) 0.9, (c) 1.1 and (d) -0.7.
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6.3.1 BS dynamics

We begin our investigation of Nmn by focusing on the BS dynamics [Eq. (4.21)]. An

example of the behaviour of (6.31) is shown in Fig. 6.10, where we plot Nmn in the

(n,m) plane, with fixed λs = 1.1 and different values of λe. The magnitude of Nmn is

represented by the size of each point. These diagrams are interpreted as follows. We start

with Fig. 6.10(a). In this case we see that, for n = 1, Nmn is non-zero only for m = 2

and m = 4, being smaller in the latter. For n = 3 the map is always divisible. And for

n = 3, it is not divisible only for m = 4 and 6. These irregularities are a consequence of

the oscillatory character of the parameters appearing, e.g., in Eq. (4.21). Still concerning

Fig. 6.10(a), we see notwithstanding that as n gets large, the map tends to be Markovian

for all m. As we increase λe, however, as in Figs. 6.10(b) and (c), we see that overall the

regions where Nmn > 0 tend to increase. They increase both as a function of n, as well

as a function of m for fixed n.

When λe < 0, however, strange things happen [Fig. 6.10(d)]. In this case we find that

there can be highly irregular values of (n,m) which yield non-zero Nmn which, in fact,

can reach significantly large values. For instance, the largest value plotted in Fig. 6.10(d)

is for n = 13, m = 14 and has the value N ∼ 69.7. For n = 16, m = 17, however, one

finds N ∼ 10309 (not shown). This is to be contrasted with Fig. 6.10(a), whose largest

value is N = 3.42. We present these results simply to emphasize that Nmn can oscillate

violently. The reason is due to the term X−1
n in Eq. (6.30), which can blow up for certain

values of λs, λe and n.

Next we turn to the divisibility of a single collision; that is, with m = n + 1. Plots

of Nn+1,n in the (λs, λe) plane are shown in Fig. 6.11. The overall behaviour is found

to alternate with even and odd n. For n even, the map is always divisible for λe > 0

and potentially non-divisible within certain regions of λe < 0. Conversely, for n odd,

one finds that divisibility breaks down in significant portions of the (λs, λe) plane. An

additional illustration of the complex dependence of Nn+1,n on λs, λe, n is provided in

Fig. 6.12, where we plotNn+1,n as a function of n for selected values of λs and λe. From

this figure, both the even/odd behavior, as well as the dramatic variations in the (λs, λe)

plane can be more clearly appreciated.

The behavior of Nn+1,n in Fig. 6.11 is exacerbated close to the special points λs(e) =
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Figure 6.11: CP-divisibility measure Nn+1,n [Eq. (6.31)] in the (λs, λe) plane, for the BS
dynamics. Each plot corresponds to a different values of n: in the first 2 lines, n ranges
from 1 to 8 in steps of 1. In the remaining lines, n = 9, 10, 20, 21, 30, 31, 40, 41, 50, 51
and 100, 101.
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π/2. For instance, in the vicinity of λs = π/2, the dynamics is non-divisible even for

infinitesimally small λe. This occurs because λs = π/2 corresponds to the full SWAP,

where the CM of the system is completely transferred to the ancilla. As a consequence,

when then next ancilla arrives to interact with the system, it will always contain a signif-

icant amount of information about it. We therefore expect that in the limit n → ∞ the

diagrams in Fig. 6.11 should converge to narrow lines going through these special points

(although, unfortunately, we cannot actually verify this since the simulation cost becomes

prohibitive for extremely large n).

We may also study similar diagrams for collisions that are more broadly spaced in

time. In Fig. 6.13 we present results for N1,1+m for different values of m (we focus on

even values, m = 2, 4, . . .). This therefore describes the long-term memory of the map,

concerning the first collision. Two features stand out from this figure. First, as one would

expect, the overall region in the (λs, λe) plane where the map is CP-divisible tends to

shrink with increasingm. However, the regions around λs = ±π/2 tend to be remarkably
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Figure 6.12: CP divisibility measureNn+1,n as a function of n, for the BS dynamics with
λs = 0.8 and λe = 0.9, 1.3,−0.5,−0.8. Complements Fig. (6.11).
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persistent, remaining highly non-divisible even for large m.

The results in Figs. 6.11 and 6.13 refer to divisibility for specific times (n,m). We can

also combine all data and ask, for which regions in the (λs, λe) plane, the BS dynamics

is divisible for all (n,m). This is shown in Fig. 6.14. As expected, for most choices of

parameters, the map will not be CP-divisible for some (n,m). Notwithstanding, there are

regions where the map is always divisible. These regions tend to be concentrated close to

λe = 0 (or λe = π, which is equivalent). And they exist even for large values of λs.

A direct comparison with the memory kernel, Sec. 6.2, is not generally possible since

Figure 6.13: CP-divisibility measure, Nm,1 [Eq. (6.31)] in the (λs, λe) plane, for the BS
dynamics. Each plot corresponds to a different values of m: in the first 2 lines, m ranges
from 2 to 9 in steps of 1. In the 3rd and 4th, from m = 10 to 24 in steps of 2. lines,
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Figure 6.14: Regions in the (λs, λe) plane where the BS dynamics is not CP-divisible for
at least one choice of (n,m).

both refer to different physical aspects of the problem. But if we focus on Nn+1,n, then

some comparison is possible. Recall that the MK describes how the dynamics from n→
n+ 1 is affected by previous times. Thus, regions where the memory kernel is large tend

to be accompanied by regions where Nn+1,n > 0. This is indeed the case, as can be seen

by comparing Fig. 6.11 with 6.4.

6.3.2 TMS dynamics

The situation for the TMS dynamics is dramatically different. Diagrams for Nn+1,n in

the (λs, νe) plane are shown in Fig. 6.15 for different values of n. In contrast to the BS

maps, now most of parameter space is non-divisible. Moreover, the region where it is non-

divisible increases for longer times. And finally, what is perhaps the least intuitive, the

regions where the map is non-divisible are denser for small, instead of large, νe (although

the values of Nn+1,n are smaller correspondingly smaller). This is a consequence of

the fact that the TMS dynamics spontaneously creates excitations in the system, which

implies that for large νe a substantial amount of noise is introduced, making the map

more likely to be divisible. If νe = 0 the map is, of course, divisible by construction.
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Figure 6.15: CP-divisibility measure, Nn+1,n [Eq. (6.31)] in the (λs, νe) plane, for the
TMS dynamics. Each plot corresponds to a different values of n, from 1 to 9 in steps of
1.

However, the results in Fig. 6.15 show that for arbitrarily small, but non-zero νe, the map

is already non-divisible, albeit with a small Nn+1,n. As with the BS dynamics, one could

also combine all these diagrams to ask whether there are regions in the (λs, νe) where the

map is always divisible, for all (n,m).

The answer to this question is, in this case, negative: for the TMS dynamics the

dynamics is never divisible, except for the trivial line νe = 0. This represents a major

difference in comparison with teh BS dynamics and, once again, is ultimately a property

of the entangling nature of the two-mode squeezing interaction (4.8).

66



Chapter 7

Conclusions

In this dissertation we presented a robust framework for studying non-Markovianity in

collisional models from multiple perspectives. We showed that the dynamics can be cast

in terms of a Markovian embedding of the covariance matrix [Eq. (4.20)], which yields

closed expressions for the mutual information [Eq. (5.1)], the memory kernel [Eq. (6.1)]

and the divisibility monotone [Eq. (6.31)]. We analyzed in detail two types of interactions,

a beam-splitter implementing a partial SWAP, and a two-mode squeezing which entangles

the ancillas and, at the same time, feeds excitations into the system. By analizing several

memory quantifiers for these two representative scenarios, this helped to shed light on the

intricate mechanism behind memory effects in the quantum domain. Results of this work

were reported in the preprint [91].

Essential to this work was the use of two main ingredients described in Chapter 4.

First, collisional models, which allow us to introduce non-Markovianity in a fully con-

trollable way. By means of the Markovian embedding (Sec. 4.2), the full non-Markovian

dynamics is captured in the map Φ(.) [Eq. (4.3)], and the dynamics it generates [Eq. (4.4)],

with %n containing all the relevant information characterizing the non-Markovianity of

the evolution. And second, continuous-variable Gaussian operations, which replace the

complicated dynamics of the density matrix into a much simpler map for the covariance

matrix (Sec. 4.3). The global evolution at the level of density matrix [Eq. (4.2)] is con-

verted into an equation for the global covariance matrices [Eq. (4.10)], and the unitaries

[Eqs. (4.6)-(4.8)] are replaced by symplectic matrices [Eqs. (4.11)-(4.15)].

The Markovian embedding then allowed us to compute the memory effects in the
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dynamics of γn. To begin with, the mutual information [Eq. (5.1)] is easily computed

from the symplectic eigenvalues of γn. Next, the time-non-local dynamics defining the

memory kernel [Eq. (5.2)] can be rewritten at the level of the system covariance ma-

trix [Eq. (6.2)]. The memory kernel depends only on the matrix X and can be computed

using [Eq. (6.18)]. One can also write a Kraus decomposition of the MK with coefficients

κnij [Eq. (6.21)]. Finally, the intermediate map taking the system from time n to time m is

given by [Eqs. (6.29) and (6.30)]. A monotone of CP-divisibility is obtained [Eq. (6.31)]

and depends only on the X and Y . All methods described are implemented in the asso-

ciated python, which provides an efficient and simple way of simulating a broad range of

scenarios [72].

In particular, we have focused on two types of maps. The system-ancilla interaction

was always fixed to be of beam-splitter-type (partial SWAP). But the ancilla-ancilla inter-

action could be either beam-splitter or a two-mode squeezing. The behaviour of the two

are dramatically different. For the former, we have found that the combination of the two

beam-splitter interactions lead to strong resonance effects that cause most quantities to

oscillate in time and also depend sensibly on the relative signs of the interaction strengths

(c.f. Figs. 6.4 or 6.11). For the BS dynamics, there is also a non-negligible portion of

parameter space in which the dynamics is always Markovian (Fig. 6.14). Conversely, in

the TMS dynamics excitations are constantly being generated in the system. As a conse-

quence, the dynamics is only stable for certain values of the interaction strength (Fig. 4.4).

If the interaction is too strong, the occupations in the system diverge (never reach a steady-

state). Interestingly, this is also reflected in the memory kernel, which acquires infinitely

long memory (Fig. 6.9). The TMS dynamics is also always non-Markovian (never CP-

divisible; Fig. 6.15), unless the ancilla-ancilla interaction is strictly zero. This reflects the

entangling nature of the two-mode squeezing. The magnitude of the non-Markovianity,

of course, is small for weak interactions. This is clearly seen, for instance, in the memory

kernel, Fig. 6.7.

Our framework can be readily extended to a broad range of scenarios. We begin by

mentioning problems which are straightforward extensions of our results. Throughout the

dissertation, we have focused on ancillas initially prepared in the vacuum state. Study-

ing different initial preparations would be interesting since the memory kernel does not
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depend on this, but CP-divisibility does. It would be particularly interesting to study the

introduction of single-mode squeezing in the ancillas.

Another natural extension would be to consider different types of interactions, as in

Refs [57, 61]. In particular, one thing that we have not explored are interactions that

lead to “non-diagonal” memory kernels. As discussed below [Eq. (6.2)], a MK involving

the identity or σz is always diagonal, meaning that each entry of θn is only affected by

the same entry at past times. A memory kernel involving σ±, however, would imply, for

instance, that 〈Q2〉n could be affected by past values of 〈P 2〉n. This could, in principle,

generate a plethora of interesting effects. Another possibility would be the inclusion of

stochastic SWAPs, as in Refs. [54, 55].

In Ref. [62], the authors asked, within a collisional model context, whether it was

possible to pinpoint the backflow of information to either changes in the environmental

states, or the buildup of correlations between system and environment. This question is

relevant since these are the two main ingredients entering in the 2nd law of thermody-

namics in the quantum domain [115, 116]. That is to say, they are the two quantities

measuring the degree of irreversibility of a process. We believe that this question could

be directly addressed within our framework. Whether the Markovian embedding suffices

for this end, however, is not clear at the moment. For instance, the mutual information

studied in Sec. 5.2 is only between S and En+1 and thus correspond to only a part of the

full system-environment correlations. Notwithstanding, even if the embedding does not

suffice, the fact that the approach deals only with covariance matrices still allows one to

study numerically dynamics involving large numbers of ancillas.

Concerning less trivial extensions, throughout this work we have assumed that the

Markov memory length is 1. That is, each ancilla En only propagates information to

its nearest neighbor. The extension to arbitrary memory length, as studied in Refs. [57,

61], would be quite interesting. And it is also amenable to our framework, provided one

extends the Markovian embedding to have longer memory.

Finally, we mention that the basic ideas set up could also serve as a starting point

for exploring the Gaussian formulation of process tensors [108–110], which provide an

alternative, and much broader, way of characterizing non-Markovianity. In fact, this could

perhaps also be used as a way to bridge process tensors and the memory kernel.
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Stability Theory

We are interested in studying the fixed point stability of the Markovian embedding equa-

tion (4.20), i.e. solutions that satisfy γn+1 = γn. To this end, we use the vectorized

form (6.9) and label the vectorized fixed point solution as ~γ∗:

~γ∗ = X ⊗X ~γ∗ + ~Y . (A.1)

As long as det(I−X ⊗X) 6= 0 a fixed point solution can be readily found as

~γ∗ = (I−X ⊗X)−1~Y . (A.2)

The stability of ~γ∗ will be associated to the eigenvalues of theX⊗X matrix. Or, what

is equivalent, the eigenvalues of X . If their modulus are below 1, the fixed point will be a

globally asymptotic state (GAS) and all trajectories will converge to γ∗ for large enough

n. Otherwise, it may diverge.

The eigenvalues of the matrix X for the BS channel, Eq. (4.21), read

1

2

(
− wx+ x±

√
(w + 1)2x2 + 4wy2

)
. (A.3)

Using the (λs, λe) parametrization, one finds that the only values not satisfying the GAS

conditions are λe = ±π/2 or λs = 0, π, which represent, respectively, the case where no

particle flow to the ancillas and when the system does not interact at all. Excluding those
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points, the fixed point is a GAS given by:

γ∗BS =

ε 0

0 ε

 . (A.4)

That is, the map tends to homogenize the system to the same initial state of the ancil-

las. This, of course, is what is expected of a beam-splitter/partial SWAP dynamics. It is

notwithstanding interesting that it remains true even in the case of ancilla-ancilla interac-

tions and non-Markovian dynamics.

Similarly, the eigenvalues of X for the TMS case, Eq. (4.23), read

1

2

(
(1 + w̃)x±

√
(w̃ − 1)2x2 − 4w̃y2

)
,

1

2

(
(1− w̃)x±

√
(w̃ + 1)2x2 + 4w̃y2

)
.

(A.5)

These eigenvalues only fulfill the GAS requirements in the interval where νe ∈ [0, sinh −1(1)].

This therefore defines the critical value νcrit
e = sinh−1(1), after which the dynamics di-

verges. Inside this interval, the fixed point is a GAS given by

γ∗TMS =


(

2 sinh2(νe)

1−sinh2(νe)
+ 1
)
ε 0

0
(

2 sinh2(νe)

1−sinh2(νe)
+ 1
)
ε

 . (A.6)

Thus, we see that system and ancilla once again tend to homogenize. However, the ancilla

initial state ε is now amplified by a factor which is always larger than unity and diverges

when νe = νcrit
e . We also call attention to the fact that γ∗TMS is a product state, so that no

correlations survive in the long-time limit.
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Memory Kernel for the BS dynamics

In this appendix we discuss how to obtain a more compact expression for the memory

kernel (6.2), in the case of the BS dynamics. This case is simpler because the only non-

zero coefficient is κn11, which is proportional to the identity map. That is to say, in this

case the MK is actually just a c-number, instead of a superoperator.

To accomplish this, we exploit in more detail the tensor structure of the matrices used

in Sec. 6.2 (now all specialized to NS = NE = 1). We being by noting that the matrix X

of the BS dynamics, Eq. (4.21), can also be written as

X = χ⊗ I, χ =

 x y

yw −xw

 , (B.1)

where χ is now a simple 2 × 2 matrix and, in this appendix, I will always refer to the

identity of dimension 2. Similarly, the projection operator PS in Eq. (6.10) can be written

as

PS = ps ⊗ I, ps =

1 0

0 0

 . (B.2)

Thus, the matrix P in Eq. (6.11) becomes

P = ps ⊗ I⊗ ps ⊗ I. (B.3)

This type of tensor structure, favouring slots 1 and 3, is simply a consequence of the

vectorization procedure, Eq. (6.8).

72



Appendix B. Memory Kernel for the BS dynamics

The matrix ps can be further decomposed as

ps = |0〉〈0|, |0〉 =

1

0

 . (B.4)

Dirac’s notation is introduced here just for clarity; the state |0〉 is completely unrelated to

the actual Hilbert space basis of the system. The advantage of this decomposition is that

it allows us to write the isometry π, in Eq. (6.16), as

π = 〈0| ⊗ I⊗ 〈0| ⊗ I. (B.5)

This now clearly shows that π contracts slots 1 and 3, while acting trivially on 2 and 4.

At this point, it is convenient to simplify the notation and introduce indices 1, 2, 3, 4,

to refer to which slow of the tensor product the operators act. Thus, for instance, we will

henceforth write

X ⊗X = χ⊗ I⊗ χ⊗ I := χ1χ3, (B.6)

meaning χ1 acts on slot 1 and χ3 on slot 3. Similarly, P = p1
sp

3
s and, therefore, Q =

1 − p1
sp

3
s := Q13 is a matrix acting only on slots 1 and 3 (we emphasize that Q13 cannot

be written as a simple product of an operator acting on 1 and another acting on 3). Notice

how the special structure appearing in Eq. (B.6) is unique of the BS dynamics. For other

types of dynamics, X ⊗X would in general act non-trivially on all four slots. Due to this

simplification, the quantity appearing inside π(. . .)πT in Eq. (6.18) will be an operator

acting only on slots 1 and 3.

Next we turn to Eq. (6.21), describing the coefficients κnij . The contraction π(. . .)πT

eliminates slots 1 and 3, so that (MT
j ⊗MT

i ) is effectively multiplying matrices from slots

2 and 4. Thus, one may equivalently write

(MT
j ⊗MT

i )π(. . .)πT = π
[
(I⊗MT

j ⊗ I⊗MT
i ) . . .

]
πT,

where (. . .) refers to all terms inside π(. . .)πT in Eq. (6.18). But from the arguments

above, these quantities act only on slots 1 and 3. Combining this with the fact that

tr(A⊗B) = tr(A) tr(B) explains why, in the BS case, the only non-trivial coefficient
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will be κn11, corresponding to Mi = Mj = I. This coefficient may then be written as

κn11 = tr13

{
π13

[
χ1χ3(Q13χ1χ3Q13)nχ1χ3

]
πT

13

}
,

where the remaining trace is now only over slots 1 and 3. Finally, we use Eq. (B.5) to

express π in terms of 〈0|. This allows us to write

κn11 = 〈00| χ̄
(
Q̄ χ̄ Q̄

)n
χ̄ |00〉, (B.7)

where |00〉 = |0〉 ⊗ |0〉, χ̄ = χ⊗ χ and Q̄ = I4 − ps ⊗ ps are all objects of dimension 4.

Eq. (B.7) therefore provides a compact representation of the memory Kernel for the BS

dynamics. It is expressed solely in terms of |0〉, χ and ps, [Eqs. (B.1) and (B.4)]. And it

requires exponentiating only operators of dimension 4, in comparison with (6.18) which

would have dimension 16.
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