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The standard collisional model paradigm consists of a system that interacts sequentially with identically
prepared ancillas. After infinitely many collisions, and under appropriate conditions, the system may converge
to the same state as the ancillas. This process, known as homogenization, is independent of the ancilla initial
state, being a property only of the underlying dynamics. In this paper we extend this idea to locally identical,
but globally correlated, ancillas, and show that correlations break homogenization. This is done numerically
using a minimal qubit model, and analytically using an exactly soluble Gaussian model. In both cases, we
use Hamiltonian graph states with cyclic graphs as the prototypical method for building scalable many-body
entangled ancillary states.
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I. INTRODUCTION

Relaxation towards equilibrium is one of the most basic
problems in nonequilibrium physics. In classical thermody-
namics, this process is often taken as a universal tendency,
which every system naturally undergoes. This is deeply
associated with Boltzmann’s molecular chaos hypothesis
(Stosszahlansatz). For instance, when a hot particle enters a
bath composed of cold particles, it will suffer multiple col-
lisions, each involving the exchange of a certain amount of
energy. This will lead, after sufficiently many collisions, to
the hot particle homogenizing with the cold bath. This is thus
directly associated to the spreading of energy and information
among multiple degrees of freedom.

As one moves to the nano or quantum domain, relax-
ation becomes more dependent on finer details about the
environment, as well as the system-environment interactions.
Features such as strong coupling [1–3] and non-Markovianity
[4,5] all affect the relaxation in fundamental ways, making
this an active field of research. A particularly interesting sce-
nario is that of homogenization, first put forth in Refs. [6,7].
The authors considered a qubit system interacting with in-
finitely many independent and identically distributed qubit
ancillas. They then studied under which conditions the system
would tend, in the limit of infinitely many collisions, to the
same state as the ancillas. This is, in a sense, a generalization
of thermalization, because it is independent of the state of
the ancillas; instead, it depends only on the properties of the
dynamics. In fact, the authors showed that, for qubits, the
unitary achieving this task was the partial swap.

The scenario in Refs. [6,7] is an instance of the now-
popular collisional models (CMs) [8–12]. CMs model open
system dynamics in a stroboscopic fashion, via sequential
collisions with different ancillas. They are interesting for a
variety of reasons. First, they allow full control over which
ingredients are introduced. This may include ancilla-ancilla
correlations, which lead to non-Markovianity [13–32]; work-
driven unitaries, which are used to implement heat engines

[33–41]; and continuous measurements in the ancillas to im-
plement stochastic unravelings [42–44]. Second, CMs allow
for great control over the thermodynamics of quantum sys-
tems, and have been used to clarify a series of issues about the
validity of the first and second laws [11,45,46]. Finally, the
dynamics of CMs only involve a few degrees of freedom at a
time, making it more manageable than standard open quantum
system treatments, where the bath is macroscopic.

Notwithstanding, homogenization still remains widely un-
explored: after infinitely many collisions, to which state will
the system eventually relax? The goal of this paper is to
show that homogenization is broken when the ancillas are
locally identical, but globally correlated. The idea is shown
in Fig. 1(a): a system S, prepared in a generic state ρ0

S , is put
to interact with infinitely many ancillas A1, A2, . . .. Locally,
they are all prepared in the same state ρAi ≡ ρA. But glob-
ally, they are in a correlated state ρA1A2,... ≡ ρA. As we show,
in the long-time limit the steady state of the system will differ
from the ancilla’s local state, by an amount which depends on
the structure of the correlations. This is interesting because,
as far as the system is concerned, it is always interacting
locally with identically prepared ancillas. But globally, the
correlations play a nontrivial role, steering the system away
from the homogenized state.

To draw an analogy, suppose Ph.D. students want to con-
vince their supervisor to buy a new coffee machine. To
accomplish that, they go to the supervisor’s office, one at a
time, and lay down their arguments as to why a new machine
is absolutely necessary. After very many “collisions,” the su-
pervisor will eventually make up their mind whether to buy it
or not. This would be the standard homogenization approach.
Instead, suppose that before interacting with their supervisor,
the students meet up in order to align their speeches. They may
share ideas on what are the most persuasive arguments and
how to best convince the supervisor. After establishing this
predefined narrative, they then go to the supervisor’s office,
again one at a time. Clearly, whether they align their speeches
or not should have a dramatic effect on the outcome of the
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FIG. 1. (a) Schematics of a collisional model, where the system S interacts sequentially with a series of ancillas A1, A2, . . .. (b) The ancillas
are not initially independent, however. Instead, they are in a correlated state ρA, which we choose here to construct as a Hamiltonian cyclic
graph state. In this example, we have a cyclic graph of the form (6), with c1,2 �= 0 and ci = 0 for i > 2.

process and, hopefully, should help them get the new coffee
machine.

The scenario just described is an example of a common-
cause memory, and has been widely used in the study of
non-Markovianity [14,17,20,25,29,30]. This is to be con-
trasted with direct cause CMs [18,22,26,28,30,47–49], where
the correlations between ancillas are introduced midway
through the dynamics. Our interest here is different, however.
Instead of analyzing the information backflow, as is usually
done, we study the final state of the system, and how this is
affected by the correlations.

In Sec. II we lay down the main idea behind homoge-
nization, and how we propose to study its violations using
correlated ancillas. Then, in Sec. III we analyze a minimal
qubit model, which has to be computed numerically, but
nonetheless clearly illustrates the effect. Finally, in Sec. IV,
we move to continuous variable Gaussian states, where ana-
lytical results can be provided.

II. FORMAL FRAMEWORK

The Hilbert space of S is chosen to be isomorphic to that
of Ai. We let Ui denote a local interaction between S and Ai,
and choose Ui to be homogenizing in the sense of Refs. [6,7].
This means that

Ui
(
ρAi ⊗ ρAi

)
U †

i = ρAi ⊗ ρAi . (1)

For qubits, the class of unitaries satisfying this are partial
swaps. This kind of property has also been widely used in
resource theories. If ρAi = I/d is a maximally mixed state
(where d is the Hilbert-space dimension of each ancilla), this
becomes akin to the resource theory of purity [50]. And if
ρAi is a thermal state, Eq. (1) becomes a thermal operation
[51–53]. For our purposes, the states ρAi are generic.

The choice of unitary (1) can be further motivated as fol-
lows. First, provided one is interested only in local unitaries,
the partial swap is meaningful in itself, as an operation that
partially exchanges the quantum states of the two systems.
This, together with the fact that the ancilla’s local states are
all identical, makes the problem as close as possible to the
original homogenization scenario. Second, the local nature
of the unitary also makes it so that any local observer, with
access only to the reduced state of the system, is unable to
ascertain that the system is not homogenizing. This would
only be possible a posterior, by comparing the final state of
the system with those of the ancillas.

Each ancilla participates only once in the dynamics. Hence,
the global state of S, A1, A2, . . . after n collisions will be given
by

ρn
SA = Un . . .U1

(
ρ0

S ⊗ ρA
)
U †

1 . . .U †
n . (2)

Since the ancillas are initially correlated, even the very first
collision (with A1) will already cause S to become correlated
with all other ancillas A2, A3, . . .. This is the origin of non-
Markovianity and implies that it is impossible to break the
map (2) in terms of smaller maps from n to n + 1. We focus
on the reduced state of the system, ρn

S = trA ρn
SA. And, in

particular, in the long-time fixed point

ρ∗
S = lim

n→∞ ρn
S . (3)

Our goal is to investigate how correlations in ρA affect ρ∗
S .

One of the challenges in formalizing the above idea is
the choice of initial ancilla state ρA. To make the problem
tractable, we postulate that the reduced states should be iden-
tical: ρAi = trA/i ρA = ρA1 , where trA/i means the partial trace
over all ancillas, except the ith. This implies that, as far as
local operations are concerned, the system is just interacting
with identical ancillas.

In addition, we also wish for these states to be built in
a scalable way, so that we can consider arbitrarily many
ancillas. After all, homogenization refers to infinitely many
collisions. We have therefore found it convenient to choose
ρA to be translationally invariant. That is, for any group
{Ak, Ak+1, . . . , Ak+�}, we impose that the reduced state

ρAkAk+1...Ak+�
= trA/{k,...,k+�} ρA = ρA1...A1+�

(4)

should be independent of k, i.e., a function only of the block
length �.

In this paper we implement this using Hamiltonian cyclic
graph states [54–58] [Fig. 1(b)]. We consider a system with a
finite number NA of ancillas, and in the end, take NA → ∞.
Let Hi j denote a certain Hamiltonian interaction between an-
cillas i and j. This may be, e.g., σ i

xσ
j

x for qubit systems, where
σ i

x are Pauli matrices. The global initial state ρA is chosen to
be of the form ρA = |�A〉〈�A|, where

|�A〉 = e−ik
∑

i, j Gi j Hi j |φ〉⊗NA . (5)

Here |φ〉 are arbitrary single ancilla states, k is an interaction
strength, and G (of size NA × NA) is the graph adjacency
matrix; that is, the coefficients Gi j represent the magnitude
with which ancilla i couples to ancilla j. What makes ρA
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FIG. 2. Properties of the initial ancilla state ρA for different choices of graph state nearest-neighbor interactions, NN1, NN2, and NN3.
(a) Excited-state populations pA = 〈1|ρA1 |1〉 of the reduced ancilla states ρAi ≡ ρA1 for varying graph sizes NA, with fixed k = 0.7. When
NA → ∞ the population no longer changes with NA. (b) pA as a function of the overall strength k [Eq. (5)] for fixed NA = 7 ancillas. (c) Mutual
information I(1:n) between the first and the nth ancillas, as a function of n, with fixed NA = 7 and k = 0.7. For nearest neighbors larger than
3, the mutual information becomes flat, meaning all ancillas are almost equally correlated.

translationally invariant is the choice for G. In particular, we
choose it as a symmetric circulant matrix. For, e.g., NA = 5,
such a matrix has the form

G =

⎛
⎜⎜⎜⎜⎜⎝

0 c1 c2 c3 c2 c1

c1 0 c1 c2 c3 c2

c2 c1 0 c1 c2 c3

c3 c2 c1 0 c1 c2

c2 c3 c2 c1 0 c1

c1 c2 c3 c2 c1 0

⎞
⎟⎟⎟⎟⎟⎠, (6)

for arbitrary real coefficients c1. This is the adjacency ma-
trix for a cyclic graph, as illustrated in Fig. 1(b). For
instance, if c1 �= 0 and all other ci = 0, the graph represents
a nearest-neighbor coupling. But this does not mean that the
correlations will be only between nearest neighbors, due to the
exponential in (5). This method is not the most general way of
constructing translationally invariant states. But it provides a
systematic way of doing so for arbitrary system sizes NA. We
also stress that the preparation (5) is done before the actual
dynamics (2).

III. MINIMAL QUBIT MODEL

In order to illustrate the main idea, we first consider a
numerical example where system and ancillas are composed
of qubits. The system is assumed, for simplicity, to start in the
computational basis state |0〉. To comply with (1), we assume
that they interact via a partial swap unitary [6,7]

Un = exp
{ − iτ

(
σ+

S σ−
An

+ σ−
S σ+

An

)}
, (7)

where τ controls the interaction strength. The case τ = π/2
represents the full swap, U |φ,ψ〉 = |ψ, φ〉. This case is spe-
cial because it always pushes the system towards the exact
reduced state of the ancillas (which are all equal). For in-
stance, we suppose just for now that the system is in a pure
state |φ〉, and the ancillas are in a correlated state |ψA1A2A3...〉.
Then, after applying say U1, we would get

U1
(|φ〉S ⊗ |ψ〉A1A2A3...

) = |ψ〉SA2A3... ⊗ |φ〉A1 . (8)

Hence, due to the full swap the system does become correlated
with the ancillas. But locally, it is always pushed towards the
local state of the ancillas. The same logic applies to the action
of U2, U3, and so on. For this reason, we will henceforth be

particularly interested in partial swaps, for which the behavior
is richer.

A. Preparation of the initial ancilla state

We prepare the initial ancilla state (5) assuming |φ〉 = |0〉
and Hi j = σ i

xσ
j

x . The connections are in the form of the circu-
lant graph (6). We always take all ci to be either 0 or 1 and
fix the overall strength at k = 0.7, except when stated other-
wise. We then analyze what happens when the interactions
are only first-nearest neighbors (c1 = 1 and ci = 0 for i > 1),
second-nearest neighbors (c1 = c2 = 1 and ci = 0 for i > 2),
and third-nearest neighbors. We refer to these as NN1, NN2,
and NN3, respectively. Figure 2 illustrates how the initial state
ρA depends on the properties of the graph states. Locally, the
states of the ancillas are diagonal in the computational basis.
This can be lifted by considering other choices of |φ〉, for
instance.

Figure 2(a) shows, for fixed k = 0.7, that the excited-state
populations of the local states pA = 〈1|ρA|1〉 become even-
tually independent of NA as it increases. Since the state is
translationally invariant, this holds true for all local states of
the ancillas, ρAi ≡ ρA.

In Fig. 2(b) we show how pA varies in terms of the overall
interaction strength k in Eq. (5). Since for qubits a diagonal
state is tantamount to a thermal state, one can view pA as
representing an effective local temperature of the ancillas. As
k is varied, one can go from a situation where pA ∼ 0 all the
way to pA ∼ 1/2, which stands for a maximally mixed state
(infinite temperature). The local states of the ancillas may thus
be tuned arbitrarily by varying the correlation strength k.

Finally, Fig. 2(c) shows how the correlations in the global
state ρA behave. We analyze here the mutual information
between ancillas 1 and n = 2, 3, . . . , NA, which is given by

I(1 : n) = S
(
ρA1

) + S
(
ρAn

) − S
(
ρA1,An

)
, (9)

with S(ρ) = −tr(ρ ln ρ) being the von Neumann entropy. As
can be seen in the image, the correlations first decay with n
and then grow again. This is due to the cyclic nature of the
graph. However, significant variations are only observed for
first-nearest neighbors (NN1, red circles). As one moves to
NN2 and NN3, the correlations quickly become less depen-
dent on d . In particular, for NN3 the correlation profile is
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FIG. 3. Dynamics of the system excited-state population p as a function of the collision number n. Each line corresponds to NN1, NN2,
and NN3, while each row corresponds to τ = 0.1, 0.5, 1.0, 1.5 [Eq. (7)]. We fixed k = 0.7. Green squares correspond to the dynamics with
the ancillas in the same local state ρAi , but completely uncorrelated. All curves were computed with NA = 16 ancillas.

practically flat, meaning that all ancillas are roughly equally
correlated.

B. System dynamics

Having analyzed the structure of ρA, we now turn to how
this affects the dynamics of the system. Figure 3 plots the
system’s excited-state population p = 〈1|ρS|1〉 as a function
of the collision number n (stroboscopic time). Each row cor-
responds to different choices of graph states, NN1, NN2, and
NN3. Each column refers to a different interaction strength
τ [Eq. (7)]. All curves were computed with k = 0.7 and
NA = 16 ancillas, which was the maximum number of ancillas
we were able to reach. For reference, we compare this with the
dynamics that would result from using independent ancillas,
with the same reduced state ρA1 , that is, a reference process
where the initial state is instead ρuncorr

A = ρA1 ⊗ ρA2 ⊗ . . ..
The resulting probabilities are referred to as puncorr.

When τ is small (first column), the transfer of information
in each collision is small, causing the evolution of p to be
slower. The steady-state value is not clear in this case, how-
ever: Since we are only able to reach NA = 16 ancillas, it is not
possible to know to which state p will eventually converge.
This is one of the main difficulties in dealing with qubit

systems. Conversely, if τ = 1.5 (fourth column of Fig. 3),
the information transfer is very large and the system quickly
homogenizes. However, the effects of the correlations are now
small and the final population p is very close to puncorr.

The interesting situations occur for intermediate τ . As can
be seen, the dynamics of p and puncorr clearly split from each
other and, in the long-time limit, converge to different values.
This shows how correlations break homogenization. In these
examples we always have p > puncorr, meaning that the final
state is hotter than it would be if correlations were not present.
But it does not have to be this way and using different values
of k and τ it is possible to also reach situations where p <

puncorr.

C. Dynamics of the ancilla-ancilla mutual information

Figure 2(c) shows the mutual information I(1:n) between
the first and nth ancilla, in the prepared graph state |ψA〉.
As the ancillas start to collide with the system, however, this
correlation profile will start to change. In Ref. [6] the authors
studied how the correlations among the ancillas develop in
time, due to their collisions with the system. Here we perform
a similar analysis to contrast with those results. We focus
instead on the mutual information, as in Fig. 2(c).
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FIG. 4. Dynamics of the mutual information between the first and n ancillas. Upper panel: Before and after all collisions. Lower panel: At
each collision step. (a), (d) For the Markovian case. (b), (e) Non-Markovian case with nearest-neighbor interactions. (c), (f) Same, but with
three nearest neighbors. In (b) and (c), the profiles of I(1:n) before the first collision (black) are the same as those in Fig. 2(c). Parameters:
k = 0.7 and τ = 1.0.

Figure 4 presents the dynamics of I(1:n) after each col-
lision. Image (a) concerns the Markovian case, while (b)
and (c) correspond to first- and third-nearest neighbors. The
Markovian case starts with zero correlations (by default) and
produces an exponentially decaying profile I (1:n) ∼ e−αk ,
similar to what was found in Ref. [6], although there the
authors focused on the concurrence. Conversely, when cor-
relations are present, the profile is already nonzero before the
collisions. As the dynamics evolves, this correlation profile
is then distorted. Due to the finite number of ancillas we
can simulate, we are not able to observe any emerging pat-
terns. Overall, the correlations with different ancillas can both
decrease or increase, in nontrivial ways. This is particularly
visible in the lower panels of Fig. 4, which plots the evolution
of the mutual information in time.

IV. CONTINUOUS VARIABLE GAUSSIAN MODELS

In order to obtain deeper insights into how correlations af-
fect homogenization, we now turn to a class of exactly soluble
models with arbitrarily many ancillas. Namely, we assume
that both system and ancillas are given by bosonic modes,
with quadratures (qS, pS ) and (qi, pi ), satisfying canonical
commutation relations. The system-ancilla interactions are
assumed to be given by a beam-splitter unitary

Un = eτ (a†
Sai−a†

i aS ), (10)

where aα = (qα + ipα )/
√

2, α = S, 1, 2, . . . , NA. This is the
bosonic analog of the partial swap (1).

The unitary (10) is Gaussian preserving. We assume that
initially system and ancilla are all in Gaussian states. Hence,
they will remain so throughout. The entire dynamics can thus

be conveniently described in terms of the system covariance
matrix, which is given by

γα,β = 1
2 〈{Rα, Rβ}〉 − 〈Rα〉〈Rβ〉, (11)

where R = (qS, pS, q1, p1, . . . , qNA , pNA ) is a vector of length
2NA + 2. We assume, without loss of generality, that the first
moments 〈Rα〉 are initially zero. Due to the beam-splitter
unitary (10), they then remain so throughout.

Initially, since system and ancilla are uncorrelated, the
global state will be of the form (e.g., for NA = 5)

γ 0
SA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ 0
S 0 0 0 0 0

0 γA1 ζ1,2 ζ1,3 ζ1,4 ζ1,5

0 ζ T
1,2 γA2 ζ2,3 ζ2,4 ζ2,5

0 ζ T
1,3 ζ T

2,3 γA3 ζ3,4 ζ3,5

0 ζ T
1,4 ζ T

2,4 ζ T
3,4 γA4 ζ4,5

0 ζ T
1,5 ζ T

2,5 ζ T
3,5 ζ T

4,5 γA5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where all elements are 2 × 2 blocks. For instance,

γ 0
S =

( 〈
q2

S

〉
1
2 〈{qS, pS}〉

1
2 〈{qS, pS}〉

〈
p2

S

〉
)

(13)

is the initial covariance matrix of the system. Similarly γAi

in Eq. (12) are the reduced covariance matrices of each an-
cilla, which are all equal, γAi = γA. Moreover, ζi, j represent
the correlations between i and j. Since the states we choose
are always translationally invariant, they have the convenient
property that ζ j, j+d = ζd ; i.e., they only depend on the dis-
tance between the ancillas. The initial ancilla state will thus
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be of the form

γA =

⎛
⎜⎜⎜⎜⎜⎝

γA ζ1 ζ2 ζ3 ζ4

ζ T
1 γA ζ1 ζ2 ζ3

ζ T
2 ζ T

1 γA ζ1 ζ2

ζ T
3 ζ T

2 ζ T
1 γA ζ1

ζ T
4 ζ T

3 ζ T
3 ζ T

1 γA

⎞
⎟⎟⎟⎟⎟⎠, (14)

which is a Toeplitz matrix.
In terms of the covariance matrix, the unitary (10) is now

replaced by multiplication by a symplectic matrix Sn, so that
the global dynamics becomes

γ n
SA = Sn γ n−1

SA ST
n . (15)

The matrix Sn can be conveniently parametrized in 2 × 2
blocks, as (e.g., for NA = 5)

S1 =

⎛
⎜⎜⎜⎜⎜⎝

c s 0 0 0 0
−s c 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠,

§2 =

⎛
⎜⎜⎜⎜⎜⎝

c 0 s 0 0 0
0 1 0 0 0 0

−s 0 c 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠, §3 = · · · ,

where c = cos(τ ) and s = sin(τ ). Here all entries are 2 × 2
blocks, so c actually means cI2, etc. (where I2 is the 2 × 2
identity matrix). For convenience, we will henceforth assume
that ζ T

i, j = ζi, j . If this is not the case, one may simply replace
ζi, j → (ζi, j + ζ T

i, j )/2 in all formulas below. This is possible
because of the choice of phase in (10), which treats all entries
within each 2 × 2 block on an equal footing.

A. General expression for the dynamics

The convenient thing about the Gaussian model is that we
can write down an explicit formula for the system covariance
matrix at any time n. This can simply be done by inspection:
we write down γ n

S for the first few n and construct the final
result by induction. To a great extent, this is possible due to
the very simple nature of the beam-splitter interaction (10).
Another advantage is that this can be done without having to
specify the actual initial ancilla state, which will be discussed
in Sec. IV C.

In any case, the system covariance matrix at time n, assum-
ing generic elements γAi and ζi, j , is

γ n
S = c2nγ 0

S +
n∑

j=1

c2(n− j)s2γAj + 2s2
n−1∑
j=1

n∑
�> j

c2n− j−�ζ j,�.

(16)
Specializing to γAi = γA and ζ j,� = ζ|i−�| allows us to carry
the first summation, simplifying the result to

γ n
S = c2nγ 0

S + (1 − c2n)γA + 2s2
n−1∑
m=1

c2m
m∑

d=1

c−dζd . (17)

Recall that ζ1 is the nearest-neighbor correlation, ζ2 is the
second-nearest neighbor, and so on, as in Eq. (14). If the
ancillas are initially uncorrelated then ζd = 0, and γ n

S will be
a mixture of γ 0

S and γA, with weights c2n and 1 − c2n. We
assume that c < 1, so that when n → ∞ we will always have
γ ∗

S → γA. Hence, when correlations are absent the system
always homogenizes.

B. Particular cases

It is insightful to consider some particular choices for the
correlations ζd .

1. Nearest neighbors

First suppose that ζ1 = ζ and ζd = 0 for d > 1. Carrying
out the sums in Eq. (17) results in

γ n
S = c2nγ 0

S + (1 − c2n)γA + 2c(1 − c2(n−1))ζ . (18)

Taking the limit n → ∞ then leads to

γ ∗
S = γA + 2cζ . (19)

This beautifully illustrates how homogenization is broken by
the correlation matrix ζ . By changing the entries of ζ , one may
independently steer the entries of γ ∗

S away from those of γA.
This result assumes c �= 0 and 1. Otherwise, Eq. (18) would
never actually reach a limiting value. Interestingly, though,
the second term in (18) is proportional to c, meaning that
the effects of the correlations will only be absent if τ = π/2,
which corresponds to a full swap. This happens because the
full swap forces the state of the system to always be in the
local reduced state of the ancillas, which are all equal by
hypothesis. In contrast, the effects of correlations are maximal
in the case of extremely weak interactions c → 1.

2. Algebraically decaying correlations

As another interesting example, suppose that the correla-
tions decay with the distance as

ζd = K1−dζ , d = 1, 2, . . . , (20)

for some matrix ζ and a constant K > 1. Longer-ranged
interactions are represented by K � 1, while short-range in-
teractions occur for K � 1. Carrying out the sums in Eq. (17)
results in

γ n
S = c2nγ 0

S + (1 − c2n)γA + 2Ks2

cK − 1

×
(

c2 − c2n

s2
− cn−1K1−n − 1

1 − c−1K

)
ζ . (21)

In the limit n → ∞ one finds the steady state

γ ss
Sexp

= γA + 2cK

K − c
ζ . (22)

This reduces to Eq. (19) when K → ∞. Since K > 1, the
second term in (22) never diverges. But if one has K � 1
(long-ranged correlations), it may become very large. The
prefactor 2cK/(K − c) is shown in Fig. 5 as a function of
τ . It is always zero when τ = π/2, and can be negative if
τ ∈ [π/2, 3π/2].
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FIG. 5. 2cK/K − c vs τ , where c = cos(τ ), for different values
of K > 1. Smaller K represent longer-ranged interactions, for which
the influence of correlations in the steady state becomes more signif-
icant [Eq. (22)].

In the two examples above, we only specify the dependence
of the correlations with the distance d between ancillas. How-
ever, ζd is still a 2 × 2 matrix and we still have the flexibility
of specifying its different entries. This opens up interesting
possibilities. For instance, we may have a situation where γA

is a thermal state of the form

γA = (NA + 1/2)I2, (23)

where NA is a Bose-Einstein occupation. In the absence of
correlations the system would thus reach a thermal state. But
when correlations are present, the steady state (19) may in-
stead be a squeezed state. This is an example in which the
correlations between the ancillas actually produce squeezing
in the system.

C. Gaussian graph states for the ancillas

Lastly, we turn to the question of how one may construct
translationally invariant ancilla Gaussian initial states of the
form (14). One possibility is through the two-step collision
model studied in Ref. [48]. Instead, here we focus on the case
of Hamiltonian graph states, as we did for qubits in Sec. III.
We have found it convenient to use the approach put forth in
Ref. [58], where the interaction Hamiltonian is taken to be a
two-mode squeezing interaction

Hi, j = i

2
(a†

i a†
j − aia j ). (24)

The effect of the operator V = e−ik
∑

i, j Gi, j Hi, j , entering
Eq. (5), is to transform the quadrature operators according to

V†qiV =
∑

j

Mi jq j, V† piV =
∑

j

(M−1)i j p j, (25)

where

M = eGk (26)

is the matrix exponential of the adjacency matrix G.
One may now directly use this to compute the ancilla

covariance matrix γA. We choose the state |φ〉 in (5) as the vac-
uum. As a consequence, |�A〉 will be a multimode squeezed

state. The expectation values over |�A〉 yield

1
2 〈{qi, q j}〉 = 1

2 (MMT)i j, (27)

1
2 〈{pi, p j}〉 = 1

2 [(MTM )−1]i j, (28)

〈qi p j〉 = 0. (29)

This allows us to construct γA for any graph state, irrespective
of whether or not it is cyclic. The reduced ancilla covariance
matrices will be of the form

γAi = 1

2

(
(MMT)ii 0

0 [(MTM )−1]ii

)
, (30)

while the correlations will be

ζi, j = 1

2

(
(MMT)i j 0

0 [(MTM )−1]i j

)
. (31)

Thus, to construct the covariance matrix, all we need to
know is the matrix exponential of the graph adjacency matrix
M = eGk .

The object eGk also appears in studies of complex net-
works. In Ref. [59], for instance, it was shown that the
diagonal entries Mii are a measure of the centrality of node
i, that is, of how important this node is when serving as a
hub for other connecting nodes. Similarly, Mi, j with j �= i is
a measure of communicability between the two nodes. These
two interpretations help to shed light on the interpretations
of Eqs. (30) and (31). For instance, the local variances (30),
which reflect the local uncertainty about each quadrature, are
affected by both the graph centrality and the communicability.

Next we specialize this to cyclic graphs of the form (6).
This provides yet another advantage to Gaussian states, since
cyclic matrices can be diagonalized analytically as

G = O�O†, (32)

where the eigenvector matrix is given by the discrete Fourier
transform

On,m = ei2πnm/NA

√
NA

, n, m = 0, . . . , NA − 1 (33)

and the eigenvalue matrix �n,m = δn,mλm has

λm = 2
NA/2∑
�=1

c� cos(2π�m/NA), (34)

where we assumed NA was even for simplicity. The eigenval-
ues depend on the choice of coefficients ci in Eq. (6), but the
eigenvectors do not.

Using these results one readily finds that

Mj� = 1

NA

NA−1∑
m=0

ei2π ( j−�)m/NA+kλm . (35)

Plugging this in Eqs. (27) and (28) gives us the reduced an-
cilla covariance matrices γAi ≡ γA, as well as the correlations
ζ j, j+d ≡ ζd . First,

γA = 1

2NA

(∑NA−1
m=0 e2kλm 0

0
∑NA−1

m=0 e−2kλm

)
. (36)
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As can be seen, these are squeezed thermal states, the proper-
ties of which are determined by the eigenvalues λm [and hence
the coefficients ci in (6)].

Next, the correlation matrices have the form

ζd =
(

ζ
(q)
d 0
0 ζ

(p)
d

)
(37)

where

ζ
(q)
d = 〈q jq j+d〉 = 1

2NA

NA−1∑
m=0

ei2πdm/NA+2kλm , (38)

ζ
(q)
d = 〈p j p j+d〉 = 1

2NA

NA−1∑
m=0

ei2πdm/NA−2kλm . (39)

We now illustrate the physics behind these results with some
simple graphs.

1. Example: Nearest-neighbor graph

We assume c1 = 1 and ci = 0 for i > 1. Then λm =
2 cos(2πm/NA). The sums in Eq. (36) can be computed ex-
actly when NA is large by converting them to integrals

1

NA

NA−1∑
m=0

e±4k cos(2πm/NA ) → 1

π

∫ π

0
dx e±4k cos(x) = I0(4k),

(40)
where I0 is the modified Bessel function of the first kind.
The variances of q and p turn out to be the same, which is
very particular of nearest neighbors. The reduced state is thus
actually a thermal state

γA = I0(4k)

2
I2, (41)

with a Bose-Einstein occupation [Eq. (23)] determined by the
value of k.

The correlations (38) and (39), on the other hand, are plot-
ted in Fig. 6. The figures were computed with NA = 100, but
the results concern only the first few neighbors and are thus
independent of NA, provided it is sufficiently large. As can be
seen, the correlations decay with the distance d . Both have
the same magnitude (again, particular of nearest neighbors),
but the momentum correlations are oscillatory. The situation,
of course, could be inverted by taking the interaction strength
k < 0.

2. Example: Second-, third-, and fourth-nearest neighbors

For comparison, we also analyze what happens if we
choose graphs with second-, third-, and fourth-nearest neigh-
bors. The results are shown in Fig. 7. As can be seen, while the
momentum correlations (green squares) remain of order unity,
the position correlations increase significantly with increasing
number of neighbors.

D. Perturbative treatment and scaling of correlations

Finally, we use the results from the previous section to
address the following question: in the case of weak correla-
tions between the ancillas, is there any universal rule dictating
by which degree the homogenization is broken? To make the
question fair, we must compare γ n

S with the case in which the

FIG. 6. Correlation functions for the initial ancilla state,
Eqs. (38) and (39), for k = 0.2, 0.5, 1.0, 2.0. The position and mo-
mentum correlations actually have the same absolute values, but the
sign of the latter oscillates with d .

ancillas are uncorrelated, but otherwise have the same local
state. From Eq. (17) we therefore see that the amount by which

FIG. 7. Similar to Fig. 6, but varying the number of nearest
neighbors, from 1 to 4, with fixed k = 0.7. Image (a) is the same
as Fig. 6(a).
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homogenization is broken is given by the last term

�γ n
S = 2s2

n−1∑
m=1

c2m
m∑

d=1

c−dζd . (42)

The mismatch is thus linear in ζd .
Let us now consider ancillas prepared in a Hamiltonian

graph state given by Eqs. (30) and (31). We assume that the
overall strength k of the correlations, in Eq. (26), is small and
can thus be treated perturbatively. We can then expand

MMT = I + 2Gk + 2G2k2 + . . . . (43)

The adjacency matrix has zero diagonals. Hence, to leading
order in k, we may approximate the ancilla states as

γAi � [
1
2 + (G2)iik

2]I2, ζi j � Gi jk. (44)

In light of Eq. (42), we thus see that the correlations will
contribute with a term of order k to the breaking of homog-
enization. This scaling is universal and holds for any kind
of graph state. Whether or not it holds for other types of
correlated states (or beyond the continuous variable paradigm)
is an open question, which we leave for future research.

V. DISCUSSIONS

The goal of this paper was to show that correlations among
a system of ancillas can break homogenization. Locally it
is as if the system is interacting with identical ancillas. But
globally, the correlations affect this dynamics and steer the
system away from the homogenized fixed point. We studied
this effect in two toy models. The first is a minimal qubit-qubit
model, which is very similar to the original proposal for ho-
mogenization in Refs. [6,7]. This model has the disadvantage
that all calculations must be done numerically and, due to
the exponential increase in Hilbert-space dimension, we were
only able to reach sizes of about NA = 16 ancillas.

In order to shed further light on the problem, we therefore
switched to continuous-variable Gaussian dynamics. This al-
lows for analytical results which neatly illustrate the nontrivial
effects of correlations. Equations such as (19) or (22), for
instance, clearly show how the fixed point may differ dramat-
ically from the reduced ancilla state γA.

For concreteness, we have assumed that the initial ancilla
state is translationally invariant. This introduces a nice inter-

pretation where the system is interacting with elements which
are locally identical. But, of course, it does not necessarily
have to be this way. Several other types of interesting states
may also be studied. One example would be to random graphs,
so that the local states ρAi may fluctuate. In this case, it is
expected that for partial swaps the system should eventually
homogenize to their arithmetic mean. Notwithstanding, the
overall effects of correlations should remain the same.

Another potentially interesting idea for a future study
would be to analyze how the system affects the correlation
profiles within the ancillas, after a series of collisions. This
could be analyzed, for instance, using the framework put
forth in Ref. [60] for characterizing correlations in many-body
states. Their framework allows one to construct quantifiers,
called weaving, which are specifically designed to under-
stand how correlations change with system size NA: Different
classes of many-body states scale with NA in different ways
(algebraically, logarithmically, etc.). It would be particularly
interesting to understand whether the collisions with the sys-
tem can fundamentally alter the weaving. For qubit models,
this may likely not be very illuminating since only small
sizes can be reached. But for continuous models it should be
possible.

Our formalism could in principle be implemented in cur-
rent state-of-the-art quantum coherent platforms. The main
difficulty is in the construction of the global ancilla state.
Platforms such as trapped ions or nuclear spins could in prin-
ciple be used for experiments with approximately ten ancillas.
Cavity quantum electrodynamics, with suitably prepared an-
cillas, is also a possibility. An experimentally more friendly
approach would be to construct the correlations among the
ancillas “on the go.” For instance, in the graph states just
presented, the correlations generally fall quickly with the
distance. Hence, in principle if one has access to recyclable
ancillas, a suitably chosen periodic set of gates applied before
the collisions could be used to always ensure that each ancilla
is correlated with some of its neighbors.
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