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Memory kernel and divisibility of Gaussian collisional models
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Memory effects in the dynamics of open systems have been the subject of significant interest in the last
decades. The methods involved in quantifying this effect, however, are often difficult to compute and may lack
analytical insight. With this in mind, we study collisional models where non-Markovianity is introduced by
means of additional interactions between neighboring environmental units. We show that the dynamics can be
cast in terms of a Markovian embedding of the covariance matrix, which yields closed-form expressions for the
memory kernel that governs the dynamics, a quantity that can seldom be computed analytically. The same is
also possible for a divisibility monotone, based on the complete positivity of intermediate maps. By focusing on
continuous-variable Gaussian dynamics, we are able to analytically study models of arbitrary size. We analyze in
detail two types of interactions, a beam splitter implementing a partial SWAP and a two-mode squeezing, which
entangles the ancillas and, at the same time, feeds excitations into the system. By analyzing the memory kernel
and divisibility for these two representative scenarios, our results help to shed light on the intricate mechanisms
behind memory effects in the quantum domain.
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I. INTRODUCTION

The growing interest in quantum information process-
ing applications has highlighted the need for furthering our
knowledge on the notion of information flow. Unlike clas-
sical systems, in the quantum realm information leaks are
much more efficient, so that when a system interacts with
an environment, information about the former is inevitably
transferred to the latter. When the environment is very large
and complex, this information may never return. In this case
the dynamics is called Markovian. In general, however, there
may be a partial backflow of information, which character-
izes a non-Markovian evolution [1]. From the point of view
of causality, this backflow quantifies the ability of the dy-
namics to communicate past information to the future [2].
Non-Markovianity therefore touches at the core of informa-
tion processing, which justifies the need for detailed studies.

Considerable attention was given in recent years on how
to characterize and quantify non-Markovianity in the quan-
tum domain (see Refs. [3,4] for two recent reviews). Due to
the richness involved, however, there is no single approach
capable of capturing its full essence. The most important
notion is that of map divisibility: non-Markovianity requires
that the underlying dynamical map should not be divisible
[5,6]. The notion of information flow, on the other hand, relies
on information-theoretic quantifiers and is thus not uniquely
defined. The most widely used measures involve the trace dis-
tance [5–8] between different initial states or entanglement [9]
between the system and an ancilla. Several other quantifiers
have also been explored [10–18].
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A much older notion of non-Markovianity is that of a
memory kernel, as present already in the seminal works of
Nakajima [19] and Zwanzig [20]. The basic idea is that the
open dynamics of a system’s density matrix ρS can, quite
generally, be written as

dρS

dt
= −i[HS, ρS] +

∫ t

0
Kt−t ′ [ρ(t ′)] dt ′, (1)

whereKt−t ′ , called the memory kernel (MK), is a linear super-
operator condensing all the information on how the evolution
of ρ at time t depends on its past values. The MK has been
studied intensively in recent years [21–26], as it provides clear
insights onto the inner workings of non-Markovianity. It can
also be given an operational interpretation, in terms of the
so-called transfer tensors [27], rendering it accessible to ex-
periments [28]. However, being a superoperator, it is generally
difficult to compute it analytically. We also mention in passing
the broader notion of a process tensor, which includes also all
possible input and output operations performed in the system
[29–31].

Analyzing non-Markovianity for general environments is
in general an extremely difficult task. First, the calculations
quickly become impractical when the size of the bath is
large. And second, realistic baths often have many additional
features which tend to mask the effects one is interested in.
This motivates the search for controllable models, where the
degree of non-Markovianity can be finely tuned. One way
to accomplish this, which has seen an enormous surge in
popularity in recent years, is through the so-called collisional
models [32–43]. The basic idea is to replace the open dynam-
ics of a system by a series of sequential interactions between
the system (S) and small environmental units E1, E2, E3 . . .

(henceforth referred to as ancillas). All ancillas are prepared in
the same state and each interaction only lasts for a fixed time,
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FIG. 1. Non-Markovian collisional models. (a) First few steps of the dynamics. The system-ancilla interactions SEn are interspersed by
ancilla-ancilla interactions EnEn+1, which propagate information forward, making the dynamics non-Markovian in a fully controllable way.
(b) Basic structure of the Markovian embedding dynamics (24), which is a map from the Hilbert space of SEn to that of SEn+1. (c) The memory
kernel [Eq. (1)] quantifies how different instants of the past affect the evolution at present times. (d) Completely positive divisibility. The maps
in gray from time zero to tn or tm are, by construction, completely positive trace preserving. But the intermediate map from tn to tm > tn may
not necessarily be.

after which they never interact again. This therefore leads to a
stroboscopic dynamics for the system.

The advantage of collisional models is that non-
Markovianity can be introduced in a fully controllable
manner. There are two main ways to do so. The first is to
consider that the ancillas already start correlated [44–48]. The
other one is to assume information is transmitted between
them during the process [49–57]. Here we shall focus on the
second case. That is, we consider a scenario where neighbor-
ing ancillas EnEn+1 interact with each other in between the
interactions SEn and SEn+1 [see Fig. 1(a)]. This additional
interaction signals information from the past to the future, so
that when the SEn+1 interaction arrives, the ancilla En+1 will
already contain some information about the system.

In this paper we overcome these difficulties by focus-
ing on continuous-variable collisional models, undergoing
Gaussian-preserving dynamics [58–66]. The advantages that
come with the Gaussian toolbox allow us to construct a com-
plete framework for the study of non-Markovianity, which (i)
encompasses a broad range of scenarios, (ii) allows for the
explicit construction and computation of the memory kernel,
and (iii) provides easy access to a completely positive (CP)
divisibility monotone, which can be directly compared with
the memory kernel. The framework is also amenable to ana-
lytical calculations and extremely efficient from a numerical
perspective. Thus, despite being restricted to Gaussian inter-
actions, it offers multiple advantages over more general maps.
We also provide a complete numerical library for efficiently
simulating Gaussian collisional models in PYTHON [67]. All
plots in this paper were generated with this code.

The paper is divided as follows. The general frame-
work is developed in Sec. II, where we show that the full
non-Markovian dynamics can be cast as a Markovian em-
bedding, involving a Markovian map at a higher dimension
[Fig. 1(b)]. We then show how all relevant quantifiers of
non-Markovianity can be cast in terms of this embedding. In
Sec. III we then specialize this to the case of Gaussian models,
where the embedding is written as a set of matrix-difference

equations with clear physical interpretation. Armed with this
result, we then provide a full characterization of both the
memory kernel (Sec. IV) and the map divisibility (Sec. V).
Throughout the paper, our exposition will be example ori-
ented, with a focus on two specific types of interactions. The
framework, however, is general and we will specify, in each
part, how to properly make this generalization.

II. FORMAL FRAMEWORK

In this section we put forth the mathematical framework for
describing non-Markovian collisional models. The main result
is the construction of a Markovian embedding, which converts
the problem into a fully Markovian dynamics at a larger space.
We then move on to show how all relevant quantifiers of
non-Markovianity can be expressed in terms of this Marko-
vian embedding. The results in this section are general: they
hold for arbitrary system and bath dimensions and arbitrary
interactions. However, as will be discussed, generality comes
at the cost of physical insight. For this reason, in Sec. III we
then specialize them to Gaussian models, which, as we show,
provides significant advantages. The connection between col-
lisional models and experimentally relevant systems is drawn
in Sec. VI C and a comparison between collisional models and
the more traditional approaches for open quantum dynamics
is provided in Sec. VI D.

A. Non-Markovian collisional models

We consider here the collisional model scenario presented
in Fig. 1. A system S is set to interact sequentially with an
arbitrary number of environment ancillas E1, E2, E3, . . .. The
ancillas are independent and identically prepared, each with
initial density matrix ρE . The interaction between S and En is
described by a unitary Un. After this, S and En never interact
again. If Un was the only interaction involved, the dynamics
would be Markovian by construction.
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Here we make it non-Markovian in a controllable way, by
introducing ancilla-ancilla collisions [49–56]. That is, after
collision SEn, but before SEn+1, we set EnEn+1 to interact
with each other by means of another unitary Vn,n+1. Since En

already interacted with S, it contains some information about
it, which is then transmitted to En+1 via Vn,n+1. As a con-
sequence, when the collision SEn+1 starts, they will already
contain some information about each other, obtained from En.
Past information about S can thus backflow at SEn+1, mak-
ing the dynamics non-Markovian. This construction therefore
provides a clean and controllable way of introducing non-
Markovianity. In particular, by assuming that En only interacts
with its neighbor En+1, we fix the memory length of the
process. Collisional models with long-range interactions were
discussed in Ref. [52].

Let ρ0 = ρS ⊗ ρE1 ⊗ ρE2 ⊗ . . . denote the initial state of
the composite system SE1E2 . . .. We count time in integer
steps, such that at time n the collisions SEn and EnEn+1 already
took place. That is, at time n the system has already interacted
with its corresponding ancilla En and this ancilla has already
passed down its information to the next one. The map taking
the composite system SE1E2 . . . from n − 1 to n therefore
reads

ρn = Vn,n+1Un ρn−1 U †
n V †

n,n+1. (2)

To avoid confusion we henceforth use superscripts to denote
time so that ρn refers to the global state of SE1E2 . . . at time
n. The map (2) involves only SEnEn+1. All ancillas Em with
m � n + 2 did not yet participate in the process and therefore
remain in a product state with everything else. In addition,
the ancillas with m < n will never participate again and hence
can be traced out (discarded). The process (2) can thus be
equivalently written as

ρn
SEnEn+1

= Vn,n+1Un
(
ρn−1

SEn
⊗ ρEn+1

)
U †

n V †
n,n+1, (3)

where ρn−1
SEn

is the state of SEn at time n − 1 and ρEn+1 = ρE ,
refers to the initial state of En+1. This also holds for the
first step, provided one recalls that ρ0

SE1
= ρ0

S ⊗ ρE1 . After the
interaction (3), one may trace out En, leading to

ρn
SEn+1

= trEn

{
Vn,n+1Un

(
ρn−1

SEn
⊗ ρE

)
U †

n V †
n,n+1

}
:= �

(
ρn−1

SEn

)
.

(4)

This can now be fed again to Eq. (3), to evolve to the next step.
This equation also defines the quantum channel �(·), which
is a map from the Hilbert space of SEn to that of SEn+1, as
depicted in Fig. 1(b). Moreover, since we are assuming that
the unitaries Un and Vn,n+1 are the same for all collisions,
the map �, itself, is actually independent of n; the only n
dependence is in the input ρn−1

SEn
.

Crucially, we see that the map �(·) is both time local
and CP, since it is written as a Stinespring dilation. Hence,
it represents an entirely Markovian evolution. Equation (4)
is known as a Markovian embedding of the non-Markovian
dynamics [54]: It expresses a non-Markovian evolution as a
Markovian one, at the expense of working with maps that
act between different Hilbert spaces and also have a larger
dimension.

It is convenient to define the more compact notation �n =
ρn

SEn+1
for the joint state of SEn+1 at time n. The entire

dynamics can then be captured by the stroboscopic, Marko-
vian, completely positive trace preserving (CPTP) evolution

�n+1 = �(�n), (5)

and the corresponding sequence of states �0, �1, �2, . . . that
it generates. At each step, the reduced state of the system is
always available as ρn

S = trEn+1�
n. The Markovian embedding

(5) will be central to our paper. For, as we now show, all
relevant properties characterizing the non-Markovianity of the
evolution can be compactly computed from it. This is one
of the main advantages of using collisional models to study
non-Markovianity, as it allows for a clean depiction of the
dynamics in terms of a single CPTP map.

Since initially the system is uncorrelated from all ancillas,
it is possible to define a CPTP map taking ρ0

S → ρn
S :

ρn
S = En

(
ρ0

S

) = trEn+1�
n
(
ρ0

S ⊗ ρE1

)
. (6)

But since the dynamics is non-Markovian, even though a
map taking ρm

S → ρn
S may be formally defined, this map will

generally not be CPTP [see Sec. (II D)].

B. Mutual information

Non-Markovianity and backflow of information must be
related to correlations that develop between system and bath.
However, when a system interacts with multiple modes of the
bath at the same time, there are many different correlations
one may consider, between the system and all possible parts
of the bath. And it is not clear which of these correlations are
relevant for the non-Markovian evolution. For instance, the
correlation with a part of the bath with which the system will
never interact again is irrelevant, as far as non-Markovianity
is concerned. But in the standard scenario, it is in general not
possible to identify which are the relevant correlations.

In a collisional model picture, on the other hand, this is
unambiguous: the relevant correlations are those between S
and ancilla En+1 at time n (immediately before they interact).
These are the correlations that ancilla En transferred to En+1

after its interaction. Hence, they represent the only possible
source of information backflow at each collision. Conve-
niently, this is also exactly what the Markovian embedding
(5) offers. A useful measure of correlations, for instance, is
the quantum mutual information (MI), defined as

In(SEn+1) = S
(
ρn

S

) + S
(
ρn

En+1

) − S(�n), (7)

where S(ρ) = −tr(ρ ln ρ) is the von Neumann entropy. The
states ρn

S and ρn
En+1

are both computed from �n by taking the
appropriate partial trace. Thus, by monitoring �n as a function
of time, one has direct access to the relevant measure of corre-
lation. Of course, In(SEn+1) is not the only relevant measure
of correlation. Different choices, from two-point functions, to
quantifiers of entanglement and quantum discord, may also be
of interest. The relevant point is that any such measure will,
necessarily, be contained in �n.

C. Memory kernel

In the original formulation of Nakajima [19] and Zwanzig
[20], the MK was represented as a single-parameter con-
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tinuous superoperator Kt that quantifies the memory that is
retained about the system’s configuration a time t in the past
[see Eq. (1)]. The collisional model analog of that will be a
superoperator Kn, labeled by the discrete time index n. Thus,
the stroboscopic analog of Eq. (1) should be of the form

ρn
S =

n−1∑
m=0

Kn−m
(
ρm

S

)
. (8)

For instance, ρ3
S = K1(ρ2

S ) +K2(ρ1
S ) +K3(ρ0

S ). The term
K1(ρn−1

S ) describes the short-term memory from the very last
step, while Kn(ρ0

S ) describes the long-term memory all the
way from the initial state. An explicit formula for the MK
can be constructed using a reasoning similar to that used for
transfer tensors in Ref. [27]: Starting with the reduced map En

in Eq. (6), we define the MK recursively from

Kn = En −
n−1∑
m=1

Kn−mEm. (9)

That this is indeed the correct formula can now be veri-
fied by substituting this back in Eq. (8). For instance, K1 =
E1, K2 = E2 −K1E1, K3 = E3 −K2E1 −K1E2, and so on.
Equation (9) provides an algorithmic method for computing
the MK. However, this requires heavy numerics, even in sim-
ple cases. For instance, K3 = E3 − E2E1 − E1E2 + E1E1E1,
and the complexity of the formulas only grows from there.
One of the main results in this paper will be to show that, for
the case of Gaussian collisions, it is possible to write down a
closed and compact formula forKn (Sec. IV), which provides
valuable insight into the inner workings of the memory kernel.

D. CP divisibility

The map from ρ0
S → ρn

S in Eq. (6) is always CPTP by
construction. One may also define more general maps Em→n

taking ρm
S → ρn

S (m < n). Assuming that E−1
n exists, they are

defined as [4]

Em→n = En ◦ E−1
m . (10)

Albeit mathematically well defined, these maps are in gen-
eral not CP. Markovian maps, on the other hand, are CP
by construction. This defines the notion of CP divisibility,
which provides a widely used criteria for characterizing non-
Markovianity: a map is CP divisible when the intermediate
maps Em→n are CP.

Testing CP divisibility, however, is not always easy. For
instance, it may require analyzing the distance between dif-
ferent pairs of initial conditions ρ0

S [4]. According to the data
processing inequality, these distances are always contractive
for CP maps. Violations of contractivity are thus identified
as violations of divisibility. This, however, requires a max-
imization over all possible initial conditions. In Sec. V we
discuss the Gaussian version of this concept and show that
the maximization is replaced by an alternative condition, that
provides a clean and easily applicable formula for quantifying
CP divisibility.

III. GAUSSIAN COLLISIONAL MODELS

The results of Sec. II are quite general, and hold for
any type of system, ancillas, and interactions. However, they
usually rely on heavy numerics and also lack in physical
insights. In this section we specialize them to the case of
continuous variables. Using the framework of Gaussian states
and Gaussian-preserving operators, we show that both of the
aforementioned difficulties can be overcome, leading to a
transparent and insightful formulation of non-Markovianity.

A. Gaussian states and Gaussian operations

Quantifying and understanding non-Markovianity in the
collisional model (3) is a task that often has to be tackled
numerically. This is specially the case if one is interested
in arbitrarily long times. Here we are interested in obtaining
analytical results. To accomplish this, we therefore specialize
now to the case of continuous-variable systems undergoing
Gaussian-preserving dynamics. Our exposition, in what fol-
lows, will be example oriented. However, the final results will
be general [Eqs. (23), (24), and (26)].

We assume the system is described by a bosonic annihi-
lation operator a and corresponding quadratures Q = (a +
a†)/

√
2 and P = i(a† − a)/

√
2. Similarly, the ancillas are

described by bosonic annihilation operators b1, b2, . . ., with
corresponding quadratures qn, pn. The generalization to a
multimode system, or multimode ancillas, is straightforward.
We take the system-ancilla interaction Un in Eq. (3) to be a
simple beam-splitter (BS) type unitary,

Un = eλs (a†bn−b†
na), (11)

described by a parameter λs. One can view (11) as an in-
teraction with a Hamiltonian ig(a†bn − b†

na) that lasts for a
time τ such that gτ = λs. Since we are only interested in the
stroboscopic dynamics, we can omit these internal details for
simplicity. As for the EnEn+1 collision unitary Vn,n+1, we shall
explore two possibilities. The first is again a beam-splitter map

Vn,n+1 = eλe(b†
nbn+1−b†

n+1bn ), (12)

with interaction strength λe. We shall henceforth refer to this
as the BS dynamics. In addition, we shall also look at a two-
mode squeezing (TMS) interaction,

Ṽn,n+1 = eνe(b†
nb†

n+1−bn+1bn ), (13)

with strength νe. The reason behind this choice is related to the
fact that two-mode squeezing interactions generate stronger
forms of correlations (e.g., entanglement) between the ancil-
las. By contrasting (12) and (13) we may therefore explore the
role of quantum correlations in non-Markovianity.

The unitaries (11)–(13) are Gaussian preserving. If we
assume that the initial state is Gaussian, the dynamics will
then be completely characterized by the first and second mo-
ments. We assume, for simplicity, that the first moments are
initially zero, so that they will remain so throughout. The
covariance matrix (CM) is defined as σi j = 1

2 〈{Ri, Rj}〉 where
R = (Q, P, q1, p1, q2, p2, . . .). The initial state is block diag-
onal, of the form

σ 0 = diag(θ0, ε, ε, ε, . . .), (14)
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where each block is 2 × 2: θ0 is the arbitrary initial CM of the
system and ε is the initial CM of the ancillas (which are all the
same, since we are assuming the ancillas are independent and
identically distributed). In the analyses below we will usually
take ε = I2/2 (i.e., a vacuum state), but we leave it general for
the moment.

The global dynamics of SE1E2 . . . is unitary. As a conse-
quence, the map (2) is translated into a symplectic evolution
for the CM:

σ n = Sn,n+1Sn σ n−1ST
n ST

n,n+1, (15)

where Sn and Sn,n+1 are the symplectic matrices associated
with the unitaries Un and Vn,n+1. The symplectic matrix associ-
ated to the beam-splitter interaction (11) is remarkably simple
because all entries become proportional to the 2 × 2 identity
[this is partially because of the choice of phase in the exponent
of (11)]. For instance, the interaction S2 between the S and E2

reads

S2 =

⎛
⎜⎜⎜⎜⎝

x 0 y 0 . . .

0 1 0 0 . . .

−y 0 x 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠, (16)

where each entry is a 2 × 2 matrix, with x = cos(λs) and
y = sin(λs). The extension to Sn is straightforward. The same
structure also holds for the BS unitary Vn,n+1 between EnEn+1

[Eq. (12)], except that now the position of the nonzero entries
changes. For instance,

S1,2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 . . .

0 z w 0 . . .

0 −w z 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠, (17)

where z = cos(λe) and w = sin(λe). The TMS interaction
(13) is slightly more complicated since some entries are pro-
portional to the identity, while others are proportional to the
Pauli matrix σz; for instance,

S̃1,2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 . . .

0 z̃ w̃σz 0 . . .

0 w̃σz z̃ 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠, (18)

with z̃ = cosh(νe) and w̃ = sinh(νe).
The BS dynamics is completely characterized by the pair

(λs, λe), while the TMS dynamics is characterized by (λs, νe).
On top of that, one also has the choice of ancilla initial state
ε, which in all analyses below will be taken as the vacuum.

More general Gaussian maps will continue to have a simi-
lar structure. The symplectic Sn will have the form

S2 =

⎛
⎜⎜⎜⎜⎝

A 0 B 0 . . .

0 1 0 0 . . .

C 0 D 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠, (19)

for block matrices A, B,C, D. The matrices Sn for other values
of n are obtained by simply placing A, B,C, D at the correct
positions. Note also that the condition that S must be sym-
plectic imposes constraints on A, B,C, D which, however, are
not particularly illuminating. Similarly, the EnEn+1 interaction
reads

S̃1,2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 . . .

0 E F 0 . . .

0 G J 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠, (20)

for block matrices E , F, G, J . Note that these two expressions
also naturally contemplate the case where either the system
or each ancilla is, individually, composed of multiple modes
(which would simply affect the size of the matrices A, . . . , J).

B. Matrix difference equations for the Markovian embedding

The biggest advantage of Gaussian collisional models, as
we will now show, is that the full non-Markovian evolution
can be converted into a simple system of matrix difference
equations for only a handful of entries of the full CM σ n.
As already discussed below Eq. (3), the step from σ n−1 to σ n

involves only S, En, and En+1. At time n − 1 the ancilla En+1 is
still uncorrelated from the rest, whereas S and En are already
correlated because of the previous step. Thus, the tripartite
CM of SEnEn+1, at time n − 1, will have the block structure

σ n−1
SEnEn+1

=
⎛
⎝ θn−1 ξ n−1

n 0
ξ n−1,T

n εn−1
n 0

0 0 ε

⎞
⎠, (21)

where εn−1
n is the state of ancilla En at time n − 1, which is no

longer the original value ε because it already interacted with
En−1 in the previous step. Moreover, ξ n−1

n are the correlations
between SEn that were developed in the previous step.

We now apply the map (15) to Eq. (21), using the matrices
in Eqs. (16)–(18). This will lead to a matrix σ n with many
nonzero entries. However, as far as the dynamics of S is con-
cerned, only three entries are needed: the state of the system
θn, the state εn

n+1 of ancilla En+1, and the correlations ξ n
n+1

between S and En+1.
To gain intuition, let us first analyze the BS case, which

is simple since all blocks in Eq. (17) are proportional to
the identity. Using Eqs. (16) and (17) in (15), one finds the
following system of matrix difference equations:

θn = x2θn−1 + y2εn−1
n + xy

(
ξ n−1

n + ξ n−1,T
n

)
,

εn
n+1 = z2ε + w2[x2εn−1

n + y2θn−1 − xy
(
ξ n−1

n + ξ n−1,T
n

)]
,

ξ n
n+1 = w

[
xy

(
θn−1 − εn−1

n

) + y2ξ n−1,T
n − x2ξ n−1

n

]
. (22)

This provides a neat illustration of the map �(·) in Eq. (4):
the quantities on the left-hand and right-hand side refer to
different ancillas: for instance, εn

n+1 is the state of ancilla En+1

at time n, whereas εn−1
n is the state of En at time n − 1. Of

course, one could also compute εn
n , but this is not necessary

for describing the dynamics of S.
The system of matrix difference equations (22) contains

the minimum amount of information required to fully account
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for the dynamics of S. These equations can also be recast in
a more compact form in terms of the Markovian embedding
(5). We define the reduced CM of SEn+1 at time n as

γ n
n+1 ≡ γ n =

(
θn ξ n

n+1
ξ n,T

n+1 εn
n+1

)
, (23)

where the notation γ n will be used to simplify the expressions.
Equation (22) can then be written compactly as

γ n+1 = Xγ nX T + Y, (24)

where the time index was shifted by 1. Here X and Y are 4 × 4
matrices with block form

X =
(

x y
yw −wx

)
, Y =

(
0 0
0 z2ε

)
, (25)

where, again, each block is proportional to the identity.
Equation (24) beautifully illustrates the notion of Marko-

vian embedding. It has the structure of a typical Gaussian
CPTP map [58], being Markovian (time local) by construc-
tion. However, this Markovian dynamics takes place at the
larger space of the system plus one ancilla (which one, specif-
ically, changes at each collision). Thus, we have embedded
the non-Markovian dynamics into a Markovian dynamics at
a larger space. Notice how the size of the space is directly
related to the fact that we chose En to only interact with its
nearest neighbor En+1. That is, we fixed the memory length to
be 1, which defines the size of the minimal space required for
the embedding [54].

The matrices (25) refer to the beam-splitter unitary (12).
The generalization to the arbitrary Gaussian interactions (19)
and (20) is similar, albeit more cumbersome. The result is

X =
(

A B
GC GD

)
, Y =

(
0 0
0 JεJT

)
. (26)

For instance, in the case of the TMS interaction, Eq. (18), one
has G = w̃σz and J = z̃, in addition to A = D = x, B = y, and
C = −y [which come from Sn in (16)]. One then finds that

X =
(

x y
−yw̃σz w̃xσz

)
, Y =

(
0 0
0 z̃2ε

)
. (27)

The blocks in X are therefore no longer proportional to the
identity, but some are proportional to σz.

To summarize, the general non-Markovian dynamics will
be described by the embedding (24), with γ n defined in (23),
and with X and Y given by (26). This framework therefore
provides a quite general platform, enabling one to study a
broad range of situations.

C. Example dynamics

Equations (24)–(27) are the first main results of this paper.
They provide a compact and efficient way of describing the
non-Markovian dynamics of a bosonic mode in terms of a
simple matrix difference equation for the augmented CM γ n.
The reduced state of the system is always readily accessible
from the first 2 × 2 block [Eq. (23)]. Before proceeding to
quantify the non-Markovianity of the process, we first illus-
trate the typical behavior of the BS and TMS maps, by plotting
the average system occupation 〈a†a〉 as a function of time for
different values of the EnEn+1 interaction strength λe (for the

FIG. 2. Number of excitations in the system as a function of time,
computed from Eq. (24). [(a),(b)] BS dynamics (25) with λs = 0.5
and different values of λe [with λe > 0 in (a) and λe < 0 in (b)].
(c, d) Same, but for the TMS dynamics (27), with λs = 0.1 and
different values of νe [with νe < νcrit

e in (a) and νe � νcrit
e in (b), where

νcrit
e = sinh−1(1) 
 0.8813]. The ancillas are assumed to start in the

vacuum, and the system in a thermal state with 〈a†a〉0 = 20.

BS case) or νe (for the TMS case). We choose the system to
start in a thermal state with occupation number 〈a†a〉0 = 20,
while the ancillas start in the vacuum, ε = I2/2. The results
are summarized in Fig. 2, for the BS (a, b) and TMS (c, d)
evolutions.

The BS dynamics is sensitive to the relative signs be-
tween λs and λe [and, consequently, of y = sin(λs) and w =
sin(λe)]. This is an interference effect, which occurs due to
the fact we are combining two beam splitters [Eqs. (11) and
(12)]. A similar effect was also observed in Refs. [56,57]. We
emphasize this in Figs. 2(a) and 2(b) by comparing λe > 0 and
λe < 0, with λs > 0. In both cases we see that for small λe the
excitations tend to decay monotonically, which is what one
would expect of a Markovian BS interaction with a vacuum
bath. For larger λe, on the other hand, the occupations present
oscillations. Since the interaction conserves the number of
quanta, these revivals in excitations must necessarily be due
to a backflow caused by the non-Markovian behavior. That is,
some of the excitations that leave the system towards En are
transferred from En to En+1 and then make it back into the sys-
tem in the SEn+1 interaction. The nature of these oscillations,
however, is different whether λe > 0 or λe < 0, being fast in
the former and slow in the latter. Irrespective of the value
of λe, however, after an infinite time the system will always
thermalize to the ancilla’s state, which in this case means
〈a†a〉∞ = 0 [the only exception is at λe = ±π/2, which is
somewhat pathological].

Results for the TMS interaction are shown in Figs. 2(c)
and 2(d). In this case the relative signs are immaterial, but
the dynamics becomes more sensitive to the magnitude of νe,
since z̃ and w̃ are hyperbolic functions. The TMS interaction
entangles EnEn+1, even if both are initially in the vacuum. As
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FIG. 3. Mutual Information (7) for the BS (a, b) and TMS (c, d)
dynamics. Other parameters are the same as Fig. 2.

a consequence, it also spontaneously creates excitations, so
that the number of quanta is not preserved. At each EnEn+1

collision the net number of excitations therefore increases.
Some of these excitations are lost when the ancillas are
discarded and some flow to the system. As a consequence,
depending on the rate at which excitations are created, the
dynamics can be either stable or unstable. This occurs at
the critical point νcrit

e = sinh−1(1) 
 0.8813, which is when
w̃ = 1, thus marking the situation where the number of exci-
tations in the system grow unboundedly [see Eq. (27)]. When
νe < νcrit

e the dynamics will be stable and the system will con-
verge to a steady-state value 〈a†a〉 = sinh2 νe(1 − sinh2 νe)−1

independently of λs [Fig. 2(c)]. Conversely, for νe � νcrit
e , the

dynamics becomes unstable and the number of excitations di-
verges [Fig. 2(d)]. These asymptotic values can be understood
from arguments of stability theory, as shown in Appendix A.

D. Mutual information

The Gaussian framework used here makes the MI (7) read-
ily accessible from the CM γ n in Eq. (23). Correlations are
related to the off-diagonal blocks ξ n

n+1 (the MI would be zero
if γ n was block diagonal). The three entropies in Eq. (7) can
be readily computed in terms of the symplectic eigenvalues
of γ n [58]. The results are shown in Fig. 3, for the same
collection of parameters as Fig. 2 As a sanity check, the MI
is identically zero when λe = νe = 0. It also tends to be larger
for short times, tending to zero as n grows. The only exception
is the unstable dynamics in Fig. 3(d), where the MI grows
unboundedly. The oscillatory patterns in 〈a†a〉 are also present
in the MI.

To better understand the role of the MI in the non-
Markovian dynamics we present in Fig. 4 a comparison
between the occupation number 〈a†a〉 of Fig. 2 and the MI of
Fig. 3 for the BS dynamics. We focus on early times (small n)
and also compare 〈a†a〉 with the corresponding Markovian dy-
namics (λe = 0). The difference between the non-Markovian

FIG. 4. Comparison between Markovian and non-Markovian dy-
namics and role of the mutual information. In blue circles we show
the early dynamics of 〈a†a〉 vs n for the BS dynamics with (a)
λe = 1.1 and (b) λe = 0.3, with fixed λs = 0.5 [see Fig. 2(a)]. The
corresponding Markovian case (λe = 0) is shown in orange triangles.
These curves are to be compared with the MI (7), shown by green
squares in the two cases [Fig. 3(a)]. The heights of each curve were
adjusted for better visibility.

(blue circles) and Markovian (orange triangles) dynamics re-
flects the extent to which the backflow of information affects
the evolution. This, as can be seen in the figure, is directly
correlated with the MI (green squares) of the previous step.
That is, a large MI in a given step implies a large difference
between the blue and orange curves in the following one. This
is particularly clear in Fig. 4(a) and serves to illustrate how the
correlations built between SEn+1, at step n, affect the future
interaction between S and En+1 at the next step.

IV. MEMORY KERNEL

The MK discussed in Eqs. (1) and (8), and Sec. II C, is
perhaps the most physically transparent way of analyzing non-
Markovianity [see also Fig. 1(c)]. Starting from any global
map between system and bath, one can always write down a
differential equation for the reduced density matrix ρS of the
system. This equation, however, will in general be time-non-
local; i.e., it will be an integrodifferential equation of the form
(1), where Kt−t ′[ρS (t ′)] describes how dρS (t )/dt depends on
ρS (t ′) in previous times t ′ < t . The MK therefore contains all
the information about the dynamics, with non-Markovianity
being related to its overall dependence on t − t ′: the slower the
decay of Kt−t ′ with t − t ′, the longer the memory and hence
the more non-Markovian is the dynamics. The Markovian
case is recovered when Kt−t ′ ∝ δ(t − t ′).

The memory kernel Kt−t ′ is a superoperator acting on the
full Hilbert space of the system. Computing it is thus, in
general, a very difficult task. Within our framework, however,
one may equivalently formulate a memory kernel acting only
in the system’s CM θn. This can be accomplished starting
from Eq. (24) and writing down a difference equation for θn

only. As we will demonstrate below, this equation will have
the form [contrast with (8)]

θn+1 = x2θn +
n−1∑
r=0

Kn−r−1(θ r ) + Gn, (28)
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where Gn is a contribution that depends only on the initial state
of the ancillas [68] andKn is the memory kernel. The way we
define it, the MK is such that K0 measures how the step from
θn to θn+1 is affected by θn−1 and Kn−1 measures how it is
affected by θ0. Kn is still a superoperator, but one which acts
on the space of 2 × 2 CMs. One can write it more explicitly
in terms of a Kraus operator-sum representation [69,70]

Kn(θ ) =
∑

i j

κn
i jMiθMT

j , (29)

where κn
i j are coefficients that depend on time and {Mi} is a

complete set of 2 × 2 matrices; a convenient choice is the set
of Pauli matrices {I2, σz, σ+, σ−}. A general recipe to compute
the coefficients κn

i j in Eq. (29) is given below in Eq. (48).
Crucially, as we show, it depends only on the matrix X of the
Markovian embedding (24).

The memory itself is contained in the dependence of κn
i j on

n. The dependence on i, j determines how different elements
of θ r affect θn. For instance, as we will show below, in the
case of the BS map [Eq. (25)], the only nonzero coefficient
will be the one proportional to I2θI2 = θ , which we refer
to as κn

11; that is, the memory kernel is actually a c number,
Kn(θ ) = κn

11θ . This implies that the MK is the same for all
entries of θn and each entry (θn)i j is only affected by the cor-
responding entry (θ r )i j at past times. Conversely, in the TMS
map there will be four nonzero coefficients, corresponding to
combinations of M1 = I2 and M2 = σz; we refer to them as
κn

11, κn
1,z, κn

z,1, and κn
z,z. This means that the memory kernel of

(θn)11 will be different from that of (θn)2,2 and so on (each
entry will have its own memory kernel). Finally, a memory
kernel containing a dependence on σ± would imply that (θn)11

would depend on the past values of other entries, such as
(θ r )12 and (θ r )22.

A. General derivation of the memory kernel

We now carry out the derivation of the memory kernel and
transfer tensor for the Gaussian collisional model. Since we
are unaware of any other papers doing this, we consider here
a more general scenario, which relies only on the structure of
the Markovian embedding in Eq. (24). We also assume that the
system and ancillas are each composed of an arbitrary number
of modes NS and NE [Eqs. (25) and (27) are recovered for
NS = NE = 1]. More specifically, we take the matrices X and
Y to have the following block structure:

X =
(

X11 X12

X21 X22

)
, Y =

(
0 0
0 Y22

)
, (30)

where, e.g., X11 and X22 are of size 2NS and 2NE , respectively.
This therefore contemplates both multimode system and an-
cillas, as well as collisions with longer memory. For instance,
if En collides with En+1 and En+2, then we would have NS = 1
and NE = 2.

Our derivation follows the general approach of Nakajima
[19] and Zwanzig [20], but adapted to the present context.
We begin by noting the following property: The solution of
a generic difference equation of the form

ψ (n + 1) = αψ (n) + g(n) (31)

is given by

ψ (n) = αnψ (0)+
n−1∑
r=0

αn−r−1g(r). (32)

This solution holds for arbitrary objects ψ , provided α is a
linear operator. It therefore holds when ψ is a vector and α

is a matrix, or when ψ is a matrix and α is a superoperator.
Thus, for instance, the solution of Eq. (24) is

γ n = X nγ 0(X T)n +
n−1∑
r=0

X n−r−1Y (X T)n−r−1. (33)

Here the notation γ n, to denote the time index, becomes a bit
ambiguous since X n is the matrix X to the power n. But there
is no room for confusion, since X n will be the only quantity
where the superscript does not refer to the time.

We now introduce the vectorization operation [71], which
transforms a matrix A into a vector 
A = vec(A) by stacking its
columns. For instance,

vec

(
a b
c d

)
=

⎛
⎜⎝

a
c
b
d

⎞
⎟⎠. (34)

One may verify that, for any three matrices A, B, C,

vec(ABC) = (CT ⊗ A)vec(B). (35)

With this, the matrix difference equation (24) is converted into
a vector difference equation


γ n+1 = (X ⊗ X )
γ n + 
Y . (36)

We also introduce projection matrices onto the subspaces
of system and ancilla,

PS =
(
I2NS 0

0 0

)
, PE =

(
0 0
0 I2NE

)
, (37)

which are of size 2NS + 2NE . In the larger space relevant for
vectorization there are four possible projections, PS (. . .)PS ,
PS (. . .)PE , and so on. These operations chop the covariance
matrix γ n in four blocks, as in Eq. (23). Our interest is in
PS (γ n)PS , as it contains the system CM θn. We therefore also
introduce

P = PS ⊗ PS, (38)

together with its complement Q = 1 − P. Note, though, that
Q �= PE ⊗ PE .

We now multiply Eq. (36) by P and use that P + Q = 1,
together with the fact that P 
Y = 0 [see Eq. (30)]. We then get

P
γ n+1 = P(X ⊗ X )P
γ n + P(X ⊗ X )Q
γ n. (39)

Similarly, multiplying Eq. (36) by Q we find

Q
γ n+1 = Q(X ⊗ X )Q
γ n + Q(X ⊗ X )P
γ n + 
Y . (40)

Now comes the crucial idea of the Nakajima [19] and Zwanzig
[20] method. We interpret Eqs. (39) and (40) as two coupled
equations for the variables P
γ n and Q
γ n. Since our interest
is in P
γ n, we first solve Eq. (40), assuming a given P
γ n, and
then substitute the result in Eq. (39). Equation (40) is of the
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form (31) with α = Q(X ⊗ X ) and g(n) = Q(X ⊗ X )P
γ n +

Y . Equation (32) then gives

Q
γ n = [Q(X ⊗ X )]nQ
γ 0

+
n−1∑
r=0

[Q(X ⊗ X )]n−r−1[Q(X ⊗ X )P
γ r + 
Y ].

Plugging this in Eq. (39) we then arrive at

P
γ n+1 = P(X ⊗ X )P
γ n +
n−1∑
r=0

K̂n−r−1P
γ r + 
Gn, (41)

where

K̂n−r−1 = P(X ⊗ X )[Q(X ⊗ X )]n−r−1Q(X ⊗ X ) (42)

is the memory kernel in vectorized form [i.e., as a matrix
of size (2NS + 2NE )2]. The term 
Gn, on the other hand, is a
function that depends only on the initial state of the ancillas
and reads

Gn = P(X ⊗ X )[Q(X ⊗ X )]nQ
γ 0

+
n−1∑
r=0

P(X ⊗ X )[Q(X ⊗ X )]n−r−1 
Y .

What is left is to rewrite Eq. (41) as an equation for
the evolution of the system’s CM θn only. We introduce the
(2NS )2 × (2NS + 2NE )2 rectangular matrix π defined such
that π 
γ n = 
θ n. For instance, in the case NS = NE = 1, the
matrix π will be 4 × 16, of the form (for more intuition on
this matrix, see Appendix B)

π =

⎛
⎜⎝

1 0 0 0 0 0 0 0 . . . 0
0 1 0 0 0 0 0 0 . . . 0
0 0 0 0 1 0 0 0 . . . 0
0 0 0 0 0 1 0 0 . . . 0

⎞
⎟⎠. (43)

We also notice that P = πTπ and ππT = I(2NS )2 . Multiplying
Eq. (41) on the left by π we then get


θ n+1 = (X11 ⊗ X11)
θ n +
n−1∑
r=0

K̂n−r−1
θ r + 
Gn, (44)

where we also used the fact that π (X ⊗ X )πT = X11 ⊗ X11.
Here 
Gn = π 
Gn is again a term that depends only on the initial
conditions of the ancillas, whereas

K̂n = π K̂nπ
T = π (X ⊗ X )[Q(X ⊗ X )]n+1πT

is the memory kernel, now expressed as a matrix of size
(2NS )2 × (2NS )2 acting on 
θ r . This can also be written more
symmetrically, by exploiting the fact that Q2 = Q. We can
then arrange it as

K̂n = π (X ⊗ X )Q[Q(X ⊗ X )Q]nQ(X ⊗ X )πT. (45)

The extra Q’s outside the square brackets are placed simply to
ensure the result also holds for n = 0. This is the final form of
the MK. Crucially, notice how it depends only on the matrix
X of the Markovian embedding (24).

To obtain a matrix difference equation for θn we must
“unvec” Eq. (44); that is, apply the inverse map of (34).

Unvecking the first term is trivial since, by Eq. (35),

unvec[(X11 ⊗ X11)
θ n] = X11θ
nX T

11.

The memory kernel (45), on the other hand, cannot be un-
vecked as a single product of AθnB. Instead, it is convenient
to express it as

K̂n =
∑

i j

κn
i jMj ⊗ Mi, (46)

where κn
i j are real coefficients and {Mi} is a set of operators

spanning the vector space of 2NS-dimensional real matrices.
Decomposed in this form, the unvecked version of the mem-
ory kernel will then be, from (35),

Kn(θ ) =
∑

i j

κn
i jMiθMT

j . (47)

Finally, the form of the coefficients κn
i j can be found if we

assume that the Mi form an orthogonal basis with respect to
the Hilbert-Schmidt norm (A|B) = tr(ATB) (which is the case
of the Pauli basis, for instance). Multiplying Eq. (46) by Mj ⊗
Mi and tracing then yields, by orthogonality,

κn
i j = tr

[(
MT

j ⊗ MT
i

)
K̂n

]
tr
(
MT

i Mi
)
tr
(
MT

j Mj
) . (48)

This, together with Eq. (45), is all that is required to compute
the memory kernel. With all these definitions, one may now
finally unvec Eq. (44), leading to

θn+1 = X11θ
nX T

11 +
n−1∑
r=0

Kn−r−1(θ r ) + Gn, (49)

where Gn = unvec( 
Gn) = unvec(π 
Gn) is, again, a term de-
pending only on the initial states of the ancillas.

B. Memory kernel for the BS dynamics

We now illustrate the memory kernel for the two maps con-
sidered in Sec. II, starting with the BS dynamics. In general,
the structure of the memory kernel will be quite complicated.
For the BS dynamics [Eq. (25)], however, the only nonzero
coefficient in Eq. (48) is κn

11, the term proportional to the
identity. In this case the memory kernel is therefore rather
simple, as it is just a c number multiplying all entries of θ r .
A more compact formula for the MK in this case is given in
Appendix B.

Results for the BS dynamics are shown in Fig. 5. The upper
panel corresponds to λs = 0.5, which is similar to Eq. (2).
As can be seen, for λe > 0 [Fig. 5(a)] the memory kernel’s
decay is oscillatory, with an exponential envelope. For λe < 0,
oscillations are also observed, but these are rather different in
nature and more asymmetrical with respect to the horizontal
axis. When λs = 0.05 the situation changes [Figs. 5(c) and
5(d)]. The dynamics of 〈a†a〉 is still quite similar to that of
λs = 0.5, shown in Fig. 2, except that the timescales become
much longer. But in the MK one sees something entirely
different. In particular, one finds that while κn

11 continues to
oscillate when λe > 0, it now becomes exclusively negative
for λe < 0. In this case therefore, all past values of θ r tend to
contribute negatively to the evolution.
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FIG. 5. The memory kernel for the BS dynamics, Eq. (25). In this
case the only nonzero entry in Eq. (29) is κn

11, the term proportional to
the identity. The plots are for λs = 0.5 (upper panel) and λs = 0.05
(lower panel), with λe > 0 (left) and λe < 0 (right).

Negative values in the memory kernel are rather important,
as they are associated with faster convergence. The reason
is that the CM is a positive matrix and the first term in (29)
is always positive. The negativities observed in Fig. 5 there-
fore represent an accelerated draining of excitations from the
system. This sheds light on some of the behaviors previously
observed for the number operator (Fig. 2) and mutual infor-
mation (Fig. 3).

It is possible to condense a lot of information about the
memory kernel by plotting κn

11 in the (λs, λe) plane, for differ-
ent values of n. This is shown in Fig. 6. Each plot corresponds
to a different value of n, from 0 up to 9. The dependence on the
relative signs of λs and λe is clearly visible, as is the overall

FIG. 7. The memory kernel for the (stable) TMS dynamics,
Eq. (27), with λs = 0.1 and different values of λe. Each curve cor-
responds to a different entry of Eq. (29), namely, κn

11, κn
1,σz

, κn
σz ,1, and

κn
σz ,σz

.

damping of the memory with increasing n. Particularly inter-
esting, this map is able to very clearly pinpoint the regions
that have negative memory kernels, something which is found
to be highly nontrivial.

C. Memory kernel for the TMS dynamics

Next we turn to the TMS case. In this case it is found that
there are, in total,

Kn(θ ) = κn
11θ + κn

1zθσz + κn
z1σzθ + κn

zzσzθσz. (50)

These quantities are plotted in Fig. 7 for the stable dynamics
(νe < νcrit

e ), with λs = 0.1. All four coefficients are found to
decay in time in an oscillatory fashion.

FIG. 6. Diagrams for the memory kernel of the BS dynamics. Each plot shows κn
11 in the (λs, λe) plane for a different value of n, from

n = 0 to 9.
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FIG. 8. The MK for 〈Q2〉 and 〈P2〉, Eq. (51), for the TMS dy-
namics. Other parameters are the same as Fig. 7.

The physics of each coefficient, however, is not necessarily
transparent. In order to gain better intuition, let us focus on
the diagonal entries of θn. In this case one finds that

(Kn(θ ))11 = (
κn

11 + κn
1z + κn

z1 + κn
zz

)
θn

11 := κn
q θn

11,

(Kn(θ ))22 = (
κn

11 − κn
1z − κn

z1 + κn
zz

)
θn

22 := κn
pθ

n
22. (51)

The coefficients κn
q and κn

p therefore describe the individual
memory kernels of 〈Q2〉 and 〈P2〉, which are different in the
TMS dynamics.

These two contributions are shown in Fig. 8, for the same
parameters as in Fig. 7. We also present diagrams in the
(λs, νe) plane in Figs. 9 and 10. The plots in Fig. 8 re-
veal an extremely interesting asymmetry between the two
quadratures. We see that the memory associated with 〈Q2〉
is oscillatory, whereas that associated with 〈P2〉 is always
negative and decays monotonically. This asymmetry is a con-
sequence of our choice of two-mode squeezing in the TMS
interaction (13). Figures 9 and 10, however, show that the
situation is more intricate. Indeed, for fixed (λs, νe), κq is
found to oscillate with n. But for κp this is not necessarily
the case.

Finally, in Fig. 11 we compare the previous result with the
case of νe in the vicinity of, and larger than, νcrit

e = 0.8813,
i.e., in the situation where the dynamics diverges. As can
be seen, in this case both κq and κp diverge as well (notice
the different scale of the horizontal axis). This is therefore
contrary to our usual notion of memory: It means that the
system retains a stronger memory from events in the distant
past than those in the recent one. Or, to put it differently, the
relative importance of past events accumulates.

V. GAUSSIAN CP DIVISIBILITY

Even though the MK explicitly shows the dependence on
previous states, this alone does not necessarily imply a non-
Markovian dynamic [24]. It is therefore important to contrast
the MK with an actual test of non-Markovianity. Here we
focus on CP divisibility of intermediate maps, introduced
in Sec. II D: the formulation for Gaussian dynamics, at the
level of the covariance matrix, in Refs. [72,73]. Any Gaussian
CPTP map must have the form

θ → XθXT +Y,

where X and Y are matrices satisfying [58,74]

M[X,Y] := 2Y + i� − iX�XT � 0, (52)

with � = iσy the symplectic form. Here M � 0 means the
matrix must be positive semidefinite.

In our case, the evolution of the system’s CM, from time
zero to n, must therefore also be of this form:

θn = Xnθ
0XT

n +Yn. (53)

The matrices Xn and Yn can be read from the (1,1) block of
the general solution (33) and are independent of the initial
state θ0, viz.,

Xn = (X n)11, (54)

Yn = (X n)12ε(X nT)12 +
n−1∑
r=0

[X n−r−1Y (X T)n−r−1]11, (55)

where the subscripts i, j refer here to specific blocks. This
easiness in reading of the corresponding map matrices is
another significant advantage of the Markovian embedding
representation (24).

To probe whether the dynamics is divisible, we consider
the map taking the system from n to m > n. Assuming that
Xn and Yn are invertible, which is true in our case, this will
have the form [72]

θm = Xmnθ
nXT

mn +Ymn, (56)

where

Xmn = XmX−1
n , Ymn = Ym − XmnYnXT

mn. (57)

See Fig. 1(d). The dynamics is then considered divisible when
the intermediate maps (56) are a proper CPTP Gaussian map,
that is, whenM[Xmn,Ymn] � 0 [Eq. (52)].

The above criteria can be used not only as a dichotomic
measure of divisibility, but also as a figure of merit [72]. This

FIG. 9. Diagrams for the memory kernel coefficient κn
q [Eq. (51)] of the TMS dynamics, in the (λs, νe) place, for n = 0, . . . , 4.
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FIG. 10. Similar to Fig. 9, but for κn
p .

is accomplished by defining

Nmn =
∑

k

|mk| − mk

2
, {mk} = eigs(M[Xmn,Ymn]).

(58)

This quantity is always non-negative and the map is divisible
if and only if Nmn ≡ 0 for all m, n. Otherwise, the magnitude
ofNmn quantifies the extent to which divisibility is broken for
that choice of m, n.

A. BS dynamics

We begin our investigation of Nmn by focusing on the BS
dynamics [Eq. (25)]. An example of the behavior of (58) is
shown in Fig. 12, where we plotNmn in the (n, m) plane, with
fixed λs = 1.1 and different values of λe. The magnitude of
Nmn is represented by the size of each point. These diagrams
are interpreted as follows. We start with Fig. 12(a). In this
case we see that, for n = 1, Nmn is nonzero only for m = 2
and 4, being smaller in the latter. For n = 3 the map is always
divisible. And for n = 3, it is not divisible only for m = 4
and 6. These irregularities are a consequence of the oscillatory
character of the parameters appearing, e.g., in Eq. (25). Still
concerning Fig. 12(a), we see notwithstanding that as n gets
large, the map tends to be Markovian for all m. As we increase
λe, however, as in Figs. 12(b) and 12(c), we see that overall the
regions where Nmn > 0 tend to increase. They increase both
as a function of n as well as a function of m for fixed n.

When λe < 0, however, strange things happen [Fig. 12(d)].
In this case we find that there can be highly irregular values of
(n, m) which yield nonzero Nmn which, in fact, can reach sig-
nificantly large values. For instance, the largest value plotted
in Fig. 12(d) is for n = 13, m = 14 and has the value N ∼

FIG. 11. Similar to Fig. 8, but for values of νe close to, and larger
than, νcrit

e = 0.8813.

69.7. For n = 16, m = 17, however, one finds N ∼ 10 309
(not shown). This is to be contrasted with Fig. 12(a), the
largest value of which is N = 3.42. We present these results
simply to emphasize that Nmn can oscillate violently. The
reason is due to the term X−1

n in Eq. (57), which can blow
up for certain values of λs, λe, and n.

Next we turn to the divisibility of a single collision, that
is, with m = n + 1. Plots of Nn+1,n in the (λs, λe) plane are
shown in Fig. 13. The overall behavior is found to alternate
with even and odd n. For n even, the map is always divisible
for λe > 0 and potentially nondivisible within certain regions
of λe < 0. Conversely, for n odd, one finds that divisibility
breaks down in significant portions of the (λs, λe) plane. An
additional illustration of the complex dependence of Nn+1,n

on λs, λe, n is provided in Fig. 14, where we plot Nn+1,n

as a function of n for selected values of λs and λe. From
this figure, both the even and odd behavior as well as the
dramatic variations in the (λs, λe) plane can be more clearly
appreciated.

The behavior of Nn+1,n in Fig. 13 is exacerbated close to
the special points λs(e) = π/2. For instance, in the vicinity
of λs = π/2, the dynamics is nondivisible even for infinites-

FIG. 12. Example of the divisibility criteria for the BS dynamics.
The plots show Nmn in the (n, m) plane, with the size of each point
reflecting the magnitude of Nmn. All curves are for λs = 1.1 and (a)
λe = 0.75, (b) 0.9, (c) 1.1, and (d) −0.7.
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FIG. 13. CP-divisibility measureNn+1,n [Eq. (58)] in the (λs, λe) plane, for the BS dynamics. Each plot corresponds to a different value of
n: in the first two lines, n ranges from 1 to 10 in steps of 1. In the third and fourth lines, n = 20, 21, 30, 31, 40, 41, 50,51 and 100, 101.

imally small λe. This occurs because λs = π/2 corresponds
to the full SWAP, where the CM of the system is completely
transferred to the ancilla. As a consequence, when the next
ancilla arrives to interact with the system, it will always con-
tain a significant amount of information about it. We therefore
expect that in the limit n → ∞ the diagrams in Fig. 13 should
converge to narrow lines going through these special points
(although, unfortunately, we cannot actually verify this since
the simulation cost becomes prohibitive for extremely large
n).

We may also study similar diagrams for collisions that are
more broadly spaced in time. In Fig. 15 we present results for
N1,1+m for different values of m (we focus on even values,
m = 2, 4, . . .). This therefore describes the long-term mem-
ory of the map, concerning the first collision. Two features
stand out from this figure. First, as one would expect, the
overall region in the (λs, λe) plane where the map is CP
divisible tends to shrink with increasing m. However, the
regions around λs = ±π/2 tend to be remarkably persistent,
remaining highly nondivisible even for large m.

The results in Figs. 13 and 15 refer to divisibility for
specific times (n, m). We can also combine all data and ask

for which regions in the (λs, λe) plane the BS dynamics is di-
visible for all (n, m). This is shown in Fig. 16. As expected, for
most choices of parameters, the map will not be CP divisible
for some (n, m). Notwithstanding, there are regions where the
map is always divisible. These regions tend to be concentrated
close to λe = 0 (or λe = π , which is equivalent). And they
exist even for large values of λs.

A direct comparison with the memory kernel, Sec. IV, is
not generally possible since both refer to different physical
aspects of the problem. But if we focus on Nn+1,n, then some
comparison is possible. Recall that the MK describes how
the dynamics from n → n + 1 is affected by previous times.
Thus, regions where the memory kernel is large tend to be
accompanied by regions whereNn+1,n > 0. This is indeed the
case, as can be seen by comparing Fig. 13 with Fig. 6.

B. TMS dynamics

The situation for the TMS dynamics is dramatically differ-
ent. Diagrams for Nn+1,n in the (λs, νe) plane are shown in
Fig. 17 for different values of n. In contrast to the BS maps,
now most of the parameter space is nondivisible. Moreover,
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FIG. 14. CP divisibility measureNn+1,n as a function of n, for the
BS dynamics with λs = 0.8 and λe = 0.9, 1.3, −0.5, −0.8. Comple-
ments Fig. 13.

the region where it is nondivisible increases for longer times.
And finally, what is perhaps the least intuitive, the regions
where the map is nondivisible are denser for small, instead of
large, νe (although the values of Nn+1,n are correspondingly
smaller). This is a consequence of the fact that the TMS
dynamics spontaneously creates excitations in the system,
which implies that for large νe a substantial amount of noise
is introduced, making the map more likely to be divisible.
If νe = 0 the map is, of course, divisible by construction.
However, the results in Fig. 17 show that for arbitrarily
small but nonzero νe the map is already nondivisible, albeit
with a small Nn+1,n. As with the BS dynamics, one could
also combine all these diagrams to ask whether there are
regions in the (λs, νe) where the map is always divisible,
for all (n, m).

The answer to this question is, in this case, negative: For
the TMS dynamics the dynamics is never divisible, except for
the trivial line νe = 0. This represents a major difference in
comparison with the BS dynamics and, once again, is ulti-
mately a property of the entangling nature of the two-mode
squeezing interaction (13).

VI. DISCUSSION

A. Summary of main results

The goal of this paper was to provide a robust frame-
work for studying non-Markovianity from multiple angles.
We did this using two main ingredients: first, collisional mod-
els, which allow us to introduce non-Markovianity in a fully
controllable way (Sec. II), and, second, continuous-variable
Gaussian operations, which replace the (generally compli-
cated) dynamics of the density matrix into a much simpler
map for the covariance matrix (Sec. III). We showed that
the non-Markovian dynamics can be fully encapsulated into
a Markovian embedding, from which all relevant properties
and quantifiers can be neatly derived. In order to gain physical

insight into what is, generally, a very complicated problem,
our exposition was example oriented. We focused on two
types of interactions, with very distinct physical properties.
Our framework, however, is general. The main results can be
summarized as follows: First, concerning the general results
laid down in Sec. II, we have the following.

(A1) The full non-Markovian dynamics is captured by the
map �(·) in Eq. (4) for the state �n, and the dynamics it
generates, Eq. (5). At each instant of time, the reduced state
of the system is always available by tracing over the ancilla.

(A2) The state �n contains all the relevant information
to characterize system-environment correlations, such as the
mutual information in Eq. (7).

(A3) The memory kernel can be constructed in terms of the
reduced map (6) using Eq. (9).

(A4) CP divisibility can be studied using the intermediate
maps Em→n, Eq. (10).

Next, specializing this to the case of Gaussian states and
processes, we have the following.

(B1) The global evolution at the level of the density matrix
[Eq. (2)] is converted into an equation for the global covari-
ance matrix [Eq. (15)]. Unitaries are replaced by symplectic
matrices.

(B2) The dynamics is fully captured by the covariance
matrix γ n in Eq. (23), representing the joint state of S and
En+1 at time n.

(B3) The dynamics of γ n is now Markovian and obeys
the standard Gaussian CP map (24) (Markovian embedding).
The matrices X , Y are related to the entries of the symplectic
matrices Sn and Sn+1,n according to Eqs. (19), (20), and (26).

(B4) The mutual information (7) is computed from the
symplectic eigenvalues of γ n.

(B5) The time-non-local dynamics defining the memory
kernel, Eq. (1), can be rewritten at the level of the system
covariance matrix as in (29). The memory kernel depends only
on the matrix X and can be computed using Eq. (45). One can
also write a Kraus decomposition of the MK, Eq. (29). The
coefficients κn

i j are found from Eq. (48).
(B6) The intermediate map, taking the system from time

n to time m, is given by Eqs. (56) and (57). A monotone of
CP divisibility is given by Eq. (58) and depends only on the
matrices X and Y .

All methods described above are implemented in the asso-
ciated PYTHON library, which provides an efficient and simple
way of simulating a broad range of scenarios. All plots pre-
sented in this paper were generated with this code and are
freely available in Ref. [67].

B. Main conclusions for the BS and TMS dynamics

We have focused on two types of maps. The system-ancilla
interaction was always fixed to be of beam splitter type (partial
SWAP). But the ancilla-ancilla interaction could be either
beam splitter or a two-mode squeezing. The behaviors of the
two are dramatically different.

For the former, we have found that the combination
of the two beam-splitter interactions leads to strong res-
onance effects that cause most quantities to oscillate in
time and also depend sensibly on the relative signs of
the interaction strengths (see Figs. 6 or 13). For the BS
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FIG. 15. CP-divisibility measure, Nm,1 [Eq. (58)] in the (λs, λe) plane, for the BS dynamics. Each plot corresponds to a different value of
m, from m = 2 to 30 in steps of 2.

dynamics, there is also a non-negligible portion of param-
eter space in which the dynamics is always Markovian
(Fig. 16).

Conversely, in the TMS dynamics excitations are con-
stantly being generated in the system. As a consequence, the
dynamics is only stable for certain values of the interaction
strength [Fig. 2(d)]. If the interaction is too strong, the oc-
cupations in the system diverge (never reach a steady state).
Interestingly, this is also reflected in the memory kernel,
which acquires infinitely long memory (Fig. 11). The TMS
dynamics is also always non-Markovian (never CP divisible;
see Fig. 17), unless the ancilla-ancilla interaction is strictly
zero. This reflects the entangling nature of the two-mode
squeezing. The magnitude of the non-Markovianity, of course,
is small for weak interactions. This is clearly seen, for in-
stance, in the memory kernel, Fig. 9.

FIG. 16. Regions in the (λs, λe) plane where the BS dynamics is
not CP divisible for at least one choice of (n, m).

C. Connection with experimentally relevant scenarios

At first, the collisional model setup may seem like an arti-
ficial description of open quantum dynamics. However, this
is not so, for the following reasons. First, collisional mod-
els actually faithfully describe some experimentally relevant
situations, for instance when a system is coupled to a one-
dimensional (1D) waveguide [75–78]. The dispersion relation
of 1D waveguides allows one to discretize the field operator
into time bins, so that the interaction at each time interval only
involves one bin operator. The picture that emerges is then
exactly that of a collisional model. Moreover, this model is
in general non-Markovian by construction, which depends on
the input state of the electromagnetic field, as well as on the
nature of the interaction. The specific conditions determining
whether the ensuing dynamics will be Markovian or not are
discussed in detail in a recent review on the subject [79].

Second, collisional models are motivated by Boltzmann’s
Stosszahlansatz (molecular chaos hypothesis) [80]. We often
use baths of harmonic oscillators to model open dynamics
(e.g., in Caldeira-Leggett’s model [81,82]). But these are ac-
tually the ones that are artificial, since real baths are highly
chaotic and ergodic, involving highly nonlinear interactions.
The Stosszahlansatz, and hence collisional models, capture
precisely this idea. At each instant of time, only a small part
of the environment (the “ancilla”) is actually interacting with
the system. And afterwards, this part leaves and “returns to the
bath,” where it will collide with the other bath units and even-
tually thermalize, forgetting all information about the system.
This is why, in collisional models, the ancillas are discarded
after each collision, and fresh new ones are introduced. When
they return to the bath, however, the ancillas will in general
transmit information of the system to the other bath units,
which is the ingredient used in this paper to introduce the
non-Markovianity.

Finally, we also mention that any potential artificiality in
a collisional model is actually intentional. The models are
artificial precisely so that they can strip away many of the
difficulties that may arise in real-life, uncontrolled, models.
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FIG. 17. CP-divisibility measure,Nn+1,n [Eq. (58)] in the (λs, νe) plane, for the TMS dynamics. Each plot corresponds to a different value
of n, from 1 to 10 in steps of 1.

This kind of approach is common in physics. For instance, one
may draw a parallel with ultracold atoms in optical lattices
[83–85]. These systems were originally developed to mimic
condensed matter systems and explain phenomena such as
high-temperature superconductivity. Their motivation lay in
the fact that actual solids are extremely complicated, making
it difficult to pinpoint the actual mechanisms behind super-
conductivity. Ultracold atoms strip away these difficulties, by
focusing on an artificial model, but one that contains precisely
the relevant ingredients (e.g., the Fermi-Hubbard model). Ar-
tificiality is thus an advantage, not a limitation.

D. Connection with standard bosonic baths

A common configuration to study non-Markovianity is
to consider a single mode a coupled to N bosonic modes
b1, . . . , bN , all at the same time. For instance, a typical Hamil-
tonian would be of the form

H = ωa†a +
N∑

i=1

�ib
†
i bi +

∑
i

gi(a
†bi + b†

i a). (59)

Or one could also have a quadrature-quadrature coupling of
the form (a + a†)(b + b†), as in the Caldeira-Leggett model
[81,82]. In this section, we briefly compare the main ad-
vantages of using a collisional setup and, in particular, the
Markovian embedding, versus this standard approach based
on Eq. (59).

There are two main advantages, one computational and one
conceptual. The computational advantage is straightforward:
Even for Gaussian interactions, in order to properly account
for the full evolution of a Hamiltonian such as (59), one
needs to keep track of the full covariance matrix of the N + 1
modes involved, which will evolve according to the Lyapunov
equation [58]

dσ

dt
= �Hσ + σ (�H )T, (60)

where � is the symplectic form. This CM would be of size
2(N + 1). While this is an enormous upgrade when compared
with the exponential complexity of the full Hilbert space, it
can still become prohibitive if one is interested in large sizes,
and especially in large times. The Markovian embedding ap-
proach, on the other hand, reduces this to the evolution of a
4 × 4 matrix, the size of which is independent of the number
of collisions involved.

As for conceptual advantages, the defining feature, distin-
guishing the collisional approach from the standard one, is
the ability to keep track of which specific events generate the
information backflow. For instance, as argued in Sec. II B,
understanding the correlations between the system and dif-
ferent parts of the bath is a natural way of understanding
the pathways to information backflow. But for a Hamiltonian
such as (59), the system will become correlated to all modes
and at no specific time order. The collisional approach in-
troduces a definite causal structure: the system interacts with
one ancilla, which only afterwards propagates this to the next
step. This makes it possible to pinpoint which correlations,
at which times, are the relevant ones. Similar advantages are
also encountered when dealing with the memory kernel or CP
divisibility. For instance, explicitly constructing the memory
kernel for a map such as (60) is quite complicated and involves
generally extremely large matrices. But for collisional models
this becomes quite tractable, as shown in Sec. IV.

E. Possible extensions

Our framework can be readily extended to a broad range
of scenarios. We being by mentioning problems which are
straightforward extensions of our results. Throughout the pa-
per, we have focused on ancillas initially prepared in the
vacuum state. Studying different initial preparations would be
interesting since the memory kernel does not depend on this,
but CP divisibility does. It would be particularly interesting
to study the introduction of single-mode squeezing in the
ancillas.

022202-16



MEMORY KERNEL AND DIVISIBILITY OF GAUSSIAN … PHYSICAL REVIEW A 103, 022202 (2021)

Another natural extension would be to consider different
types of interactions, as in Refs [52,56]. In particular, one
thing that we have not explored are interactions that lead to
“nondiagonal” memory kernels. As discussed below Eq. (29),
a MK involving the identity or σz is always diagonal, meaning
that each entry of θn is only affected by the same entry at past
times. A memory kernel involving σ±, however, would imply,
for instance, that 〈Q2〉n could be affected by past values of
〈P2〉n. This could, in principle, generate a plethora of inter-
esting effects. Another possibility would be the inclusion of
stochastic SWAPs, as in Refs. [49,50].

In Ref. [57], the authors asked, within a collisional model
context, whether it was possible to pinpoint the backflow of
information to either changes in the environmental states or
the buildup of correlations between system and environment.
This question is relevant since these are the two main in-
gredients entering in the second law of thermodynamics in
the quantum domain [86,87]. That is to say, they are the two
quantities measuring the degree of irreversibility of a process.
We believe that this question could be directly addressed
within our framework. Whether the Markovian embedding
suffices for this end, however, is not clear at the moment. For
instance, the mutual information studied in Sec. III D is only
between S and En+1 and thus corresponds to only a part of the
full system-environment correlations. Notwithstanding, even
if the embedding does not suffice, the fact that the approach
deals only with covariance matrices still allows one to study
numerically dynamics involving large numbers of ancillas.

Concerning less trivial extensions, throughout this paper
we have assumed that the Markov memory length is 1. That
is, each ancilla En only propagates information to its near-
est neighbor. The extension to arbitrary memory length, as
studied in Refs. [52,56], would be quite interesting. And it
is also amenable to our framework, provided one extends the
Markovian embedding to have longer memory.

Finally, we mention that the basic ideas set up in this
paper could also serve as a starting point for exploring the
Gaussian formulation of process tensors [29–31], which pro-
vide an alternative, and much broader, way of characterizing
non-Markovianity. In fact, this could perhaps also be used as
a way to bridge process tensors and the memory kernel.
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APPENDIX A: STABILITY THEORY

We are interested in studying the fixed-point stability of
the Markovian embedding equation (24), i.e., solutions that
satisfy γ n+1 = γ n. To this end, we use the vectorized form

(36) and label the vectorized fixed-point solution as 
γ ∗:


γ ∗ = X ⊗ X 
γ ∗ + 
Y . (A1)

As long as det(I − X ⊗ X ) �= 0 a fixed-point solution can be
readily found as


γ ∗ = (I − X ⊗ X )−1 
Y . (A2)

The stability of 
γ ∗ will be associated to the eigenvalues of
the X ⊗ X matrix or, what is equivalent, the eigenvalues of X .
If their moduli are below 1, the fixed point will be a globally
asymptotic state (GAS) and all trajectories will converge to
γ ∗ for large enough n. Otherwise, it may diverge.

The eigenvalues of the matrix X for the BS channel,
Eq. (25), read

1
2 (−wx + x ±

√
(w + 1)2x2 + 4wy2). (A3)

Using the (λs, λe) parametrization, one finds that the only
values not satisfying the GAS conditions are λe = ±π/2 or
λs = 0, π , which represent, respectively, the case where no
particles flow to the ancillas and when the system does not
interact at all. Excluding those points, the fixed point is a GAS
given by

γ ∗
BS =

(
ε 0
0 ε

)
. (A4)

That is, the map tends to homogenize the system to the same
initial state of the ancillas. This, of course, is what is expected
of a beam-splitter or partial SWAP dynamics. It is notwith-
standing interesting that it remains true even in the case of
ancilla-ancilla interactions and non-Markovian dynamics.

Similarly, the eigenvalues of X for the TMS case, Eq. (27),
read

1
2 [(1 + w̃)x ±

√
(w̃ − 1)2x2 − 4w̃y2],

1
2 [(1 − w̃)x ±

√
(w̃ + 1)2x2 + 4w̃y2]. (A5)

These eigenvalues only fulfill the GAS requirements in the
interval where νe ∈ [0, sinh −1(1)]. This therefore defines the
critical value νcrit

e = sinh−1(1), after which the dynamics di-
verges. Inside this interval, the fixed point is a GAS given by

γ ∗
TMS =

(( 2 sinh2(νe )
1−sinh2(νe )

+ 1
)
ε 0

0
( 2 sinh2(νe )

1−sinh2(νe )
+ 1

)
ε

)
. (A6)

Thus, we see that system and ancilla once again tend to ho-
mogenize. However, the ancilla initial state ε is now amplified
by a factor which is always larger than unity and diverges
when νe = νcrit

e . We also call attention to the fact that γ ∗
TMS is a

product state, so that no correlations survive in the long-time
limit.

APPENDIX B: MEMORY KERNEL FOR THE
BS DYNAMICS

In this Appendix we discuss how to obtain a more compact
expression for the memory kernel (29), in the case of the
BS dynamics. This case is simpler because the only nonzero
coefficient is κn

11, which is proportional to the identity map.
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That is to say, in this case the MK is actually just a c number,
instead of a superoperator.

To accomplish this, we exploit in more detail the tensor
structure of the matrices used in Sec. IV (now all specialized
to NS = NE = 1). We being by noting that the matrix X of the
BS dynamics, Eq. (25), can also be written as

X = χ ⊗ I, χ =
(

x y
yw −xw

)
, (B1)

where χ is now a simple 2 × 2 matrix and, in this Appendix,
I will always refer to the identity of dimension 2. Similarly,
the projection operator PS in Eq. (37) can be written as

PS = ps ⊗ I, ps =
(

1 0
0 0

)
. (B2)

Thus, the matrix P in Eq. (38) becomes

P = ps ⊗ I ⊗ ps ⊗ I. (B3)

This type of tensor structure, favoring slots 1 and 3, is simply
a consequence of the vectorization procedure, Eq. (35).

The matrix ps can be further decomposed as

ps = |0〉〈0|, |0〉 =
(

1
0

)
. (B4)

Dirac’s notation is introduced here just for clarity; the state |0〉
is completely unrelated to the actual Hilbert-space basis of the
system. The advantage of this decomposition is that it allows
us to write the isometry π , in Eq. (43), as

π = 〈0| ⊗ I ⊗ 〈0| ⊗ I. (B5)

This now clearly shows that π contracts slots 1 and 3, while
acting trivially on 2 and 4.

At this point, it is convenient to simplify the notation and
introduce indices 1,2,3,4, to indicate on which slot of the
tensor product the operators act. Thus, for instance, we will
henceforth write

X ⊗ X = χ ⊗ I ⊗ χ ⊗ I := χ1χ3, (B6)

meaning χ1 acts on slot 1 and χ3 acts on slot 3. Similarly, P =
p1

s p3
s and, therefore, Q = 1 − p1

s p3
s := Q13 is a matrix acting

only on slots 1 and 3 (we emphasize that Q13 cannot be written
as a simple product of an operator acting on 1 and another
acting on 3). Notice how the special structure appearing in
Eq. (B6) is unique of the BS dynamics. For other types of
dynamics, X ⊗ X would in general act nontrivially on all four
slots. Due to this simplification, the quantity appearing inside
π (. . .)πT in Eq. (45) will be an operator acting only on slots
1 and 3.

Next we turn to Eq. (48), describing the coefficients κn
i j .

The contraction π (. . .)πT eliminates slots 1 and 3, so that
(MT

j ⊗ MT
i ) is effectively multiplying matrices from slots 2

and 4. Thus, one may equivalently write(
MT

j ⊗ MT
i

)
π (. . .)πT = π

[(
I ⊗ MT

j ⊗ I ⊗ MT
i

)
. . .

]
πT,

where (. . .) refers to all terms inside π (. . .)πT in Eq. (45).
But from the arguments above, these quantities act only on
slots 1 and 3. Combining this with the fact that tr(A ⊗ B) =
tr(A)tr(B) explains why, in the BS case, the only nontrivial
coefficient will be κn

11, corresponding to Mi = Mj = I. This
coefficient may then be written as

κn
11 = tr13

{
π13[χ1χ3(Q13χ1χ3Q13)nχ1χ3]πT

13

}
,

where the remaining trace is now only over slots 1 and 3.
Finally, we use Eq. (B5) to express π in terms of 〈0|. This
allows us to write

κn
11 = 〈00| χ̄ (Q̄ χ̄ Q̄)n χ̄ |00〉, (B7)

where |00〉 = |0〉 ⊗ |0〉, χ̄ = χ ⊗ χ , and Q̄ = I4 − ps ⊗ ps

are all objects of dimension 4. Equation (B7) therefore pro-
vides a compact representation of the memory kernel for the
BS dynamics. It is expressed solely in terms of |0〉, χ , and
ps, [Eqs. (B1) and (B4)]. And it requires exponentiating only
operators of dimension 4, in comparison with (45), which
would have dimension 16.
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