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Bayesian estimation for collisional thermometry
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Quantum thermometry exploits the high level of control in coherent devices to offer enhanced precision for
temperature estimation. This highlights the need for constructing concrete estimation strategies. Of particular
importance is collisional thermometry, where a series of ancillae are sent sequentially to probe the system’s tem-
perature. In this paper we put forth a complete framework for analyzing collisional thermometry using Bayesian
inference. The approach is easily implementable and experimentally friendly. Moreover, it is guaranteed to
always saturate the Cramér-Rao bound in the long-time limit. Subtleties concerning the prior information about
the system’s temperature are also discussed and analyzed in terms of a modified Cramér-Rao bound associated
with Van Trees and Schützenberger.
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I. INTRODUCTION

Recently, there has been considerable progress in our un-
derstanding of the ultimate bounds on thermometric precision.
Using tools from quantum parameter estimation, Refs. [1–12]
put forth several case studies of optimal thermometry in the
quantum regime. Within this context, the concept of opti-
mality is typically quantified through the quantum Fisher
information (QFI), which establishes the Cramér-Rao bound
(CRB), a lower bound for the variance of unbiased estimators.
By maximizing the QFI one can thus also improve the limits
of precision of a given estimation [13]. These analyses have
the advantage of being independent of the actual estimators
being used to assess the temperature. They therefore provide
a global view of the problem. However, they lack the concrete
prospect of practical implementations in the laboratory.

This concerns a different, more practical challenge: how to
construct concrete thermometry protocols, especially when it
comes to data processing. As depicted in Fig. 1(a), this is a
complementary, and thus ultimately different, task.

The maximum likelihood estimator is one of the canoni-
cal choices in this sense. Its desirable asymptotic properties,
such as unbiasedness, make it one of the standard choices in
parameter estimation [14–17]. However, certain minimization
criteria [18], symmetries, and constraints in the problem may
enforce different choices for estimators and figures of merit,
such as in [19–21]. In this sense, a variety of authors recently
studied more concrete implementations of estimators [21–26].

An interesting platform for temperature estimation is that
of collisional thermometry [Fig. 1(b)], put forth in [4] (see
also [27]). In standard probe-based thermometry, a series of
ancillae An are sent to sequentially probe the temperature
of a certain system of interest E . Usually, one assumes that
E is sufficiently large that it is not degraded by the contact
with the ancillae. Conversely, in collisional thermometry an
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intermediate system S is placed in between An and E . Since
the ancillae are never allowed to thermalize with E , the prob-
lem is intrinsically out of equilibrium. This introduces (at
least) two advantages. First, it encodes information about the
temperature in the dynamical relaxation rates of the probe,
allowing one to exceed the maximal precision that would be
possible if S were not present (the so-called thermal Fisher
information). Second, it creates correlations between the an-
cillae which, together with collective measurements, can be
used to obtain an additional boost in precision.

Collisional thermometry is a scalable platform, where
statistics from an arbitrary number of ancillae can be ac-
cumulated to obtain increasingly higher precision. However,
as with most other thermometry schemes, so far no studies
have discussed concrete estimators for it. That is, once the
data are obtained, how do we actually use them to infer the
temperature T ? The goal of this paper is to fill in this gap.
We show that Bayesian estimation (BE) provides a powerful
tool set for thermometry which is both easy to implement
and experimentally friendly. BE has already been extensively
employed in quantum metrology [22–25] and open quantum
systems [28–30]. BE has also been used in thermometry be-
fore [21,31,32], first appearing in [33]. Through sequential
measurements one uses Bayes’s rule to continuously update
and refine the state of knowledge about the parameter’s distri-
bution. By doing so we are able to construct estimators which
can be used to infer the temperature of a reservoir.

We focus on the so-called Bayesian average (BA), which
minimizes the Bayesian mean-square error (BMSE) [34]. The
latter can be used to provide a concise evaluation of the
estimator’s performance for a wide range of temperatures, a
desirable property for thermometers. Moreover, it also avoids
two conundrums that are sometimes found in other strate-
gies. First, it does not require unbiased estimators, which can
sometimes be unphysical [19] or impractical (see Chap. 2 of
[18] for a detailed discussion). Although the BA is biased,
this bias always vanishes asymptotically for a large number of
ancillae. Second, the BMSE provides a measure of precision
averaged over the entire range of temperature of interest,
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unlike the standard CRB, which requires knowledge of the
very temperature one is trying to estimate. The BMSE can also
be compared with a bound by Van Trees and Schützenberger
[35–37], which represents a Bayesian analog of the CRB.

This paper is divided as follows. In Sec. II we briefly
review the main results of collisional thermometry based on
Ref. [4], which will be the model used in this work. In Sec. III
we discuss techniques from Bayesian estimation, which are
then applied in Sec. IV. Final remarks and future prospects
are discussed in Sec. V.

II. COLLISIONAL THERMOMETRY

A. Standard probe-based thermometry

In standard probe-based thermometry, ancillae are sent to
interact directly with a reservoir E , kept at a fixed temperature
T . After this interaction they will be in a certain state ρA(T ),
which contains information about T that must be extracted
via some measurement strategy. The error ε in any unbiased
temperature estimator, constructed from this measurement, is
lower bounded by the CRB,

ε �
1

nF (T )
, (1)

where n is the number of measurement outcomes and F is
the Fisher information (FI) associated with the state ρA(T )
and the measurement strategy employed. Given measurement
outcomes px(T ), the latter is defined as

F (T ) =
∑

x

1

px

(
∂ px

∂T

)2

. (2)

The FI maximized over all possible measurement strategies is
known as the quantum Fisher information and is given by

F = tr{�2ρA}, (3)

where � is the symmetric logarithmic derivative (SLD),
which is a solution of �ρA + ρA� = 2∂T ρA.

The optimal scenario occurs when the probe fully ther-
malizes with the environment [3,7,38]. That is, when ρA

is a thermal state ρ th
A = e−βHA/ZA, with ZA = tr(e−βHA ) and

β = 1/T . In this case, the QFI reduces to the thermal Fisher
information

Fth = C

T 2
, C =

〈
H2

A

〉 − 〈HA〉2

T 2
, (4)

where C is the ancilla’s heat capacity.

B. Collisional thermometry

In this paper we focus instead on collisional thermometry
[Fig. 1(b)], which represents a generalization of the scenario
above. A finite system S is placed between An and E , thus
serving as an indirect connection between them. The interac-
tions are piecewise and alternating: first, the system interacts
with E for a certain time τSE . Then they are decoupled, and
the system interacts with the ancilla for a certain time τSA.
The process is then repeated, each time with a new ancilla.

For concreteness, we take both S and all the An to be
resonant qubits, with HS = �σ S

Z /2 and HAn = �σ
An
Z /2, where

σZ are Pauli matrices. The system interacts with E through the

FIG. 1. (a) Diagram depicting the typical procedure in probe-
based thermometry. Information about the temperature of a bath is
extracted via a probe. Most studies focus on how to maximize the
information contained in the extracted data. A less explored, but
equally important, problem is how to actually process those data
into concrete estimators. (b) An illustration of the collisional model,
which will be used in this paper to discuss estimators based on
Bayesian inference.

a quantum master equation, which introduces a temperature
dependence on the state of the system:

dρS

dt
= L(ρS ) = γ (n̄ + 1)D[σ S

−] + γ n̄D[σ S
+], (5)

whereD[L] = LρL† − 1
2 {L†L, ρ}, γ is the coupling strength,

and n̄ = 1/(e�/T − 1) is the Bose-Einstein occupation. The
SE interaction is thus described by the map E(ρS ) =
eτSEL(ρS ). Conversely, the system-ancilla interaction is chosen
to be a partial swap [39]:

USAn = exp{−iτSAg(σ S
+σ

An− + σ S
−σ

An+ )}. (6)

All ancillae are assumed to start in the same initial state ρ0
A,

which we take to be the ground state ρ0
A = |0〉〈0|. The cou-

pling strengths γ τSE and gτSA are thus the free parameters of
our model. And temperature is measured throughout in units
of � = 1.

From the perspective of the system, the alternating appli-
cation of these two maps yields a stroboscopic evolution,

ρn
S = trAn

{
USAn ◦ E(ρn−1

S ⊗ ρ0
A

)}
:= �

(
ρn−1

S

)
, (7)

where n = 1, 2, 3, . . . labels the collisions. Here USAn (•) =
USAn • U †

SAn
, and ◦ denotes map composition. We always con-

sider steady-state operation regimes. That is, we first allow
several ancillae to collide with the system, so that it reaches a
fixed point ρ∗

S = �(ρ∗
S ). This eliminates any transient effects,

making the problem translationally invariant, which is highly
advantageous.
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FIG. 2. A log-linear plot of the correlation between an ancilla
and its nth neighbor for different values of SA coupling. Here we
consider T/� = 2 and γ τSE = 0.2.

C. Decay of ancilla-ancilla correlations

From the perspective of the ancillae, the presence of S will
cause them to become correlated with each other. Starting
from ρ∗

S , the joint state for a block of ancillae ρAi ···Ai+n will
be given by

ρAi ···Ai+n

= trS
{
USAi+n ◦ E ◦ · · · ◦USAi ◦ E(ρ∗

S ⊗ ρ0
A ⊗ · · · ⊗ ρ0

A

)}
.

(8)

Since ρ∗
S is a steady state, ρAi···Ai+n will be translationally

invariant, that is, independent of i.
Information about T is extracted from ρAi ···Ai+n by perform-

ing a measurement on the ancillae, described by a positive
operator-valued measure (POVM). Since this global state is
correlated, several choices of measurement strategies arise. In
fact, as shown in [4], these correlations can actually be used to
further enhance the precision. However, this requires collec-
tive POVMs, which are hard to implement. For concreteness,
we will focus here on only local measurements. We let {Mx}
denote a set of POVM elements acting on a single ancilla, with
possible outcomes x = 0, 1. The joint distribution obtained
from measuring a block of n ancillae will then be

P(Xn, . . . , X1|T ) = tr{MXn · · · MX1ρA1···An}. (9)

For the correlations to be significant, some fine tuning of
the parameters is required, e.g., taking very small interaction
times τSA or very low temperatures. To quantify this, we con-
sider the mutual information between any pair of ancillae Ai

and Ai+n:

I (Ai:Ai+n) = S(ρAi ) + S(ρAi+n ) − S(ρAiAi+n ), (10)

where S(ρ) = −tr(ρ ln ρ) is the von Neumann entropy.
Figure 2 shows I (Ai:Ai+n) (which is independent of i) as a
function of n for typical parameters. As can be seen, the
correlations decay exponentially with distance and are quite
small already for nearest neighbors, I (Ai:Ai+1).

Restricting to only local POVM places further restrictions
on how these correlations can be accessed. As a consequence,
to a good approximation one may take the outcomes to be

independent and identically distributed. That is,

P(Xn, . . . , X1|T ) ≈ P(Xn|T ) · · · P(X1|T ), (11)

where

P(Xi|T ) = tr(MXiρAi ). (12)

It should be stressed, however, that the BE formalism that
will be described in Sec. III does not require this assumption;
it simply facilitates the analysis. In fact, in Appendix A we
discuss how to extend all results to the case when (11) is no
longer satisfied.

D. Single-ancilla QFI

The optimal choice of POVM is determined by computing
the SLD and the QFI in Eq. (3) [13]. Due to our choices of
the initial ancilla state and SA interaction, the states ρAi are
diagonal, and hence, the optimal measurement is just a pro-
jective measurement in the computational basis, M1 = |0〉〈0|
and M2 = |1〉〈1|. This yields populations p1 = P(Xi = 1|T )
and p0 = 1 − p1.

The corresponding Fisher information (2), of each ancilla,
is now readily found to be

F =
∑
i=0,1

1

pi

(
∂ pi

∂T

)2

= 1

p1(1 − p1)

(
∂ p1

∂T

)2

. (13)

In this case the FI is also the QFI (3) (i.e., the measurement
is optimal). But the framework developed in the next sec-
tion equally holds for a generic FI, not necessarily the QFI,
so we shall henceforth continue to write this as F , instead of
F . For comparison, the thermal Fisher information (4), which
would be obtained if the ancillae fully thermalized with the
bath, reads

Fth = (�/2T 2)2sech2(�/2T ). (14)

In Fig. 3 we plot the ratio between F and Fth as a function
of temperature for different parameters. As can be seen, the
ratio can be well above unity, showing that the collisional-
thermometry protocol can offer significant improvements
over standard probe-based thermometry for a wide range of
temperatures.

III. BAYESIAN ESTIMATION

Having described the basic model, we now turn to BE
as the basic tool for constructing concrete estimators. BE
is centered around two main ideas. First, even though the
true temperature T0 is not known, we still have some prior
information about it, which can be used to aid the estimation.
This is done by treating T as a random variable, with whatever
we previously know about it condensed in a distribution P(T ),
called the prior. In thermometry, making explicit use of such
prior information is crucial: temperature can, in principle,
vary over enormous scales, but almost always, one knows that
it lies within a well-defined interval. For example, one can say
with certainty that the temperature of a Bose-Einstein conden-
sate is not 10 K. In fact, for many experiments, including Bose
gases, said intervals can be very narrow [40]. The issue of how
to quantify such narrowness is discussed in Refs. [21,41].
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FIG. 3. Ratio between the Fisher information and the thermal
Fisher information for (a) full swaps, with gτSA = π/2, and for
(b) γ τSE = 0.2. The dotted line highlights the ratio F/Fth = 1.

Second, once the measurement outcomes X =
(X1, . . . , Xn) are obtained, one should update the prior with
this new information. This leads to the so-called posterior
distribution, which is determined by Bayes’s theorem:

P(T |X ) = P(X |T )P(T )

P(X )
, (15)

where P(X ) = ∫
P(X |T )P(T )dT and P(X |T ) is given by

Eq. (11). Since this refers to independent outcomes, the
Bernstein–von Mises theorem [42–44] ensures that the pos-
terior will converge, in the limit of large n, to a Gaussian with
mean T0 (the real parameter) and variance 1/nF (T0), where F
is the Fisher information. In symbols

P(T |X ) ≈
√

nF (T0)

2π
e− nF0 (T −T0 )2

2 (large n). (16)

Hence, within this collisional-thermometry setting, Bayesian
estimation is guaranteed to converge to the true value, with
a variance that saturates the CRB (1). This is highly advan-
tageous. One should also emphasize that the framework is
not restricted to independent outcomes and may also effi-
ciently be implemented for generic P(X |T ), as discussed in
Appendix A.

A. Estimators

One of the most widely used estimators in this context is
the BA:

T̂ (X ) =
∫

T P(T |X )dT . (17)

This can be shown to minimize the BMSE [35]

εB(T̂ (X )) =
∫

P(T )dT
∫

(T − T̂ )2P(X |T )dX . (18)

Moreover, due to Eq. (16), it is guaranteed to converge to
the true value of the parameter in the large-n limit. Another
common choice of estimator [45] is the maximum a posteriori
(MAP), given by T̂MAP(X ) = arg maxT P(T |X ), i.e., by the
mode of the posterior. The BA, however, has nicer general
properties and is also very easy to compute. We will hence-
forth focus solely on it, for concreteness.

A crucial difference, with respect to standard parameter
estimation lies in the fact that the error (18) is averaged over
the prior P(T ) since T is treated as a random variable. This
can be compared with the usual mean-square error, which is
defined as

ε(T̂ (X )|T ) =
∫

(T − T̂ )2P(X |T )dX . (19)

This is, for instance, the quantity appearing in the CRB (1).
As can be seen, it is conditioned on the value of T (averaged
solely over different realizations of the data); we shall hence-
forth refer to it simply as the mean-square error (MSE). The
two quantities are connected by

εB(T̂ (X )) =
∫

ε(T̂ (X )|T )P(T )dT . (20)

The Bayesian error (18) therefore represents a figure of merit
which does not depend on the particular value of the parame-
ter. This is interesting since the parameter is not known in the
first place. Hence, it provides a way of assessing the overall
performance of a thermometric protocol, averaged over the
prior information.

A third figure of merit, which is of interest in experimental
settings, is the posterior loss. In this case, one is interested in
the error with respect to a particular realization X . We then
calculate it as εX = ∫

(T − T̂ )2P(T |X )dT . When the estima-
tor T̂ (X ) is chosen to be the posterior mean, the posterior loss
εX can be interpreted simply as the variance of the posterior
distribution P(T |X ).

Unbiased estimators satisfy the CRB in Eq. (1). They, how-
ever, have two disadvantages: (i) they depend on the value of
the parameter we are trying to estimate, which is not known,
and (ii) they do not take into account any prior information.

Both of these issues are taken into account by the BMSE
(18). Instead of the CRB, this error satisfies the Van Trees-
Schützenberger bound (VTSB) [35–37]

εB(T̂ (X )) � 1

EP[F (T )] + FP
, (21)

where FP = ∫
P(T )( ∂ ln P(T )

∂T )2dT is the Fisher information
contained in the prior and

EP[F (T )] =
∫

P(T )dT
∫

P(X |T )

(
∂ ln P(X |T )

∂T

)2

dX

(22)

is the Fisher information of P(X |T ), averaged over the prior.
The VTSB, however, is generally not tight, unlike the CRB
(1). The reason is linked to the fact that since the MSE (19)
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scales with 1/nF (T ) for large n, as a consequence of Eq. (20),
the BMSE scales in the asymptotic limit as

εB(T̂ (X )) ∼ EP

[
1

nF (T )

]
(large n). (23)

In other words, the BMSE (18) scales with respect to 1/nF (T )
averaged over the prior. Note that the VTSB (21), on the
other hand, scales with 1/EP[nF (T )] for large n. Thus, by
Jensen’s inequality [35,46] EP[1/F (T )] � 1/EP[F (T )], and
hence, the bound is generally not tight.

It is also worth mentioning that the VTSB is not the only
counterpart to the CRB. Other bounds may also take up this
role [47,48]. Moreover, alternative bounds for Bayesian infer-
ence can be found in the literature [23,49–52]. Results tailored
for thermometry were recently obtained in [21], where bounds
were derived to deal with said issues. In addition, the authors
also studied concrete estimators and figures of merit, which
include arguments on scale invariance, first put forth within
thermometry in Ref. [33].

B. Efficient numerical Bayesian estimation

Here we discuss a straightforward method of implementing
Bayesian estimation numerically. More efficient methods may
exist, but we have found this approach to be both easy and
efficient. It is also quite general and can be readily extended
to correlated outcomes (Appendix A). The goal is to com-
pute the posterior (15) given a set of random n outcomes
X1, . . . , Xn. Usually, one is also interested in assessing the
results for increasingly larger sequences [24,30]. There are
two main difficulties involved: first, dealing with the fact that
P(X |T ) = P(X1|T ) · · · P(Xn|T ) can be the product of a very
large number of terms (and hence can be very small) and,
second, the actual numerical computation of the normalization
P(X ) = ∫

P(X |T )P(T )dT .
We handle both as follows. First, we discretize the temper-

ature interval of interest, [Tmin, Tmax], into NT points Tk , so that
the prior now becomes a discrete distribution Pk . Second, we
define the log-likelihood function

Lkn =
n∑

i=1

ln P(Xi|Tk ). (24)

This can be viewed as a matrix of size NT × n, which takes
into account information up to time n. For instance, Lk,3 uses
the information obtained from X1, X2, X3. Conveniently, Lkn =
Lk,n−1 + ln P(Xn|Tk ), so Lkn can be constructed sequentially
by accumulating data from each new outcome. Equation (15)
may now be written as

Pk|n = eLkn Pk∑
q eLqn Pq

, (25)

where Pk|n is shorthand for P(Tk|X1 · · · Xn).
To stabilize the exponential, it is convenient to define the

max of the log likelihood, at each n, Lmax
n = maxk Lkn. We

then rewrite Eq. (25) as

Pk|n = eLkn−Lmax
n Pk∑

q eLqn−Lmax
n Pq

. (26)

This ensures that the most likely events will have the best
numerical precision. We now see that Eq. (26) has the form

Pk|n = Pkn∑
q Pqn

, (27)

where Pkn = eLkn−Lmax
n Pk can be interpreted as a matrix of size

NT × n, which is readily constructed from the matrix Lkn and
the vector Pk .

It is now straightforward to compute any observable of
interest. The BA (17), for instance, becomes

T̂n =
∑

k

TkPk|n. (28)

The MSE (19) of a single realization X1, . . . , Xn will then be
(T̂n − T0)2, where T0 is the true parameter. Equation (19) can
be obtained by sample averaging this quantity over multiple
realizations. The BMSE (18), on the other hand, is obtained in
a similar way, but with data generated by randomly sampling
temperatures from the prior. This step can be seen as a Monte
Carlo integration.

IV. RESULTS

We now reach the core results of this paper, where we
implement the Bayesian estimation techniques in Sec. III in
the collisional-thermometry setting discussed in Sec. II.

As discussed in [21,33], the choice of prior in thermometry
is subtle, as it relates to the scale invariance of energy mea-
surements. Since we are interested in generic measurements,
generic energy spacings, and a nonequilibrium setting, we will
take the prior for simplicity to be a uniform distribution over
a certain range [Tmin, Tmax]. Or, slightly more general [23],

P(T ) = 1

(Tmax − Tmin)
λα

(
T − Tmin

Tmax − Tmin

)
, (29)

where

λα (θ ) = eα sin2(πθ ) − 1

eα/2I0
(

α
2

) − 1
(30)

and I0 is the modified Bessel function of the first kind. This is
plotted in the inset in Fig. 4(c) for different values of α. It is
sharply peaked for α > 0 and tends to a smoothed uniform
when α is negative and large. It thus allows us to conve-
niently interpolate between a sharply peaked distribution and
a flat one while preserving the (possibly physical) constraint
that the temperature should lie within a specific interval.
Hereafter we will perform all simulations considering α =
−100. Another advantage of this prior concerns the VTSB
(21), which does not hold for truncated distributions, like the
uniform [37,53].

Basic results are summarized in Fig. 4. For a fixed T0, we
generate a sequence of random outcomes Xi from P(Xi|T )
in Eq. (12). In Fig. 4(a) we show the posterior distribution
P(T |X1 · · · Xn) [Eq. (26)], with the vertical axis representing
the temperature and the horizontal axis representing the num-
ber of measured ancillae. This presentation of the Bayesian
updating scheme and the posterior distribution was strongly
motivated by the seminal works in [24,30]. Figure 4(b) plots
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FIG. 4. Bayesian estimation for collisional thermometry. The true temperature was chosen as T0/� = 1.5. (a) Density plot of the posterior
P(T |X1 · · · Xn) [Eq. (26)]. (b) Same, but as a function of T , for select values of n. In both plots, the distribution is clearly seen to converge
towards T0 as n increases. (c) Random realization of the BA (17) as a function of n. Inset: prior distribution (29) for α = −1 (dotted line),
α = −10 (dashed line), and α = −100 (solid line). (d) MSE [Eq. (19)] for a single stochastic realization (light gray line) and averaged over
multiple realizations [red (dark gray) line]. For large n it converges to 1/nF (T0) (dotted line), which saturates the CRB (1). All curves were
plotted using γ τSE = 0.4, gτSE = π/2, and α = −100. The temperature was discretized in steps of NT = 500, from Tmin = 0.05 to Tmax = 5.

the same results, but as a function of T . As can be seen in
both images, the posterior is initially broad for few outcomes
but gradually improves with increasing n. For n = 1000 it is
already sharply peaked around T0. And as predicted by (16),
the precision continues to improve with increasing n, with the
variance scaling as 1/nF (T0).

The BA is shown in Fig. 4(c). It is noisy up to n ∼ 1000
but then quickly converges towards the true value T0. The
error associated with the realization of T̂ (X ) in Fig. 4(c) is
plotted as a light gray curve in Fig. 4(d). Overall, it oscillates
significantly but gradually tends to zero (notice the log scale).
Averaging this over multiple realizations X yields the MSE
(19), which is plotted by the solid red (dark gray) line in
Fig. 4(d). As can be seen, in the large-n limit, it converges
to 1/nF (T0), shown by the dotted line. It hence saturates the
CRB (1).

The results in Fig. 4 refer to the full swap between the
system and ancilla, gτSA = π/2. In this case, the distribution
P(Xi|T ) in Eq. (12) can easily be computed analytically and
acquires the particularly simple form

P(Xi = 1|T ) = 1 − e−�

1 + e
�
T

, (31)

where � = γ (2n̄ + 1)τSE is the thermal relaxation parameter.
As shown in [4], for the regime under consideration the FI also

acquires a tractable form. One may simply use the likelihood
given in Eq. (31) above, together with (13), to find

F

Fth
= (n̄ + 1)(e� + 2n̄� − 1)2

e2� (n̄ + 1) − e� − n̄
. (32)

As was pointed out, the dependence on �, which would not
be present in a fully thermalized ancilla, is responsible for the
enhancement over the thermal precision. As a consequence,
the error in Fig. 4(d) actually surpasses the precision of the
thermal Fisher information (14).

The MSE, similar to Fig. 4(d), is plotted in Fig. 5(a) for
different values of T0. The dashed lines in all cases refer to
the asymptotic limit 1/nF (T0). We can see that the estima-
tion is more accurate as the temperature decreases, which
is attributed to the larger sensitivity to T in the likelihood
equation (12). As argued in Sec. III, the MSE in Fig. 5(a)
depends on the actual value of T0, which is not known. Hence,
it is convenient to analyze the BMSE εB from Eq. (18). This
is shown in Fig. 5(b). It quantifies the overall expected perfor-
mance of the estimator for the temperature range [Tmin, Tmax].
This curve is bounded by the VTSB (21), denoted by the gray
region in Fig. 5(b). Hence, as can be seen, in this example
the bound is still quite loose for reasons pointed out at the
end of Sec. III A. As portrayed in Fig. 5(b), note how the
BMSE converges to the asymptotic limit in Eq. (23) instead.
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FIG. 5. (a) We plot the MSE (19) for different values of T av-
eraged numerically over 3000 different trajectories. The dotted lines
correspond to the CRB for the different temperatures shown in the
legend. (b) We repeat the procedure in (a), averaging the MSE over
500 trajectories and also over the prior distribution (29), obtaining
the BMSE [Eq. (18)]. The integral over the prior is also performed
numerically through a temperature discretization with NT = 150. We
also show the asymptotic limit defined in (23) (dot-dashed line).
Other parameters are the same as in Fig. 4.

We can see that in order to investigate its asymptotic behavior,
it suffices to calculate the usual CRB averaged over the prior
(23), with the Fisher information given by (13).

Thus, in Fig. 6 we turn to the BMSE (18) and its asymptotic
value (23) in order to investigate this effect more systemati-
cally. In Fig. 6(a) we plot Eq. (23) for different values of gτSA

as a function of γ τSE . Note that this plot is actually indepen-
dent of the true temperature and depends only on the choice of
temperature interval. Hence, it provides a general view of how
the choice of parameters affects the asymptotic performance
of the protocol. The smaller the value of EP[1/nF ] is, the
better the estimation is. Therefore, in Fig. 6(a) we can see how
the asymptotic error and the optimal value of γ τSE depend on
the effective SA coupling gτSA.

On a similar note, we investigate how the optimal choice of
parameters may change depending on the temperature interval
of the prior. In Fig. 6(b) we plot EP[1/F ] as a function of
γ τSE . This time around we consider a symmetric interval
from Tmin = T0 − δ to Tmax = T0 + δ, centered at T0/� = 1.5
for different values of δ. We can see that the optimal choice
of γ τSE clearly depends on the temperature interval under
consideration. In particular, we can verify from this plot that
for larger intervals, the optimal regime is narrower, and the
error quickly increases with γ τSE . Conversely, an increase in
the temperature interval requires a decrease in γ τSE in order
to achieve optimality. Moreover, we can also see that as the
interval narrows, both the asymptotic error and the optimal SE
coupling coincide with the results found for the temperature
T0. Finally, note from Fig. 6(c) how the optimal parameters
continuously decrease as one increases the temperature range.

This analysis shows how the BMSE is particularly useful
in the search for optimal parameters to enhance precision.
The Fisher information and the CRB (1) depend on the actual
temperature. Thus, the values of γ τSE and gτSA which are
optimal for a given T are not necessarily optimal for another.
And since the true value of T is not known, this introduces a
conundrum. Bayesian estimation avoids this by focusing on an
entire range of temperatures, quantified by the prior P(T ). By
focusing on the asymptotic BMSE (n → ∞), compared to the
asymptotic MSE 1/nF (T ), in Fig. 6 we show how the BMSE
in Fig. 5(b) can be optimized over γ τSE and gτSA to yield a
strategy which is good for the entire temperature range.

FIG. 6. (a) We plot the expectation in the right-hand side of Eq. (23) as a function of γ τSE considering the same temperature range
[Tmin, Tmax] from Fig. 4. (b) We fix the SA coupling in the full-swap regime gτSA = π/2 and plot Eq. (23) for different temperature intervals.
Note how the minimum shifts to the left as δ increases. (c) We plot the optimal value of γ τSE as we increase the size of the interval [T0 −
δ, T0 + δ]. We also show the optimal value (dashed) for F (T0 ) at the particular temperature T0/� = 1.5. The diamond symbol highlights the
minimum for δ = 1. The prior used here is also given by Eq. (29), with α = −100, but the end points are changed as described above.
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FIG. 7. (a) We plot the Fisher information of the likelihood in
Eq. (B1) for different values of Tp. (b) We calculate the ratio between
the asymptotic Bayesian risk (23) obtained by integrating the FI in
(a) from Tmin = 0.1 to Tmax = 5 and the asymptotic Bayesian risk for
Tp = 0. All the other parameters are the same as in Fig. 4.

V. DISCUSSION AND CONCLUSIONS

In this paper we have put forth a concrete estimation proto-
col based on the collisional-thermometry setup proposed in
[4], showcasing how the Bayesian framework may display
further insights as a thermometric tool, providing a sim-
ple alternative to easily process the data. Bayes’s theorem
was used to sequentially update the temperature distribution,
updated on the measurement outcomes. The performance
of the estimators was then assessed through the Bayesian
MSE. These results were then compared with the Van Trees–
Schützenberger inequality, a Bayesian counterpart of the
Cramér-Rao bound. Finally, by investigating the Bayesian
MSE in the asymptotic limit we also showed how it can be
used to perform an analysis of the model which is independent
of the temperature. By doing so we were able to find the
optimal parameters for the model, minimizing the BMSE in
the asymptotic limit.

In principle, it is also possible to further generalize the
protocol here for collective measurement on the ancillae, in-
vestigating how correlations affect the estimations. This also
further enriches the discussion of how to choose the measure-
ment basis since it may acquire a more sophisticated form,
assuming a dependence on the temperature. A possible alter-
native would be to employ adaptive strategies [19].

In a more general picture, we have only scratched the
surface of what Bayesian estimation offers. Further research
directions could go in the direction of investigating other
estimators, aiming at uncovering different estimation proto-
cols and estimators under other regimes or prior distributions.
While of limited purpose here, minimax estimators are such
an example [54]. Even the choice of a prior distribution may
not be entirely straightforward and must be carefully investi-
gated [20,55]. Alternatively, one may also explore other types
of error measures, especially relative errors, as these do not
suffer from scale-invariance problems which are typical in
thermometric scenarios.

Finally, further work can be done on the generalization of
a few well-known concepts in both quantum thermometry and
also quantum metrology in general, as was done in [56,57].
We clarify here, however, that global treatments are in no way
exclusive to the frequentist approach, as it is always possible
to construct a global Bayesian framework for the estimation
problem (see, e.g., [47,58,59] for a fully Bayesian treatment).
In the same manner, the frequentist approach is just as useful
when considering concrete protocols. These approaches are
not mutually exclusive, but rather, the focus on how they are
used just shifts depending on the problem at hand. We also
stress that the tools presented here are in no way restricted
to thermometry. As shown by many of the works cited here,
Bayesian estimation has been successfully employed in the
quantum metrology community in several different contexts,
albeit relatively few and far between in thermometry.
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APPENDIX A: BAYESIAN INFERENCE
FOR CORRELATED ANCILLAE

As a proof of principle, we have focused on the case where
the collisional-thermometry outcomes can be taken to be ap-
proximately independent [Eq. (11)]. But the framework is not
restricted to this case. More generally, starting from a joint
distribution (9), we can decompose

P(X1, . . . , Xn|T ) = P(Xn|T, X1, . . . , Xn−1)

× P(Xn−1|T, X1, . . . , Xn−2)

× · · · P(X2|T, X1) P(X1|T ). (A1)

Since collisional thermometry yields a well-defined causal
order in the outcomes, these transition probabilities can all be
directly obtained from the model. Focusing on the case where
T is discretized in steps Tk , we can now generalize Eq. (24) to

Lkn =
n∑

i=1

ln p(Xi|Tk, X1, . . . , Xi−1). (A2)
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With this small modification, all other results in the paper
continue to be valid, even in the case of dependent outcomes.
That is to say, the formalism itself does not change; all that
changes is how we construct the likelihood. This is quite
remarkable and a very nice attribute of BE.

The results in Fig. 2 show that the mutual information
always decays with the distance between the ancillae. Hence,
in practice, one does not need to retain the full hierarchy of
distributions in Eq. (A2). Instead, one may truncate it at a
given Markov order. For instance, assuming that only nearest-
neighbor correlations are important, one may approximate

Lkn �
n∑

i=1

ln P(Xi|Tk, Xi−1), (A3)

where P(Xi|Tk, Xi−1) forms essentially a Markov chain. Or
one may consider two neighbors, P(Xi|Tk, Xi−1, Xi−2), and so
on. This can be very useful because, in practice, constructing
the theoretical model p(Xi|Tk, X1, . . . , Xi−1) for a large num-
ber of ancillae is hard due to the increasing dimension of the
global Hilbert space. A distribution such as p(Xi|Tk, Xi−1), on
the other hand, depends only on two ancillae and hence is
analytically and numerically manageable.

APPENDIX B: EFFECT OF NOISY PROBES

In the main text we assumed an ideal scenario where one
can always initialize the ancillae in the desired state, namely,
the ground state. Here we further generalize our approach for
a situation where the observer does not have perfect control
over the probe states.

Assuming that the ancillae are initialized in a thermal state,
we first investigate how the temperature of the probes affects
the asymptotic precision of the protocol, which is related to
Eq. (23). Instead of Eq. (31), the likelihood assumes the form

PTP (Xi = 1|T ) = e−�

1 + e
�
Tp

+ 1 − e−�

1 + e
�
T

(B1)

instead. This result is a consequence of the linearity of the
stroboscopic map from Eq. (7); the resulting likelihood for
the thermalized probe is simply a convex combination of the
resulting likelihood for ancillae initialized in the states |0〉〈0|

FIG. 8. Bayesian MSE (18) calculated for outcomes generated
from the likelihood in Eq. (B2) for different values of q. This type
of bias introduces a systematic error; the Bayesian risk initially
decreases with a 1/n scaling but eventually saturates since the es-
timation converges to a wrong value of temperature. All the other
parameters in the simulation are the same as in Fig. 7.

and |1〉〈1|, weighted by the Gibbs probabilities. Additionally,
as a consequence of the convexity of the FI [60], the resulting
precision will be smaller than what one would get for an
ancilla initialized in the ground state.

In particular, we are interested in the asymptotic value of
the Bayesian error given by Eq. (23). To perform comparisons
with the ideal case, we first write the asymptotic error for
ground-state ancillae as E0, which can be calculated from the
FI in Eq. (32). In Fig. 7(a) we show the Fisher information
F (T ) for different values of Tp. In Fig. 7(b) we show how
much precision is lost when compared to the case where
Tp = 0; i.e., we plot the ratio between ETp[1/F ] and E0 for
different probe temperatures.

Now, we also investigate a second scenario: we are inter-
ested in what happens when ancillae are prepared in the states
|0〉〈0| and |1〉〈1| with probabilities q and 1 − q, respectively,
but the observer has no access to these probabilities. In other
words, the outcomes are generated from the likelihood

P(Xi|T ) = qP(Xi|T, ρA,0) + (1 − q)P(Xi|T, ρA,1), (B2)

where ρA,k = |k〉〈k|, with k = 0, 1. The inference, however,
is still performed with respect to the ideal model in (31).
As we show in Fig. 8, this introduces a persistent error into
the estimation. Since the experimenter is using an incorrect
model for the likelihood, the resulting estimation will deviate
from the true value of the temperature. The saturated error will
correspond to the difference between the true value T0 of the
temperature and the temperature one would get from the ideal
likelihood (31) for the given detection record.
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