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Multipartite quantum correlations in a two-mode Dicke model
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We analyze multipartite correlations in a generalized Dicke model involving two optical modes interacting
with an ensemble of two-level atoms. In particular, we examine correlations beyond the standard bipartite
entanglement and derive exact results in the thermodynamic limit. The model presents two superradiant phases
involving the spontaneous breaking of either a Z2 or a U(1) symmetry. The latter is characterized by the
emergence of a Goldstone excitation, found to significantly affect the correlation profiles. Focusing on the
correlations between macroscopic subsystems, we analyze both the mutual information and the entanglement
of formation for all possible bipartitions among the optical and matter degrees of freedom. It is found that while
each mode entangles with the atoms, the bipartite entanglement between the modes is zero, and they share
only classical correlations and quantum discord. We also study the monogamy of multipartite entanglement and
show that there exists genuine tripartite entanglement, i.e., quantum correlations that the atoms share with the
two modes but that are not shared with them individually, only in the vicinity of the critical lines. Our results
elucidate the intricate correlation structures underlying superradiant phase transitions in multimode systems.
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I. INTRODUCTION

Collective behavior in the quantum regime is directly as-
sociated with the emergence of complex correlation patterns
among the individual particles [1,2]. Understanding how these
correlations unfold is a crucial task in quantum many-body
physics. For instance, the existence of an area or volume law
for entanglement dictates what are the relevant corners of
Hilbert space [3,4] and is crucial in characterizing the prop-
agation of excitations in quantum chains [5]. An especially
interesting question concerns the behavior of entanglement
close to a quantum phase transition (QPT). Historically, the
first studies of this problem focused on the entanglement
between one particle and the remainder of the system [1], or
between pairs of particles [2,6]. Focus subsequently shifted to
the bipartite entanglement between two macroscopic parts of
the system, which shows nontrivial scaling with subsystem
size in the vicinity of the critical point [7–12]. These pio-
neering papers led to a surge of interest in entanglement in
many-particle systems, especially in archetypal models such
as one-dimensional spin chains (for a review, see Ref. [13]).
Experiments were also developed to directly assess bipartite
correlations, using, for instance, interferometric techniques in
ultracold atoms [14] or tensor network tomography [15] in
trapped ions.

A comprehensive understanding of the role of informa-
tion in collective phenomena, however, requires one to move
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beyond the bipartite scenario by considering measures of
genuine multipartite correlations [16,17]. These quantities al-
low one to distinguish between fundamentally different types
of correlation structures. For example, W and Greenberger-
Horne-Zeilinger (GHZ) states of three qubits share the same
type of bipartite entanglement, but entirely differ in their
tripartite correlations, a property which can even be used
to characterize two distinct classes of quantum states [18].
The situation becomes even more complex in genuine many-
particle systems like spin chains [19–22], due to the multiple
different ways that subsystems can be correlated. The full
hierarchy of multipartite correlations was recently studied in
the Lipkin-Meshkov-Glick spin model [23], as well as in
the dynamics of superradiant light emission [24]. However,
most previous studies of multipartite entanglement in critical
phenomena have focused on measures of the total entangle-
ment shared among all constituent parts, e.g., individual spins
[25–31]. It is therefore natural to also ask how multipartite
entanglement near a QPT is shared between macroscopic or
collective degrees of freedom.

An analytically tractable yet experimentally relevant set-
ting in which to address this question is the superradiant
phase transition induced by collective light-matter interac-
tions, as described by the Dicke model [32–34]. Here, an
optical field coupled to an atomic ensemble becomes occupied
by a diverging number of photons when the coupling strength
exceeds a critical value [35,36]. Since the observation of this
phase transition in a series of seminal experiments [37,38],
variants of the critical Dicke model involving multiple opti-
cal modes have been proposed [39–42] and experimentally
studied [43,44]. This introduces rich new phenomenology in
which QPTs arise from the interactions between a handful
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of collective modes instead of many small subsystems as in
spin chains, for example. The addition of extra modes can
also enlarge the group of spontaneously broken symmetries
[39,42], leading to characteristic Goldstone and Higgs excita-
tions [40,44]. However, while the standard Dicke model has
been shown to exhibit diverging bipartite atom-field entangle-
ment at the critical point [31,45–47], little is known about the
behavior of correlations in the multimode case.

To bridge this gap, we consider in this work a general-
ized Dicke model involving two optical modes interacting
simultaneously with a large number of two-level atoms. This
model was introduced in Ref. [39] and motivated the exper-
iments in Refs. [43,44]. It boasts a rich ground-state phase
diagram involving both first- and second-order superradiant
QPTs, as well as a Goldstone mode that emerges along a
critical line where a continuous rotation symmetry is broken,
as we discuss in Sec. II. Importantly, the system comprises
three physically distinguished and effectively macroscopic
subsystems: the atomic ensemble and the two optical modes
(each one being able to support an arbitrarily large number
of photons). Using tools from Gaussian continuous-variable
quantum information theory, in Sec. III we provide a thorough
assessment of multipartite correlations within all possible par-
titions of the system, among these three collective degrees
of freedom. We find that while the optical modes entangle
with the atoms, bipartite correlations between the two modes
are purely classical. Moreover, we find genuine tripartite en-
tanglement emerging in the critical region. Interestingly, the
critical behavior of bipartite entanglement depends on both
the order of the transition and the partition considered, while
the genuine tripartite entanglement is insensitive to the nature
of the critical point. We discuss our results and conclude in
Sec. IV. Units where h̄ = 1 are used throughout.

II. TWO-MODE DICKE MODEL WITH ENLARGED
SYMMETRY

We consider a system comprising two bosonic modes, with
annihilation operators ax and ay, and respective frequencies ωx

and ωy. Each mode interacts with an ensemble of N two-level
atoms of frequency ω0, which are described by collective spin
operators Jx, Jy, and Jz, of total spin j = N/2 [Fig. 1(a)]. The
Hamiltonian is taken to be of the form

H = ωxa†
xax + ωya†

yay + ω0Jz

+ λx√
2 j

(a†
x + ax )Jx + λy√

2 j
(a†

y + ay)Jy, (1)

where λx, λy � 0 are the coupling strengths. Other types of
couplings are discussed in Appendix A. In the thermody-
namic limit, j → ∞, this model undergoes a superradiant
QPT when max(λ2

x/ωx, λ
2
y/ωy) > ω0, which represents the

spontaneous breaking of a Z2. However, if λx = λy and ωx =
ωy, this is enlarged to a continuous U(1) symmetry, associ-
ated with the unitary eiφLz . Here, φ is an arbitrary parameter
and Lz = Jz + i(a†

yax − a†
xay) = Jz + qx py − qy px can be in-

terpreted as the total angular momentum (spin + orbital),
with qi = (ai + a†

i )/
√

2 and pi = i(a†
i − ai )/

√
2 being the

position and momentum quadratures for modes i = x and y.
The breaking of this U(1) symmetry causes the appearance of

FIG. 1. (a) Schematics of the two-mode Dicke model in Eq. (1).
(b), (c), (d) Energy gaps ν1, ν2, and ν3, respectively, of excitation
modes, showing the emergence of a Goldstone (gapless) mode,
where ν3 = 0, along the line λx = λy > λc. The minimum for panel
(b) is ν1 = 1 and for panel (c) is ν2 ≈ 0.6. Note that in panel (b) the
color scale covers a larger range than in panels (c) and (d).

a gapless Goldstone mode, i.e., a mode with zero frequency
[37,38,43,44,48].

The Hamiltonian (1) can be diagonalized in the thermo-
dynamic limit using a variety of methods [32–34,39,49]. Here
we use an approach similar to that of Ref. [50], which we have
found particularly convenient. It consists of first determining
a classical ground state and then introducing the quantum
fluctuations on top of it. In the thermodynamic limit, this
procedure becomes exact.

A. Classical ground state

To determine the classical ground state, we first replace
all operators with c-numbers, ai �→ √

2 j αi and (Jx, Jy, Jz ) �→
j(sin θ cos φ, sin θ sin φ, cos θ ). This is tantamount to assum-
ing that the ground state (GS) is a product of bosonic coherent
states for the quadratures [51] and spin coherent states for the
macrospin [52]. Plugging this in Eq. (1) yields the classical
energy landscape H → jE , with

E = ωx

2
α2

x + ωy

2
α2

y + ω0 cos θ

+ (λxαx cos φ + λyαy sin φ) sin θ. (2)

We now minimize this with respect to αx, αy, θ , and φ.
Motivated by the appearance of an enlarged symmetry group,
we henceforth assume ωx = ωy = ω, which leads to a QPT
when max(λx, λy) crosses the critical point λc = √

ωω0. In the
calculations that follow, we assume λx > λy; the case when
λy > λx is treated similarly, by replacing x ↔ y. Moreover,
the case λx → λy is always handled as a limit.

Under these assumptions, the minima always occur at αy =
φ = 0. When λx � λc, the minimum is found at

θ = π, αx = 0. (3)
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This corresponds to the normal phase, with ground-state
energy EGS = −ω0. If λx > λc, this solution becomes a max-
imum and a new minimum becomes available at

cos θ = −λ2
c/λ

2
x, αx = −(λx/ω)

(
1 − λ4

c

/
λ4

x

)1/2
. (4)

This represents the superradiant phase, with ground-state en-
ergy EGS = −(λ4

x + λ4
c )/(2λ2

xω).
The order of the QPTs separating these different phases

can be inferred from the behavior of the ground-state energy
across the critical point. The normal-superradiant transition is
of second order because ∂2EGS/∂λ2

x is discontinuous across
the critical line λx = λc, while ∂EGS/∂λx is continuous. Con-
versely, the transition between the two superradiant phases is
of first order because ∂EGS/∂λx is discontinuous across the
Goldstone line λx = λy > λc [39].

B. Quantum fluctuations

Next, we introduce quantum fluctuations. To do that, we
first change frames to the classical GS by applying a unitary,

H̃ = U †HU, U = e−iφJz e−iθJy Dx(αx )Dy(αy), (5)

using the same values of αx, αy, θ , and φ obtained above.

Here Di(α) = e
√

jα(a†
i −ai ) are bosonic displacement operators.

In this new frame, we then perform a Holstein-Primakoff ex-
pansion [53] of the spin operators, by introducing Jx = √

jQ,
Jy = √

jP, and Jz = j − (Q2 + P2)/2, where Q and P are
canonical quadratures satisfying [Q, P] = i. This allows us to
write H̃ as a series expansion in powers of 1/ j:

H̃ = jEGS + H̃2 + O( j−1/2), (6)

where H̃2 is a j-independent Hamiltonian which is quadratic
in the relevant operators. The contribution of order j1/2 van-
ishes because of our choice of frame (i.e., our choice of αx,
αy, θ , and φ). Moreover, all others terms are at least of order
j−1/2 and thus also vanishing in the thermodynamic limit.

The actual form of H̃2 depends on which phase the system
is in. In terms of the mode quadratures qi = (ai + a†

i )/
√

2 and
pi = i(a†

i − ai )/
√

2, one finds that in the normal phase

H̃np
2 = ω

2

∑
i=x,y

(
q2

i + p2
i

) + λ2
c

2ω
(Q2 + P2) + λxQqx + λyPqy,

(7)
while in the superradiant phase

H̃sp
2 = ω

2

∑
i=x,y

(
q2

i + p2
i

) + λ2
x

2ω
(Q2 + P2) − λ2

c

λx
Qqx + λyPqy.

(8)
Both Hamiltonians are of the form

H̃2 = 1
2 rTKr, (9)

where r = (qx, px, qy, py, Q, P)T and K is a symmetric,
positive-definite 6 × 6 matrix. The explicit forms of K for
the Hamiltonians (7) and (8) are shown in Appendix B in
full generality. According to Williamson’s theorem [54], it is
always possible to find a symplectic matrix M such that

K = MV MT, V = diag(ν1, ν1, ν2, ν2, ν3, ν3), (10)

where νi � 0 are the symplectic eigenvalues. A symplectic
matrix is one which satisfies M
MT = 
, where


 =
3⊕

n=1

(
0 1

−1 0

)
(11)

is the symplectic form. In our case, V and M must, in gen-
eral, be computed numerically, which can be done using the
algorithm in Ref. [55].

The transformation to a new set of quadratures r′ = MTr =
(q′

1, p′
1, q′

2, p′
2, q′

3, p′
3)T (the “normal modes”) finally puts H̃

in the diagonal form

H̃ = jEGS + 1

2

3∑
i=1

νi
(
q′2

i + p′2
i

) + O( j−1/2). (12)

This establishes the nature of the quantum excitations that
exist on top of the classical GS. As can be seen, the excitations
are bosonic, with equally spaced levels of gaps νi. The depen-
dence of the gaps ν1, ν2, and ν3 are shown in Fig. 1. Two of
these modes, labeled ν1 and ν2, are always gapped [Figs. 1(b)
and (c)]. Conversely, the third mode ν3 becomes gapless along
the line λx = λy � λc [Fig. 1(d)]. This therefore represents
the Goldstone mode. Since r′ is a linear combination of the
original modes, the Goldstone mode is a collective excitation
of the coupled light-matter system.

C. Quantum ground state

To finish, we write down the full ground state, including
the quantum fluctuations. Let |0〉 be the state annihilated by
the lowering operators associated with the original quadra-
tures r. The ground-state of H̃ will be instead the vacuum
|0′〉 of the normal modes r′. The two are related via |0′〉 =
exp( i

2 rTGr)|0〉, where G is a matrix associated with the eigen-
vectors M through M = e
G [54]. The matrix G also relates r
and r′ according to

e
i
2 rTGrre− i

2 rTGr = e
Gr = MTr = r′. (13)

Finally, we must also include the unitary U in Eq. (5). Note
that, within a Holstein-Primakoff picture, the spin rotation
e−iθJy also becomes a bosonic displacement operator. The
ground state is therefore

|ψGS〉 = U exp
( i

2
rTGr

)
|0〉, (14)

The GS is thus a displaced squeezed state in the six quadra-
tures r. The displacement is associated with the classical
ground state and is determined by the classical values αx,
αy, θ , and φ. The squeezing, on the other hand, is associated
with the symplectic matrix M that diagonalizes K . This in-
cludes both single-mode squeezing, as well as two-mode (and
multimode) squeezing among the quadratures. Hence, M is
the matrix responsible for quantifying the correlations among
different subsystems.

At the Goldstone line λx = λy > λc, an arbitrariness
emerges in the choice of ground state, associated with the U(1)
symmetry. As discussed in Sec. II A, we avoid this by always
taking λx 
= λy and interpreting the Goldstone line only as
the limit λx → λy. This is important because the correlations
usually diverge on this line. Hence, in order to be able to
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meaningfully treat them, we must always consider that we are
not exactly on the critical line, but in its vicinity.

In the thermodynamic limit, the Hamiltonian (6) becomes
quadratic. Hence, the ground state (14) is Gaussian and thus
fully characterized by the covariance matrix (CM) Cxyj with
entries

(Cxyj)k� = 1
2 〈ψGS|{rk − 〈rk〉r� − 〈r�〉}|ψGS〉, (15)

where { , } is the anticommutator. Using Eq. (13) one may
conveniently rewrite this as

Cxyj = 1
2 (MMT )−1. (16)

Reduced states for any part of the system can be readily
computed from this by simply deleting the entries of Cxyj
corresponding to the remainder. This includes the bipartite
states Cxy, Cxj, and Cyj, as well as the single-party states Cx,
Cy, and Cj.

We remark that at the broken symmetry phase, where the
ground state is degenerate, one could also use Eq. (15) to
construct the covariance matrix, for either superpositions or
incoherent mixtures of ground states. However, mixtures of
Gaussian states are not Gaussian. Furthermore, away from the
thermodynamic limit, at finite j, the true ground state is also
not expected to be Gaussian. Either way, the underlying state
will no longer be fully characterized solely by Cxyj. Our results
for the correlation profiles presented below, therefore, strictly
hold only in the thermodynamic limit, as they often rely on
tools specific for Gaussian states [56].

III. BEHAVIOR OF CORRELATIONS AROUND THE
CRITICAL POINT

We now proceed to analyze the correlation profiles in the
ground state (14). In terms of collective degrees of freedom,
our system is effectively tripartite and we refer to each part
as x, y, and j, respectively. The standard approach consists of
analyzing correlations between the bipartitions (xy, j), (xj, y),
and (yj, x). The latter becomes equivalent to (xj, y) under
the exchange λx → λy, so there are effectively only two in-
dependent bipartitions to analyze. Since the global state of
xyj is pure, the standard measure of correlation is simply the
entanglement entropy, i.e., the entropy of the reduced states.

These correlations, however, fail to capture how the indi-
vidual parties are correlated with each other. Thus, in addition,
we also study the correlations between (x, y), (x, j), and (y, j)
[which, again, is equivalent to (x, j)]. The reduced state of
any two parties, however, such as ρxy = trj|ψGS〉〈ψGS|, is
mixed. Hence, the entropy is no longer a faithful quantifier
of correlations. This also introduces a fundamental distinction
between classical correlations, quantum discord, and quantum
entanglement. Moreover, a conceptual difficulty arises, in that
computing the actual entanglement (e.g., through the relative
entropy of entanglement [18]) becomes extraordinarily diffi-
cult. We address these issues in two ways. First, we study
the mutual information, which captures the net amount of
correlations present (quantum and classical). And second, we
compare this with the entanglement of formation [57], which
provides an upper bound on the entanglement present in the
system.

A. Mutual information

The net correlations (classical and quantum) between two
modes A and B, with density matrix ρAB, can be quantified by
the mutual information,

I(A:B) = S(ρA ) + S(ρB) − S(ρAB), (17)

where S(ρ) = −trρ ln ρ is the von Neumann entropy, and
ρA = trBρAB and ρB = trAρAB are the reduced states of A and
B. If ρAB is pure, Schmidt’s theorem allows this to be reduced
to I(A:B) = 2S(ρA ) = 2S(ρB). This will be the case for the
partitions (xy, j) and (xj, y):

I(xy : j) = 2S(j) = 2S(xy), (18)

I(xj :y) = 2S(y) = 2S(xj), (19)

where S(j) = S(ρj) and so on. The mutual information (MI)
in these two cases is thus twice the entanglement entropy.
Conversely, for I(x :y) and I(x : j) one must use the full
definition in Eq. (17). Since the global state is pure, however,
S(xy) = S(j) and S(xj) = S(y). Hence, one can partially sim-
plify the expressions to

I(x :y) = S(x) + S(y) − S(j), (20)

I(x : j) = S(x) + S(j) − S(y). (21)

The fact that the global state is pure also allows us to relate
Eqs. (18) and (19) with Eqs. (20) and (21):

I(xy : j) = I(x : j) + I(y : j), (22)

I(xj :y) = I(x :y) + I(y : j). (23)

So far, we have been assuming that S(ρ) refers to
the von Neumann entropy. However, when dealing with
information-theoretic quantifiers of Gaussian variables, it is
more convenient to use the Rényi-2 entropy

S2(ρ) = − ln trρ2. (24)

There are several reasons for this. First, the Rényi entropy is
directly associated with the purity trρ2 and thus has a clear
physical interpretation. For instance, in the ultracold atom ex-
periment of Ref. [14], the correlations were studied using the
Rényi-2 entropy. Second, for practically all Gaussian states,
the two entropies are virtually indistinguishable. Third, S2

satisfies the strong subadditivity inequality for Gaussian states
[58], which means it perfectly qualifies as an information-
theoretic measure. Finally, and most importantly, using the
Rényi-2 entropy one can find a closed formula for the entan-
glement of formation, as is discussed in Sec. III B. If the von
Neumann entropy were used instead, it would require a highly
nontrivial minimization. The choice of Rényi-2 entropy there-
fore allows us to directly compare the mutual information with
the entanglement of formation. For these reasons, throughout
this paper S(ρ) always refer to the Rényi-2 entropy, and the
subscript 2 is henceforth omitted. Given a Gaussian state with
CM C, the Rényi-2 entropy is given simply by [58]

S(C) = 1
2 ln det 2C. (25)

In Fig. 2 we present plots of I(xy : j) and I(xj :y) [Eqs. (18)
and (19)] in the (λx, λy) plane. The curves at the bottom
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FIG. 2. Mutual information for bipartitions of the global system:
(a) I(xy : j) and (b) I(xj :y) in the (λx, λy ) plane. The plots at the
bottom refer to slices at λy/λc = 0.5 (blue) and 1.5 (green). The other
bipartitionI(yj :x) is equivalent toI(xj :y), but mirrored with respect
to the line λx = λy. Since the global state is pure, these quantities
also represent twice the entanglement entropy between the parties,
Eqs. (18) and (19).

correspond to slices at λy/λc = 0.5 and λy/λc = 1.5. The re-
maining partition I(yj :x) is identical to I(xj :y), but mirrored
with respect to the line λx = λy. In Fig. 2(a) we see that
I(xy : j) diverges at all critical lines. Moreover, it vanishes
either when λx,y → 0 or when λx → ∞ and λy → ∞. How-
ever, along the Goldstone line λx = λy, it remains critical for
arbitrarily strong interactions. Conversely,I(xj :y) in Fig. 2(b)
displays a much richer behavior: it has a kink if one crosses the
critical line horizontally, a divergence if it is crossed vertically,
and a discontinuity when the Goldstone line is crossed. The
behavior of I(xj :y) therefore signals the order of the transi-
tion: it is discontinuous across the first-order QPT, whereas
its derivative is discontinuous across the second-order QPT,
matching the expected behavior of bipartite entanglement near
a quantum critical point [10]. Note, however, that the same
cannot be said about I(xy : j) in Fig. 2(a). This highlights
some of the subtleties involved in the choice of partitions,
which appear when dealing with models containing only a few
collective modes.

Next we turn to the MI between two of the three parties.
The MI for (x, j) and (x, y) are shown in Figs. 3(a) and 3(b).
We now find that I(x : j) behaves similarly to the plot of
I(xj :y) [Fig. 2(b)], but with λx ↔ λy. Conversely, I(x :y) is
generally very small, being non-negligible only in the vicinity
of the point λx, λy ∼ λc. Both results are a consequence of the
fact that x and y do not interact directly, but instead interact
individually with j. This causes their individual correlations
to be small, and thus I(x : j) ∼ I(x : yj) [Eq. (23)], which is
the mirror image of I(xj :y) with respect to the line λx = λy.
As illustrated by the slices in Figs. 3, I(x : j) diverges as one
crosses the critical line and is either discontinuous or contin-
uous depending on whether the transition is first or second
order, as in Fig. 2(b). Note also that the additive property
in Eq. (22) explains why the total light-matter correlations
I(xy : j) shown in Fig. 2(a) lack any jump discontinuity across
the first-order QPT.

FIG. 3. Mutual information between two parties: (a) I(x : j) and
(b) I(x :y) [Eqs. (21) and (20)]. (c), (d) Entanglement of formation
(26) for the same bipartitions. In the case of (x, y), panel (d), the
entanglement is identically zero. Other details are similar to those of
Fig. 2.

B. Entanglement of formation

Unlike the results in Fig. 2, those in Figs. 3(a) and 3(b)
capture only the net correlations between the two parties,
which is not necessarily entanglement. To further advance our
analysis of the correlation profiles, we therefore now turn to an
investigation of the degree of bipartite entanglement between
the various collective degrees of freedom.

Since the reduced states are mixed, however, a direct cal-
culation of an entanglement measure, e.g., the relative entropy
of entanglement [59], becomes an extremely complicated task
[18] that is, in fact, a long-standing open problem in quantum
information theory [60]. Instead, we focus here on bounding
the entanglement via the entanglement of formation (EoF),
introduced in Ref. [57]. This is a type of convex roof extended
measure, which quantifies the optimal entanglement cost to
create a given state using only pure states together with lo-
cal operations and classical communication. Given a generic
system AB with the joint state ρAB, the EoF is defined as

E(A:B) = inf
pi,|ψi〉

∑
i

piS(|ψi〉〈ψi|), (26)

where the minimization is taken over all possible decompo-
sitions of the system state in the form ρAB = ∑

i pi|ψi〉〈ψi|.
For pure states, E(A:B) = I(A:B)/2 reduces exactly to the
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entanglement entropy. Otherwise, E(A:B) provides an upper
bound on the actual entanglement in the system.

In the case of Gaussian states, the sum can be replaced
by an integral, and one may also use instead the Rényi-2
entropy. Restricting the minimization to Gaussian states yields
a further upper bound for the EoF, which has the advantage
of being expressible solely in terms of the elements of the
covariance matrix. A closed-form expression for the EoF was
developed in Refs. [58,61], and is reported in Appendix C.

In our problem, since the global state is pure, the quantities
in Fig. 2 already represent the EoF for the partitions (xy, j)
and (xj, y). Instead, we therefore focus on E(x : j) and E(x :y),
which are plotted in Figs. 3(c) and 3(d). These can thus be di-
rectly compared with the corresponding mutual informations
I(x : j) and I(x :y). As can be seen, E(x : j) behaves similarly
to the MI I(x : j). In fact, from the slices below it becomes
clear that the scale of E(x : j) is roughly half that of I(x : j).
This therefore shows that for these two parties, most of the
correlations are actually made up from entanglement. In other
words, most of the correlation between the optical modes and
the macrospin j are in the form of entanglement. This, as is
expected, is maximized close to the critical line. At λx ∼ λc

and small λy, the entanglement E(x : j) is large, while E(y : j)
would be small, and vice versa. On the other hand, at the
Goldstone line both E(x : j) and E(y : j) will be large.

Next we turn to the correlations between the two optical
modes, I(x :y) and E(x :y) [Figs. 3(b) and 3(d)]. As can be
seen, while I(x :y) is generally small, E(x :y) is identically
zero. This is again a consequence of the fact that x and y do
not interact directly. Thus, even though j is capable of medi-
ating a finite (albeit small) mutual information between them
[Fig. 3(b)], the entanglement is identically zero. Interestingly,
even though the EoF is only an upper bound, the fact that it is
identically zero suffices to show that the entanglement is itself
identically zero. This leads to the important conclusion that
the ground state (14) is separable. Clearly, this conclusion is
expected to change dramatically if there is any direct interac-
tion between the two modes. Of course, this will depend on
the strength of said interaction. A future investigation of the
effect of such direct interactions would be of great interest,
especially since they are now within reach of experiments as
reported recently in Ref. [62].

It is also worth mentioning that the reduced state of xy
does not contain only classical correlations, but also contains
quantum discord. This is a consequence of the theorem proved
in Ref. [63], which establishes that any two-mode squeezed
state has nonzero discord.

C. Tripartite entanglement

In the present case, the EoF (26) satisfies the monogamy
property [58,64]

E(i;j:k) ≡ E(i:jk) − E(i:j) − E(i:k) � 0, (27)

for any three parties i, j, and k. We note that, while the EoF is
not monogamous in general [65], Eq. (27) does hold for the
Rényi-2 EoF on Gaussian states [58]. Therefore, a nonzero
value of E(i;j:k) means that there exist correlations that i
shares collectively with jk, but which are not shared individ-
ually with j and k. Compare, for instance, with Eqs. (22) and

FIG. 4. Tripartite entanglement (a) E(x;y:j) and (b) E(j;y:x),
computed from Eq. (27). Other details are similar to those in Fig. 2.

(23). The mismatch E(i;j:k) therefore quantifies the genuine
tripartite entanglement, as it describes correlations which re-
side on the global space of three parties, but are not present in
the reduced space of the different pairs. Note that according
to this definition E(i;j:k) is not permutation invariant, but is
defined with respect to the first index i, if the global state
is pure, as in our case, E(i:jk) = I(i:jk)/2 = S(ρi) = S(ρjk ),
which partially simplifies the expression for E(i;j:k).

The tripartite entanglement measures E(x;y:j) and E(j;y:x)
are presented in Fig. 4. We find that both quantities are sig-
nificant only close to the critical lines. Concerning E(j;y:x) in
Fig. 4(b), since E(x:y) = 0 [cf. Fig. 3(d)], we get

E(j;y:x) = S(x) − E(x:j). (28)

Conversely, for E(x;y:j) we get instead

E(x;y:j) = S(xy) − E(x : j) − E(y : j). (29)

However, from the results of Fig. 3(b), we see that x and y
are only weakly correlated. As a rough approximation, we
could thus take S(xy) � S(x) + S(y), although this holds only
outside the critical lines. In this case, Eq. (29) simplifies to

E(x;y:j) � S(x) − E(x : j) + S(y) − E(y : j)

= E(j;y:x) + S(y) − E(y : j). (30)

The quantity on the left-hand side is plotted in Fig. 4(a), while
E(j;y:x) is plotted in Fig. 4(b). This therefore explains why
one quantity is much larger than the other. It is also interesting
to note how both E(x;y:j) and E(j;y:x) are insensitive to the
order of transition, showing the same type of peaked behavior
at either the blue or the green slices in Fig. 4.

IV. DISCUSSION

We have analyzed the correlation profiles of a two-mode
Dicke model undergoing both first- and second-order su-
perradiant QPTs [39]. Particular emphasis was given to the
special Goldstone line, where the discrete Z2 symmetry of
the standard Dicke model is upgraded to a continuous U(1)
symmetry, as studied in recent experiments [43,44]. By focus-
ing our attention on macroscopic degrees of freedom in the
thermodynamic limit—namely, the atomic ensemble and the
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many-photon state of the two optical modes—we simplified
the description of the system into an effective three-body
problem. This allowed us to consider in detail both quan-
tum and classical correlations among all three parties, while
distinguishing between bipartite and genuinely multipartite
correlations.

Our results indicate that each superradiant QPT is primar-
ily driven by diverging bipartite entanglement, which is shared
between the atomic ensemble and the particular optical mode
that becomes macroscopically occupied upon traversing the
critical point. Although this finding is broadly consistent with
the entanglement characteristics of the standard (single-mode)
Dicke QPT [45], it is nonetheless nontrivial because the state
of the two relevant parties is far from pure in our case (the
global tripartite state is pure, but the reduced state of any pair
of subsystems is mixed). The bipartite entanglement shows
the expected singular behavior depending on whether the
QPT is of first or second order [10]. Conversely, the bipartite
entanglement between the two optical modes is strictly zero
across the entire phase diagram, despite their classical bipar-
tite correlations peaking on the critical lines. This feature can
be understood from the absence of any direct interaction be-
tween the two modes. Nevertheless, we found the existence of
genuine multipartite entanglement between all three parties,
which peaks in the critical region. Interestingly, the critical
behavior of the genuine multipartite entanglement between
these physically distinct, macroscopic subsystems does not
discriminate between first- and second-order QPTs, in con-
trast to the critical entanglement shared among all particles of
a homogeneous system [25].

To obtain these results we have derived full analytical so-
lutions for the various information-theoretic quantities, which
become exact in the thermodynamic limit. These solutions
are expressed in terms of the ground-state covariance matrix,
which can be experimentally accessed by measuring the corre-
sponding mode quadratures and variances, e.g., by heterodyne
detection [66]. The use of Gaussian tools for characterizing
the correlation profiles was crucial to obtain our results, es-
pecially for entanglement. For non-Gaussian states, such as
mixtures of Gaussian states or the ground state at finite system
size, a similar analysis would be considerably more difficult.
Nevertheless, our methods can be applied to several other
systems in which superradiant phase transitions of both first
and second order have been discovered [67–76]. Conversely,
the correlation profiles in models for which the state is not
Gaussian can, in principle, be measured using, for example,
the interferometric methods used in Ref. [14] or a many-body
entanglement witness, such as that used in Ref. [77].

Finally, and quite interestingly, our methods are directly
applicable to open quantum systems. In this case, quantum
fluctuations compete with dissipation to produce novel phases
[78–81]. The impact of the open dynamics on the critical prop-
erties can be highly nontrivial, with effects such as structured
noise spectra playing an important role [79]. Concerning the
mutual information, one would intuitively expect that dissi-
pation would generally weaken it, although we cannot rule
out scenarios where it may be enhanced. The behavior of the
entanglement, on the other hand, is more unpredictable. Due
to the minimization appearing in Eq. (26), the entanglement
can suddenly change from nonzero to identically zero. We

thus cannot preclude the possibility that the entanglement
profile in the (λx, λy) plane would be dramatically altered
by dissipation. For these reasons, a detailed analysis of our
model in the presence of dissipation will be presented in future
work.
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APPENDIX A: MORE GENERAL INTERACTIONS

A more general Hamiltonian than Eq. (1) is

H = ωxa†
xax + ωya†

yay + ω0Jz + 1√
2 j

qT�J, (A1)

where the matrix � couples the vector operators q = (qx, qy)
and J = (Jx, Jy ) and has the form

� =
(

�xx �xy

�yx �yy

)
. (A2)

Note that in general � does not have to be Hermitian. The
Hamiltonian (A1) can be connected to that in Eq. (1) by
introducing the singular value decomposition of �,

� = UλV †, (A3)

where λ = diag(λx, λy) are the non-negative singular values,
and U and V are unitary matrices. We now define the rotated
set of operators q̃ = U †q, p̃ = U † p and J̃ = V †J, J̃z = Jz,
which transforms Eq. (A1) to a form exactly like (1), with new
couplings λx and λy now given by the singular values [note
also that this rotation does not affect the first line of Eq. (1)].

This means that as far as the critical properties are con-
cerned, the two Hamiltonians are therefore equivalent. In fact,
when working with the general form (A1), one may verify that
all critical properties can be cast in terms of the matrix

R = �T
−1� =
(

rxx rxy

rxy ryy

)
, (A4)

where 
 = Diag(ωx, ωy). Note that R is symmetric and posi-
tive semidefinite by construction. For example, the minimum
of the classical energy associated with Eq. (A1) occurs when

tan(2φ) = 2rxy

rxx − ryy
. (A5)

And the angle θ is given by cos θ = −ω0/r, where r is the
largest eigenvalue of R. Finally, the coherent-state variables
are given by (αx, αy) = −
−1��(1 − ω2

0/r2)1/2, where � =
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(cos φ, sin φ). This superradiant phase will only exist pro-
vided r > ω0, which determines the critical line of the model.
If this is not the case, the only solution will be the nor-
mal phase θ = 0. For the case where � is diagonal, the
matrix R reduces to R = diag(λ2

x/ωx, λ
2
y/ωy). Hence, in this

case the critical line becomes r = max(λ2
x/ωx, λ

2
y/ωy) > ω0,

which is the result stated below Eq. (1). Despite this con-
nection between Eqs. (A1) and (1), it is not possible to
make analogous predictions for the correlation profiles, since
they depend sensitively on the partitions being used; that is,
on which combinations of modes are the correlations being
analyzed?

APPENDIX B: SYMPLECTIC DIAGONALIZATION

The Hamiltonians (7) and (8), are quadratic and can thus be written in the form (9), with

Knp =

⎛
⎜⎜⎜⎜⎜⎝

ωx 0 0 0 λx 0
0 ωx 0 0 0 0
0 0 ωy 0 0 λy

0 0 0 ωy 0 0
λx 0 0 0 ω0 0
0 0 λy 0 0 ω0

⎞
⎟⎟⎟⎟⎟⎠

(B1)

and

Kspx =

⎛
⎜⎜⎜⎜⎜⎝

ωx 0 0 0 −ω0ωx/λx 0
0 ωx 0 0 0 0
0 0 ωy 0 0 λy

0 0 0 ωy 0 0
−ω0ωx/λx 0 0 0 λ2

x/ωx 0
0 0 λy 0 0 λ2

x/ωx

⎞
⎟⎟⎟⎟⎟⎠

. (B2)

As used throughout the main text, the latter refers to the case λx
√

ωy > λy
√

ωx. The case λy
√

ωx > λx
√

ωy can be obtained by
simply reversing the roles of x and y. The corresponding matrix K would thus become

Kspy =

⎛
⎜⎜⎜⎜⎜⎜⎝

ωx 0 0 0 0 λx

0 ωx 0 0 0 0
0 0 ωy 0 ω0ωy/λy 0
0 0 0 ωy 0 0
0 0 ω0ωy/λy 0 λ2

y/ωy 0
λx 0 0 0 0 λ2

y/ωy

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B3)

These matrices are the basis for computing the symplectic eigenvalues and eigenvectors, V and M, in Eq. (10). As mentioned in
the main text, this can be done using the algorithm in Ref. [55].

APPENDIX C: RÉNYI-2 ENTANGLEMENT OF FORMATION

The minimization of the Rényi-2 entanglement of formation, Eq. (26), when restricted Gaussian pure states, can be written in
the form [61]

E(A:B) = inf
{�AB : 0 � �AB � CAB,

det(2�AB) = 1}

1

2
ln(det 2�A ). (C1)

Here CAB is the CM of the joint system AB, and the minimization is over the set of pure Gaussian states det(2�AB) = 1. The
function being minimized, 1

2 ln det(2�A ), is thus nothing but the Rényi-2 entropy of the reduced state �A. When CAB is pure, this
reduces to the standard entanglement entropy

E(A:B) = 1
2 ln det 2CA = 1

2 ln det 2CB. (C2)

The minimization in Eq. (C1) can be performed analytically.
To accomplish this it is convenient, however, to first put the CM in standard form, via local unitaries. Since we are interested

in the entanglement involving two or three modes, we discuss here the algorithm for putting a generic pure three-mode CM in
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standard form, following Ref. [61]. Such a standard form CM has the form

2C =

⎛
⎜⎜⎜⎜⎜⎝

a1 0 c+
3 0 c+

2 0
0 a1 0 c−

3 0 c−
2

c+
3 0 a2 0 c+

1 0
0 c−

3 0 a2 0 c−
1

c+
2 0 c+

1 0 a3 0
0 c−

2 0 c−
1 0 a3

⎞
⎟⎟⎟⎟⎟⎠

, (C3)

where the factor of 2 is placed in order to match with the notation of Ref. [61]. Moreover, since the state is pure, the coefficients
c±

i are related to the ai according to

4
√

a jakc±
i =

√
(ai − 1)2 − (a j − ak )2

√
(ai + 1)2 − (a j − ak )2 ±

√
(ai − 1)2 − (a j + ak )2

√
(ai + 1)2 − (a j + ak )2. (C4)

Any three-mode CM can be put in this form by means of local unitaries (which do not affect any measures of correlations).
Given a generic three-mode CM, to put it in standard form one first computes the symplectic diagonalization of each 2 × 2

diagonal block (corresponding to the reduced states of each mode). This results in a local symplectic matrixM = MA ⊕ MB ⊕
MC. The resulting matrixMCMT either will already be in standard form (in which case nothing more is done) or will be in one
of the following schematic forms, with each block representing a 2 × 2 submatrix. Letting C be the covariance matrix of our
system, then

MCMT =
⎛
⎝� � �

� � �

� � �

⎞
⎠ or

⎛
⎝� � �

� � �

� � �

⎞
⎠ or

⎛
⎝� � �

� � �

� � �

⎞
⎠. (C5)

Here � and � mean, respectively, a diagonal or antidiagonal block. Depending on which case one gets, the CM can be cast in
final form by multiplying by a matrix T , such as

Cstd. form = TMCMTT T. (C6)

The matrix T depends on the shape of the resulting matrix in Eq. (C5) and can be

T =
⎛
⎝1 0 0

0 
2 0
0 0 
2

⎞
⎠ or

⎛
⎝
2 0 0

0 
2 0
0 0 1

⎞
⎠ or

⎛
⎝1 0 0

0 
2 0
0 0 1

⎞
⎠, (C7)

where all matrices are 2 × 2 blocks, and 
2 = ( 0 1
−1 0) is the single-mode symplectic form.

Finally, with the CM in diagonal form, we can now use the analytical results of Adesso et al. [61], who showed that the
bipartite entanglement E(Ai:A j ) between any two of three modes in a CM of the form (C3) is

E(Ai:A j ) = 1
2 ln gk, (C8)

where {i, j, k} is a permutation of {1, 2, 3},

gk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ak �
√

a2
i + a2

j − 1,

β

8a2
k

if αi j < ak <
√

a2
i + a2

j − 1,

(a2
i −a2

j )
2

(a2
k−1)2 if ak � αi j,

(C9)

and

αi j =
⎛
⎝2

(
a2

i + a2
j

) + (
a2

i − a2
j

)2 + ∣∣a2
i − a2

j

∣∣√(
a2

i − a2
j

)2 + 8
(
a2

i + a2
j

)
2
(
a2

i + a2
j

)
⎞
⎠

1/2

, (C10a)

β = 2
(
a2

1 + a2
2 + a2

3

) + 2
(
a2

1a2
2 + a2

1a2
3 + a2

2a2
3

) − (
a4

1 + a4
2 + a4

3

) −
√

δ − 1, (C10b)

δ =
1∏

μ,ν=0

{[a1 + (−1)μa2 + (−1)νa3]2 − 1}. (C10c)

Finally, we can also compute the tripartite entanglement in Eq. (27). Since the global state is pure, the EoF between a partition
Ai:A jAk is simply the reduced Rényi-2 entropy of Ai. That is,

E(Ai:A jAk ) = 1
2 ln a2

i . (C11)
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Whence, Eq. (27) reduces to

E2(Ai; A j :Ak ) = 1

2
ln

(
a2

i

g jgk

)
, (C12)
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