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The act of measuring a system has profound consequences of dynamical and thermodynamic nature. In par-
ticular, the degree of irreversibility ensuing from a nonequilibrium process is strongly affected by measurements
aimed at acquiring information on the state of a system of interest: the conditional and unconditional entropy
production, which quantify the degree of irreversibility of the open system’s dynamics, are related to each other
by clearly interpreted informational quantities. Building on a recently proposed collisional model framework
[G. T. Landi, M. Paternostro, and A. Belenchia, PRX Quantum 3, 010303 (2022)], we investigate the case
of continuous-variable information carriers prepared in Gaussian states and undergoing Gaussian processes.
We build up a toolbox that fully characterizes the thermodynamics of continuously measured nonequilibrium
Gaussian systems and processes, illustrating how the instruments hereby introduced provide key insight into
recent experiments on mesoscopic quantum systems [M. Rossi, L. Mancino, G. T. Landi, M. Paternostro, A.
Schliesser, and A. Belenchia, Phys. Rev. Lett. 125, 080601 (2020)].
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I. INTRODUCTION

The measurement process is at the basis of our ability to
acquire information on both classical and quantum systems. In
the latter case, however, this process introduces unavoidable
disturbances into the dynamics of the system whenever some
information can be extracted [1]. These considerations have
an important impact not only on the dynamics of quantum
systems but also on their thermodynamics.

Advances in (quantum) information thermodynamics [2]
have shown how the acquisition of information, and the feed-
back enabled by it, impacts the basic laws of thermodynamics
[3–20]. This is particularly relevant for the second law of ther-
modynamics and its generalization in the form of fluctuation
theorems. The second law characterizes the irreversibility of a
dynamical stochastic process through the irreversible entropy
production and flux rates entering it. These quantities, in turn,
are at the basis of the formulation of nonequilibrium and
stochastic thermodynamics [21], characterize the efficiency
of thermal machines [22], and determine the response of the
systems to thermodynamic forces [23].

In laboratory practice, quantum systems are often inter-
rogated in a continuous fashion by way of weak, indirect
measurements on ancillary systems [24–26]. The chief exam-
ple of this is presented by cavity optomechanics [27], where
the properties of a mechanical system, and the cavity field,
are inferred by measuring the electromagnetic field leaking
out from the cavity mirrors with dyne-type continuous mea-
surements. In view of the ubiquitous character of continuously
monitored quantum systems, a comprehensive theory describ-
ing their thermodynamics would advance our understanding

of the interplay between information and dissipation in these
open quantum systems.

Several works in recent years have addressed the thermo-
dynamics of measured systems, also in the case of continuous
measurements [8,15,20,20,28,28–30]. In this work, we take
a step further in this direction by employing a recently pro-
posed collisional-model framework [31] for the analysis of the
information thermodynamics of Gaussian quantum systems
and processes subjected to Gaussian quantum measurements.
Gaussian quantum systems and measurements are ubiquitous
nowadays in quantum laboratories where quadratic Hamilto-
nians are easily implemented and accurately describe optical,
atomic, and mechanical systems—and their interaction—in a
variety of technologically relevant situations [24,26,32–34].
Furthermore, Gaussian quantum measurements, like homo-
dyne and heterodyne quadrature detection, are commonly
implemented and allow for exquisite quantum control of these
systems.

While employing the framework of Ref. [31], this work is
also a natural progression of Ref. [16], where we put forth
a semiclassical, phase-space-based thermodynamic frame-
work for continuously measured Gaussian systems. The same
framework [16] has also been recently used in Ref. [35] to
experimentally assess the conditional second law in an op-
tomechanical system. In contrast to Ref. [16], which was
based on quantum phase-space methods, here we develop a
microscopic collisional description of the thermodynamics of
the same systems. This is motivated by the fact that the results
in Ref. [16], in addition to being semiclassical, are formulated
solely in terms of the stochastic master equation obeyed by the
system. As such, they do not demand an explicit model of the
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environment, but only the knowledge of the open dynamics
it produces. While this last aspect could seem advantageous,
there has been increasing evidence that a proper formulation
of thermodynamics in the quantum regime is only possible if
information on the environment and its interaction with the
system is provided [36]. Indeed, reduced descriptions based
only on the master equation can manifest apparent violations
of the second law [37], something which can only be resolved
by introducing a specific model of the environment [38]. Our
efforts in modeling the experiments in Ref. [35] also strongly
corroborate this view. In fact, an explicit illustration will be
provided in the following, where we will show that models
that yield the same type of master equation can have com-
pletely different thermodynamics features.

Our paper is organized as follows. In Sec. II, the gen-
eral collisional model framework for the thermodynamics of
continuously monitored systems developed in Ref. [31] is
briefly reviewed establishing the basic formalism. Section III
is dedicated to the discussion of Gaussian processes and
measurement in the collisional model framework. Section IV
collects some significant examples showcasing the application
of the formalism and further uses the detailed assessment of
the experiment reported in Ref. [35] as a physically motivated
case study. Finally, in Sec. V we draw our conclusions and
highlight the perspectives opened by our approach.

II. INFORMATION AND THERMODYNAMICS
OF CONTINUOUSLY MEASURED COLLISIONAL

MODELS

In this section we discuss the elements underpinning the
collisional model of continuously monitored systems (CM2)
construction and the analysis of its informational and thermo-
dynamic features. This will help us in setting the context of
the study—dedicated to Gaussian bosonic systems—reported
in Secs. III and IV. An extended discussion on the topic of this
section is in Ref. [31], to which we refer for further details.

A. Construction of CM2

We consider a system X with initial density matrix ρX0

interacting sequentially with independent and identically pre-
pared ancillas Y1,Y2, . . ., all prepared always in the same
state ρYt = ρY . We discretize time and label the corresponding
units as t = 0, 1, 2, 3, . . .. A unitary Ut acting on X and Yt (a
collision) takes the system from time t − 1 to t as

ρXtY ′
t

= Ut (ρXt−1 ⊗ ρYt )U
†
t , (1)

where Y ′
t refers to the state of ancilla Yt after the event. Infor-

mation on the state of the system is acquired by measuring ρ ′
Yt

,
the state of the ancilla after the collision. Such measurement
is described by a set of generalized measurement operators
{Mz}, satisfying

∑
z M†

z Mz = 1, and the associated probability
for outcome zt is

P(zt ) = tr{Mzt ρ
′
Yt

M†
zt
}. (2)

After its respective collision, ancilla Y ′
t will not participate

again in the dynamics, while a fresh ancilla Yt+1 is introduced
and the sequence repeated. This allows us to build a set of

FIG. 1. Circuital representation of the collisional model dynam-
ics for monitored systems. The system (X ) interacts repeatedly with
identically prepared, independent ancillas (Yt ) according to the map
in Eq. (1). The monitoring is introduced through the measurement of
the ancillary systems after each collision in accordance with general-
ized measurement operators {Mz} producing a classical (and random)
outcome zt .

time-ordered measurement records (see Fig. 1)

ζt = (z1, . . . , zt ). (3)

In a sense, ζt embodies the “integrated” information on X ,
while zt is a differential information gain associated only with
the step Xt−1 → Xt .

The joint distribution P(ζt ) is given by [39]

P(ζt ) = trXY1··· Yt {Mzt · · · Mz1ρXY1··· Yt M
†
z1

· · · M†
zt
}, (4)

where

ρXY1··· Yt = (
�t

k=1Uk
)(

ρX0

t⊗
j=1

ρYj

)(
�t

k=1Uk
)†

.

It is now convenient to introduce the outcome-indexed,
completely positive, trace-nonpreserving map

Ez(ρX ) = trY {MzU (ρX ⊗ ρY )U †M†
z }, (5)

which allows us to define the unnormalized conditional states

�Xt |ζt = Ezt (�Xt−1|ζt−1 ) (6)

with initial condition �X0|ζ0 = ρX0 . One may readily verify that
trX �Xt |ζt = trX {Ezt ◦ · · · ◦ Ez1 (ρX0 )} = P(ζt ). The states �Xt |ζt

therefore contain the outcome distribution P(ζt ) at any given
time.

B. Informational aspects of CM2

The mismatch between the information carried by the con-
ditional state of the system at time t and the corresponding
unconditional one is quantified by the Holevo information
[40]

I (Xt :ζt ) := S(Xt ) − S(Xt |ζt ) =
∑
ζt

P(ζt ) D(ρXt |ζt ||ρXt ) � 0,

(7)
where S(Xt ) = −trρXt ln ρXt is the von Neumann entropy
of ρXt , S(Xt |ζt ) = ∑

ζt
P(ζt )S(ρXt |ζt ) is the quantum-classical

conditional entropy average over all trajectories set by the
sequence of collisions, and D(ρ||σ ) = tr(ρ ln ρ − ρ ln σ ) is
the quantum relative entropy.

Equation (7) thus provides a measure of the information
known about the system given the measurements performed
on the ancillas, which can be interpreted as the weighted
average of the distance between ρXt |ζt and ρXt [31].
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While Eq. (7) reflects the integrated information acquired
about the system, up to time t , the conditional Holevo infor-
mation

Gt : = Ic(Xt :zt |ζt−1)=I (Xt :ζt )−I (Xt :ζt−1)

= S(Xt |ζt−1)−S(Xt |ζt ) (8)

quantifies the differential information gain obtained from a
single outcome z, at each step.

We then define the differential information loss term

Lt := I (Xt−1 :ζt−1) − I (Xt :ζt−1), (9)

which can be shown to be strictly non-negative [31]. It is
then immediate to prove that the trade-off between the gain in
information and the (non-negative) measurement back-action
quantified by the information rate �It := I (Xt :ζt ) − I (Xt−1 :
ζt−1) can be split as

�It = Gt − Lt . (10)

In the long-time limit, the system may reach a steady state
such that �I∞ = 0. But this might be associated with (mu-
tually balancing) non-null information gain and loss rates.
When this happens, we say the system has relaxed to an
informational steady state (ISS) such that

�IISS = 0 but GISS = LISS �= 0. (11)

In an ISS, information is continuously acquired and balanced
by the noise that is introduced by the measurement. Crucially,
the ISS does not mean that ρXt |ζt is no longer changing.

C. Thermodynamic aspects of CM2

The second law of thermodynamics, in the unconditional
case, splits the change in entropy into a contribution stemming
from the entropy flow ��u

t from system to ancilla, plus a con-
tribution �	u

t representing the entropy that was irreversibly
produced in the process. In formal terms

S(Xt ) − S(Xt−1) = �	u
t − ��u

t . (12)

In thermal processes, the entropy flow ��u
t is typically linked

to the heat flow Q̇t entering the ancillas through Clausius’s ex-
pression [41] ��u

t = βQ̇t , where β is the inverse temperature
of the thermal state the ancillas are in. But this only holds for
thermal ancillas, thus restricting the range of applicability of
the formalism.

Instead, we work within the framework of Ref. [42] (see
also Refs. [43,44]), which formulates the entropy production
rate in information-theoretic terms, as

�	u
t = I (Xt :Y ′

t ) + D(Y ′
t ||Yt ) � 0, (13)

where I (Xt :Y ′
t ) = S(ρXt ) + S(ρ ′

Yt
) − S(ρXtY ′

t
) is the quantum

mutual information between system and ancilla after Eq. (1)
and D(Y ′

t ||Yt ) = D(ρY ′
t
||ρYt ) is the relative entropy between

the state of the ancilla before and after the collision. It follows
from this that the entropy flux is additive, and depends solely
on the degrees of freedom of the ancilla, according to

��u
t =

N∑
j=1

��u
t j =

N∑
j=1

tr{(ρY ′
t j

− ρYt j ) ln ρYt j }. (14)

This allows one to compute the flux associated to each dissi-
pation channel acting on the system.

Equations (12)–(14) specify the thermodynamics of the
unconditional trajectories ρXt . Similar relations can be found
in the conditional case (ρXt |ζt ), where the relevant entropy is
S(Xt |ζt ). As shown in Ref. [31], in this case one finds

S(Xt |ζt ) − S(Xt−1|ζt−1) = �	c
t − ��c

t , (15)

which is akin to Eq. (12), but with new quantities �	c
t and

��c
t representing the conditional counterparts of the entropy

production and flux. However, it can be shown that under
mild assumptions, ��c

t = ��u
t ; i.e., the flux is independent

of whether or not we condition on the measurement outcomes
(see Appendix C for further discussion of this point).

Comparing Eqs. (12) and (15) then allows one to establish
the relation between conditional and unconditional entropy
production:

�	c
t = �	u

t − �It . (16)

The act of conditioning on the measurement outcomes hence
changes the entropy production by a quantity associated with
the change in the Holevo information. This explicitly connects
the information rates with thermodynamics.

The integrated entropy productions 	α
t = ∑t

τ=1 �	α
τ

(α = u, c) are also readily found to be related according to

	c
t = 	u

t − I (Xt :ζt ). (17)

This shows that the difference between conditional and un-
conditional irreversibility, up to time t , is strictly related to
the net information I (Xt :ζt ) � 0. It thus follows that

	u
t � 	c

t , (18)

stating that—as the indirect measurement approach con-
sidered here does not result in direct back-action on the
system—the act of conditioning reduces the irreversibility of
a process. In fact, one actually has a stronger bound 	u

t �
	c

t + ∑t
τ=1 Gτ , showing that the mismatch is associated with

the integrated information gain.

III. CONTINUOUS-VARIABLE SYSTEMS

Bosonic systems offer an essential platform for the im-
plementation of continuous measurements, a scenario that
is frequently found in quantum optical experiments. In this
context, the extensively developed toolbox of continuously
monitored Gaussian processes [34,45–47] can be employed
to build an insightful and simple formalism. Gaussian sce-
narios also allow for a more direct comparison with classical
models, described in terms of Langevin or Fokker-Planck
equations [48]. Indeed, similar considerations on the role of
information in thermodynamics have been discussed in this
classical context in Ref. [49].

A. Gaussian CM2s

We begin by reviewing the formalism developed in
Ref. [34] for describing the unconditional and conditional
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dynamics. The system is described by NX canonically con-
jugated operators R̂X = (q1, p1, . . . , qNX , pNX ), while each an-
cilla is modeled by NY variables R̂Y = (Q1, P1, . . . , QNY , PNY ).
Each collision is assumed to last for a small time dt and is
governed by a quadratic interaction Hamiltonian that we cast
as H = 1

2 R̂THR̂ with R̂ = (R̂X , R̂Y ) and

H =
(

HX C/
√

dt
CT/

√
dt HY

)
. (19)

Here HX and HY are the individual Hamiltonians of system
and ancilla, and C is the NX × NY matrix accounting for the
interaction between them. The scaling by

√
dt is placed for

convenience, as this yields simpler expressions in the limit of
small dt [50].

Gaussian states are completely characterized by the
first moments r = 〈R̂〉 and the covariance matrix σi j =
1
2 〈{R̂i, R̂ j}〉 − 〈R̂i〉〈R̂ j〉. The ancillas are assumed to be pre-
pared in Gaussian states with zero mean, rY = 0, and generic
covariance matrix σY . The system, on the other hand, is pre-
pared with arbitrary rX0 and σX0 .

By compounding different infinitesimal collisions, one can
construct a continuous-time dynamics for the system [34,45–
47]. In Appendix A we provide full details on this derivation,
while here we only focus on the results. The unconditional
dynamics is characterized by the matrices

CX = XC, CY = Y CT, (20)

which, in general, are rectangular, with dimensions NX × NY

and NY × NX , respectively. Here X and Y are the symplec-
tic forms with dimensions NX and NY . From CX and CY we
then define the drift and diffusion matrices

A = X HX + 1
2CXCY , D = CX σY CT

X . (21)

Examples of typical system-ancilla interactions C, as well
as the resulting shapes of CX , CY , A, and D, are provided
in Appendix B. In the continuous-time limit, one then finds
that the first and second moments evolve according to the
following linear equations in rX and σX ,

ṙX = ArX , σ̇X = AσX + σX AT + D, (22)

which we refer to as a Lyapunov problem.
The conditional dynamics, on the other hand, depends on

two additional ingredients. The first is a functional of the
covariance matrix,

B[σX ] = σXCT
Y + CX σY . (23)

As discussed in Appendix A, such a functional encompasses
the correlations developed between system and ancilla as
a result of each collision. It is thus directly related to the
information passed from the system to the ancillas. The sec-
ond ingredient is the type of measurement performed on the
state of the ancillas. We use here the framework of the so-
called general-dyne measurements [26], whose outcomes are
described by a random vector z distributed according to a
multivariate Gaussian with average given precisely by the fi-
nal position of the ancillas, rY ′ = CY rX

√
dt (cf. Appendix A).

Such outcomes are thus directly proportional to the position
of the system, but “filtered” by the matrix CY . Moreover, the
covariance matrix of the outcomes z is σY + σm with σm being

the covariance matrix of the noise induced by the specific
choice of measurement. For a single-mode ancillary system
with R̂Y = (Q, P), a possible parametrization of such noise is
[16,26,34]

σm = R[ϕ]T

(
s/2 0
0 1/(2s)

)
R[ϕ] +

(
1 − η

η
+ �

)
I/2.

(24)
The parameter η ∈ [0, 1] accounts for the detector efficiency,
with η = 1 describing a perfectly efficient detector and η = 0
an inefficient one. Analogously, � ∈ [0,∞) accounts for an
additive Gaussian noise, while s ∈ [0,∞) defines the type
of measurement being used: s = 0 and s = ∞ correspond
to homodyning Q and P, respectively, while s = 1 is for a
heterodyne measurement. Finally, R[ϕ] is a 2 × 2 rotation
matrix which allows us to describe general-dyne measurement
on quadratures other than Q and P.

With these ingredients, we can now completely specify the
conditional dynamics by defining the matrices

� = CT
Y (σY + σm)−1/2, � = CX σY (σY + σm)−1/2, (25)

as well as the functional

χ [σ ] = B[σ ](σY + σm)−1B[σ ]T = (σ� + �)(σ� + �)T.

(26)
The conditional first and second moments will then evolve

according to the Riccati problem (stochastic),

drX |ζ = ArX |ζ dt + (σX |ζ� + �)dwt ,

σ̇X |ζ = AσX |ζ + σX |ζ AT + D − χ [σX |ζ ], (27)

where dwt is a vector of independent Wiener increments
satisfying 〈dw〉 = 0 and 〈dw dwT〉 = IY dt . Equations (27)
show that the first moments follow a dynamics induced by
a stochastic Langevin equation, while the conditional co-
variance matrix evolves fully deterministically. This implies
that σX |ζ depends only on whether or not the measurement
occurred and its nature, but not on the outcome ζ . This pe-
culiarity of Gaussian systems is responsible for a significant
simplification in the formal description of the process, as it
will soon be illustrated.

The quantity χ [σ ] in Eq. (26) is often referred to as the
innovation matrix and represents the change in information
from the measurement outcomes (recall that B is associated
with the system-ancilla correlations). For instance, if η → 0
in Eq. (24), the matrix σm diverges and hence χ → 0. The last
two terms in Eqs. (27) thus represent a competition between
the noise, accounted for by D, which tends to increase the
modulus of the entries of σX |ζ (i.e., increasing they uncertain-
ties), and the innovation χ , which has the opposite effect.

B. Information-theoretic and thermodynamic quantities

The von Neumann entropy of an N-mode Gaussian system
with covariance matrix σ and positive symplectic eigenvalues
{ν j} is given by

SvN(σ ) =
N∑

j=1

{
ν j + 1

2
ln

ν j + 1

2
− ν j − 1

2
ln

ν j − 1

2

}
.

(28)
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Using the von Neumann entropy in the Gaussian case turns out
to not be always very convenient, most remarkably because of
the so-called ultracold catastrophe [51], i.e., the divergence
of thermodynamic quantities—such as entropy production—
defined through SvN that is observed when the system of
interest is affected by an environment prepared in a pure
state. The reasons for such divergences can be traced back
to the fact that the relative entropy D(ρ ′||ρ), which enters
in the entropy production (13), diverges when the support of
ρ ′ is not contained in the support of ρ. Yet, such a situation
is very common in quantum optical experiments where the
ancillas entailed by our model would be embodied by the
electromagnetic field of optical modes, which is de facto in
its vacuum state [52].

An alternative formulation for Gaussian systems is to use
the Shannon entropy of the associated Wigner function [48].
Such quantity, which for Gaussian states turns out to coincide
with the Rényi-2 entropy, taken on the particularly elegant
form [53]

S2(σ ) = 1
2 ln |σ | + N ln 2 (29)

with |σ | being the determinant of the covariance matrix. The
Wigner entropy is not affected by divergences, even when
the environmental state is pure (e.g., a T = 0 vacuum state
modeling the interaction with an optical bath), and converges
to the von Neumann entropy in the classical limit of high
temperatures.

Crucially, while in general the Wigner entropy does not
enjoy a clear information-theoretic interpretation, its Gaussian
version satisfies the strong-subadditivity inequality [53,54],
a key property for an entropy to acquire an information-
theoretic sense, which legitimates our choice of entropic
quantifier. Without affecting the generality of our conclusions,
we henceforth take S2(σ ) as our basic measure of entropy.
Moreover, for simplicity we omit the constant offset N ln 2
from Eq. (29).

Equation (29) provides a form for both S(Xt ) and S(Xt |ζt ),
the calculation of the latter being considerably simplified by
the deterministic nature of the evolution of σXt |ζt and its inde-
pendence of ζt . The Holevo information in Eq. (7) takes the
particularly simple form

I (Xt :ζt ) = 1

2
ln

|σXt |
|σXt |ζt |

, (30)

which–through the identity d
dt ln |σ | = tr(σ−1 dσ

dt ), and the
Riccati problem in Eq. (27)—allows for the evaluation of the
time-continuous information rate İ . We find

İ = 1
2 tr

{
σ−1

X |ζ χ [σX |ζ ]
} − 1

2 tr
{(

σ−1
X |ζ − σ−1

X

)
D

}
, (31)

which should be split into a gain rate Ġ and a loss rate L̇, as in
Eq. (10). A detailed derivation of such splitting is presented in
Appendix C, which shows that

Ġ = 1
2 tr

{
σ−1

X |ζ χ [σX |ζ ]
}
, (32)

L̇ = 1
2 tr

{(
σ−1

X |ζ − σ−1
X

)
D

}
. (33)

These results are intuitive, as they demonstrate that Ġ is asso-
ciated with the innovation matrix χ , while L̇ depends on the

noise encoded in D. Equations (31)–(33) summarize the entire
information dynamics in the Gaussian case.

We would like to conclude by remarking that the above
calculations could also in principle be done using the von
Neumann entropy in Eq. (28). We show in Fig. 2(f) below
that the results gathered through the Wigner and von Neumann
entropy—in the context of a specific example—are nearly in-
distinguishable. However, the formal results obtained through
the use of the von Neumann entropy are quite cumbersome, as
they involve series expansions of the symplectic eigenvalues,
which is a nontrivial task. Using the Wigner entropy therefore
offers a significant simplification, making the interpretation of
the results much clearer.

C. Conditions for the establishment of an ISS

Equation (32) provides a clear condition for the existence
of an ISS. Recalling the definition in Eq. (26), we can write Ġ
in the more symmetric form

Ġ = 1
2 tr

{
σ

−1/2
X |ζ B[σX |ζ ](σY + σm)−1B[σX |ζ ]Tσ

−1/2
X |ζ

}
. (34)

This is the trace of a positive-semidefinite matrix and both
σX |ζ and σY + σm are quantum covariance matrices (which are
therefore always strictly positive definite). Thus,

Ġ = 0, if and only if B[σX |ζ ] = 0. (35)

Of course, this assumes that the entries of the noise matrix σm

are finite; that is, that the measurement is not completely unin-
formative. For instance, if η → 0 and/or � → ∞ in Eq. (24),
clearly we would have Ġ = 0 even if B �= 0.

D. Thermodynamic analysis

Next we turn to the thermodynamics of the system. First,
we evaluate the entropy flux, which in continuous time takes
the form of a rate

�̇ = tr{A} + 1
2 tr

{
σ−1

Y σ̃X
} + 1

2 r̃T
X σ−1

Y r̃X , (36)

with r̃X = CY rX and σ̃X = CY σXCT
Y . Similarly, the uncondi-

tional entropy production rate in Eq. (12) becomes

	̇u = 2tr
{
A} + 1

2 tr
{
σ−1

X D + σ−1
Y σ̃X

} + 1
2 r̃T

X σ−1
Y r̃X

= �̇ + tr{A} + 1

2
tr
{
σ−1

X D
}
. (37)

Finally, we can compute the conditional entropy production
	̇c using Eq. (16):

	̇c = 2tr{A} + 1
2 tr

{
σ−1

Y σ̃X + σ−1
X |ζ (D − χ [σX |ζ ])g

}
+ 1

2 r̃T
X σ−1

Y r̃X

= �̇ + tr{A} + 1
2 tr

{
σ−1

X |ζ (D − χ [σX |ζ ])
}
. (38)

The last line in Eq. (38) shows clearly that 	̇c coincides
with the expression of 	̇u where σX → σX |ζ and D → D −
χ [σX |ζ ], but without changing the associated entropy flux rate.
This, together with Eqs. (36) and (37), completely summa-
rizes the thermodynamics of continuous-variable CM2s.
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FIG. 2. (a) CM2 in the continuous-variable scenario, with a two-mode ancilla prepared in the state (39) and interacting with the beam-
splitter matrix (40), with γ = 1. (b) Conditional steady-state variance of the q quadrature for different measurement strategies, as a function
of the squeezing ξ in the ancilla state: s = 0, homodyne in Q; s = 1, heterodyne; and s = ∞, homodyne in P. For the latter, σ ∗

q coincides with
the unconditional variance [Eq. (42)]. (c, d) Dynamics of the conditional and unconditional variances of q and p, assuming the system starts in
the vacuum, with s = 1 and ξ = 1.2. (e) Sample trajectories of the conditional first moments. The choice of squeezing ξ = 1.5 in the ancillas
causes rq|ζ to fluctuate significantly more than rp|ζ . (f) Unconditional and conditional entropies, and Holevo information (7). The dashed line
superimposed on the red, solid curve is the unconditional von Neumann entropy, scaled by a constant factor. For Gaussian states, it is nearly
indistinguishable from the Rényi-2. (g) Information rate, İ , computed from Eq. (31), together with the information gain and loss rates Ġ and
L̇ [Eqs. (32) and (33)]. The model presents an information steady state, evidenced by a finite Ġ even in the long-time limit. (h) Unconditional
and conditional entropy production rates computed from Eqs. (37) and (38). The quantities in (b–h) are presented in arbitrary units.

IV. EXAMPLES AND APPLICATIONS

In this section we illustrate the potential of the framework
developed so far, by first tackling a paradigmatic example,
and then moving to the modeling of an experiment in an op-
tomechanical platform akin to the situation recently reported
in Ref. [55].

A. Example: Two-mode ancilla

We analyze a two-mode ancilla problem [cf. Fig. 2(a)],
where the first ancilla is prepared in its vacuum state,while
the second is in a squeezed state of squeezing degree ξ . The
covariance matrix of the environmental state is thus

σY =
(
I/2 O
O S/2

)
(39)

with I (O) the 2 × 2 identity (null) matrix and S =
diag(e2ξ , e−2ξ ). The interest of this choice lies also in the fact
that both ancillary subsystems are here prepared in a pure
state, which makes the standard formulation based on the
von Neumann entropy inapplicable in light of the ultracold
catastrophe. We assume the system interacts sequentially with
each ancilla. Moreover, we take the interactions to be of an
excitation-exchange type (cf. Appendix B 1 for details), which
results in a partial SWAP of the states of the colliding systems.

The interaction matrix C in Eq. (19) takes the form

C =
√

2γ

(
0 −1 0 −1
1 0 1 0

)
, (40)

where γ is the interaction strength. Finally, we assume only
the first ancilla is measured. That is, we choose the measure-
ment matrix σm to be of the form [cf. Eq. (24)]

σm = 1

2
diag

(
s,

1

s
,

1 − η

η
,

1 − η

η

)
. (41)

We then eliminate the information on the second ancilla by
taking η → 0.

The unconditional steady state is readily found by setting
σ̇X = 0 in Eq. (22), which gives

σ ∗
X = S + I

4
. (42)

This is the average between the initial states of the two ancil-
las: The alternating collisions cause the system to homogenize
to a state that is just the mean between the two states [56].

Similarly, we can also compute the conditional steady state,
by solving the equation σ̇X |ζ = 0 in the Riccati problem of
Eq. (27). The result is

σ ∗
X |ζ = 1

2

(√
(1 + s)(e2ξ + s) − s 0

0
√

(1+s)(se−2ξ +1)−1
s

)
.

(43)
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The variance (σ ∗
X |ζ )11 is shown in Fig. 2(b) against the

squeezing strength ξ and for different measurement choices
s. For s → ∞, this tends to the unconditional value (σ ∗

q )11 =
(e2ξ + 1)/4, while for s = 0 it gives eξ /2. For any value
of s, we always have σ ∗

q|ζ � σ ∗
q . Measuring therefore al-

ways cools down both quadratures. However, the cooling
performance depends on the type of measurement being
considered.

Figures 2(c) and 2(d) show the dynamics of the elements
of the covariance matrix of X , which is assumed to be initially
prepared in the vacuum state. Similarly, Fig. 2(e) presents
sample trajectories of the conditional first moments, rq|ζ and
rp|ζ . The results are for s = 1, which corresponds to per-
forming a heterodyne measurement, so that the measurement
is symmetric in both quadratures. However, the behavior
of the q and p quadratures is fundamentally different. This
is a consequence of the choice of initial ancilla state. We
have chosen ξ = 1.2, meaning that Y2 is squeezed in the
P direction (and hence expanded in the Q direction). As a
consequence, the steady-state covariance σq is much larger
than that of p, for both the conditional and unconditional
dynamics. Interestingly, though, we also see that the cool-
ing effect of measurement is much more significant in the q
quadrature.

The results for the variances are reflected on both the
information and thermodynamics of this example. In Fig. 2(f)
we plot the unconditional and conditional entropies, as well
as the Holevo information. The conditional entropy tends to
a lower value than the unconditional one, in agreement with
the findings for the variances. This happens because of the
acquired information. Figure 2(g) shows the information rate
İ , computed from Eq. (31). Initially a lot of information is
obtained, but as time passes İ tends to zero. However, the gain
rate and loss rates, Eqs. (32) and (33), tend to a finite value
in the steady state, thus characterizing an ISS. Finally, a com-
parison between the unconditional and conditional evolution
of the entropy production is shown in Fig. 2(h), where it can
be seen that both decay from an initially high value towards
a nonzero steady-state value. The reason why the entropy
production rate is initially high is because the initial state of
the system is very far from equilibrium. Also, the difference
σ c − σ u is larger for intermediate times, which is when İ is
the largest. At t = 0 and at t = ∞, both quantities coincide,
as they should.

The results of Fig. 2 clearly show that the system tends to
an ISS. According to Eq. (35), the condition for this to be the
case is to have B[σ ∗

X |ζ ] > 0. In our case, using Eqs. (39), (40),
and (43), we find

B[σ ∗
X |ζ ] =

√
γ

2

(
1 − 2σ ∗

Q|ζ 0 e2ξ − 2σ ∗
Q|ζ 0

0 1 − 2σ ∗
P|ζ 0 e−2ξ − 2σ ∗

P|ζ

)
,

where σ ∗
Q|ζ and σ ∗

P|ζ are the entries of Eq. (43). We therefore
see the conditions for the existence of an ISS are quite light.
Essentially, as long as the steady state of the system is neither
that of Y1 nor that of Y2, information will continue to be ac-
quired in every collision. This result also provides guidelines
on how different measurement strategies affect the ISS. For
instance, suppose we were to measure ancilla Y2 instead of
Y1. From Eq. (34) we have that Ġ ∝ B(σY + σm)−1BT and
measuring Y2 means introducing an infinite amount of noise
in the Y1 block of σm. This would then eliminate the left block
of B.

B. Global versus reduced dynamics

We now use the continuous-variable results to make a small
digression about an important point in quantum and stochastic
thermodynamics. Consider a general scenario of a system
interacting with a bath. Very often, this process is described
by an effective reduced description, such as a quantum master
equation. The point we wish to address is that, while this de-
scription may be adequate for describing the dynamics, it does
not necessarily suffice to describe the thermodynamics [36].
This can be illustrated by the following minimal example.
Consider a single mode subject to a standard thermal bath,
as described by the Gorini-Kossakowski-Lindblad-Sudarshan
(GKLS) master equation

dρ

dt
= −i[H, ρ] + D(ρ)

= −i[H, ρ] + γ (n̄ + 1)D− + γ n̄D+, (44)

where H = ωa†a, D− = aρa† − 1
2 {a†a, ρ}, and D− =

a†ρa − 1
2 {aa†, ρ}. Moreover, γ > 0 is the dissipation rate,

and n̄ = (eω/T − 1)−1 is the mean number of excitations in
the bath. In this scenario, one would naturally associate the
heat current to the bath with

d〈H〉
dt

= tr{HD(ρ)}. (45)

In the long-time limit the system will tend to an equilibrium
state, characterized by a zero current. However, suppose in-
stead that the same system is coupled to two baths, at different
temperatures T1 and T2. In a weak-coupling approximation,
the resulting master equation for the two baths will be addi-
tive, so that we would simply have

dρ

dt
= −i[H, ρ] + D1(ρ) + D2(ρ), (46)

where each dissipator Di is defined as in Eq. (44), with param-
eters γi and n̄i. Equation (47) can be recast in a form involving
a single dissipator by defining D′ = D1 + D2, which would
be of the form of Eq. (44) with parameters γ ′ = γ1 + γ2

and n̄′ = (γ1n̄1 + γ2n̄2)/(γ1 + γ2). While such reformulation
would suggest thermalization with a single bath at the effec-
tive temperature T ′ = ω/ ln(1 + 1/n̄′), in reality, the process
itself is clearly different and would drive the system to a
nonequilibrium steady state. This is seen from the fact that,
as long as T1 �= T2, we will have tr{HDi} �= 0, meaning there
will be a current of heat from one bath to the other. However,
this can only be observed if one has access to the additional
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information that D′ = D1 + D2 and the local currents. A rig-
orous thermodynamic description therefore requires that one
properly identifies all possible heat sources. Despite its sim-
plicity, this example illustrates well how the thermodynamic
interpretation can be fundamentally altered depending on the
amount of global information one has access to. Note also that
this is not a quantum feature, as the same problem also appears
in stochastic thermodynamics, as discussed in detail, e.g., in
Ref. [57].

We will now analyze this issue from the viewpoint of
continuous-variable models. The reduced dynamics of the
system is specified by the four matrices A, D, �, and �, while
the full global dynamics is also specified by σY , CX , and CY .
Any property that can be expressed solely as a function of the
former set of matrices can thus be found from the reduced
dynamics alone. Let us then analyze the entropy flux rate
Eq. (36) from this perspective. We can rewrite the flux rate
in terms of ϒ = CT

Y σ−1
Y CY as

�̇ = tr{A} + 1
2 tr{ϒσX } + 1

2 rT
X ϒrX .

In general ϒ cannot be constructed solely from A, D, �, and
�, which shows the global character of the flux. This becomes
quite important in light of the additivity property of the flux
rate stated in Eq. (14). To see this, suppose Y has multiple,
initially independent, internal units, so that σY = ⊗

j σYj . This
entails

CX = (CX1 CX2 · · ·), CY =
⎛
⎝CY1

CY2
...

⎞
⎠, (47)

and as a consequence ϒ = ∑
j CT

Yj
σ−1

Yj
CYj = ∑

j ϒ j . We also

define the dissipative part of matrix A as Ad = 1
2CXCY

∑
j Adj

(with Adj = 1
2CXjCYj ), which is the only part contributing to

tr{A}. The flux rate is thus additive, and reads

�̇ =
∑

j

� j = 1

2

∑
j

[
tr{CXjCYj } + 1

2
tr{ϒ jσX } + 1

2
rT

X ϒ j rX

]
.

(48)
Each term in the sum identifies the entropy flux rate to the
individual ancillas and, hence, to each independent source of
dissipation within the system. In the particular case where
the matrices CXj are invertible, we can also relate ϒ with the
diffusion matrix D [cf. Eq. (21)], thus giving the alternative
decomposition of the flux rate as

�̇ =
∑

j

[
tr{Adj} + 2tr

{
AT

d jD
−1
j AdjσX

} + 2 rT
X AT

d jD
−1
j AdjrX

]
.

(49)
This expression preserves the correct identification of the dis-
sipation channels. Note, however, that it requires not only Ad

and D, but also their specific decompositions in terms of Adj

and Dj . Finally, we also mention that the flux rate can only
be expressed in the form in Eq. (50) if the matrices CXj are
invertible. There are many cases when this does not hold true,
as illustrated for instance in Appendix B 2. In those cases, one
must rely on the original expression, Eq. (49), which holds for
any interaction matrix.

C. Modeling an optomechanical experiment

Finally, we employ our framework to describe the ex-
periment performed in Ref. [55]. The setup consists of an
intracavity mechanical mode embodied by a vibrating mem-
brane, subjected to two external baths. The first is a standard
thermal bath, associated with a phononic background for the
mechanical mode. The second bath is optical, and provided
by the field of the cavity, which is eliminated adiabatically
from the dynamics of the system and, by being continuously
monitored, gives information on the mechanical system. The
scenario is therefore similar in spirit to the two-mode example
of Fig. 2.

The evolution of the system is described by the stochastic
master equation [58,59]

dρ = Lth-qbadt + √
η�qba(H[q]dw1 + H[p]dw2), (50)

where

Lth-qba = (�m(n̄ + 1) + �qba)D− + (�mn̄ + �qba)D+ (51)

represents the Lindblad dissipator, including the quantum
back-action mechanism induced by the monitored optical
baths, with D± defined below Eq. (44). In Eq. (51) we also
defined H[O] = Oρ + ρO† − ρtr((O + O†)ρ), which is as-
sociated with the continuous measurements, with η ∈ [0, 1]
denoting the measurement efficiency. Finally, dw1 and dw2

are two independent Wiener increments.
Equation (51) leads to unconditional and conditional dy-

namics described by Eqs. (22) and (27), with

A = −�m

2
I, D =

[
�m

(
n̄ + 1

2

)
+ �qba

]
I,

χ [σ ] = 4η�qbaσ
2
X . (52)

These results are intuitive: The diffusion matrix D, which is
responsible for the noise, is associated to both the thermal and
optical baths. The innovation matrix χ , on the other hand, is
associated only to the optical bath, which is the only one being
measured. Moreover, χ ∝ η, so that if η = 0 (fully inefficient
measurement), the innovation vanishes. Slightly less intuitive
is the fact that the optical bath does not affect the damping
matrix A. This is associated to the specific way in which the
optical mode couples to the mechanical system.

In order to be able to properly describe the thermody-
namics of this system, we must now construct a CM2 which
reproduces the matrices in Eqs. (53) at the level of the re-
duced dynamics, looking for its minimal construction. First,
it is worth stressing that the thermal and optical baths are
independent. The former does not have to be modeled by a
collisional model as it is not monitored. Its effects could thus
be described by a master equation. In order to better match
with the notation of the remainder of the paper, however,
we assume that the thermal part is described by a collisional
model as well. In this case, it can be generated by using a
single-mode thermal ancilla interacting with the system via
an excitation-exchange interaction, as studied in Sec. IV A.
The description of the optical mode, on the other hand, is less
trivial. A special feature of the stochastic master equation,
Eq. (51), is that it allows one to independently monitor the
two mechanical quadratures q and p. The optical bath must,
therefore, be itself composed of at least two modes. Hence,
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the ancilla in this model must have a total of three modes,
with initial state

σY =
⎛
⎝(n̄ + 1/2)I O O

O I/2 O
O O I/2

⎞
⎠. (53)

The first ancillary mode is in a thermal state with occupation
number n̄, while the optical ancillas are initially in the vacuum
state.

Next we turn to the interaction matrices for the optical
baths. The peculiar feature of this interaction is that it gen-
erates no contribution to the damping matrix A in Eq. (53).
As discussed in Appendix B 2, this feature is generated
by position-position or momentum-momentum couplings: the
second ancilla (i.e., the first optical one) is used to monitor q
via the interaction Hamiltonian −√

2�qbaqQ2, while the third
ancilla monitors the mechanical momentum p via the term√

2�qba pP3. The interaction matrix C will thus have the form

C =
(

0 −√
�m −√

2�qba 0 0 0√
�m 0 0 0 0

√
2�qba

)
.

(54)
This leads to the matrices [cf. Eq. (20)]

CX = (√
�mI

√
2�qbaσ−

√
2�qbaσ−

)
, (55)

CY =
⎛
⎝ −√

�mI√
2�qbaσ−√
2�qbaσ+

⎞
⎠. (56)

The drift and diffusion matrices, Eqs. (21), will then be given
by Eq. (53).

Finally, to reproduce the innovation matrix in Eq. (53), the
measurement matrix σm must have the form σm = ⊕3

j=1 σmj ,
where each σmj is given by Eq. (24), with the following
parameters: First, for the thermal ancilla η1 = 0 with s1 ar-
bitrary. Then, since the first optical ancilla is coupled through
a position-position mechanism to the mechanical system, we
actually have to detect its momentum P2. That is, we set
η2 = η and s2 = ∞. Finally, for the second optical ancilla, we
set η3 = η and s3 = 0, so that we homodyne Q3. With these
choices for the matrix σm, one then reproduces exactly the
innovation matrix in Eq. (53). The minimal CM2 that we have
deduced here can consistently describe the dynamics and ther-
modynamics of the experiment performed in Refs. [35,55].

In particular, in Ref. [35], the analysis of the thermodynam-
ics of the system addressed here was presented by working at
the level of the system master equation. However, in order to
obtain the correct expression of the entropy fluxes, a refined
analysis was needed, starting from the full mechanical-cavity
system master equation before the adiabatic elimination of the
latter could be performed [58,59] leading to Eq. (51). Here
we can clearly see why that was the case. Indeed, we can
see from Eq. (56) that the matrices CXi for i = 2, 3—which
reproduce the dynamics as described by Eq. (51) obtained
after adiabatic elimination and other approximations—are sin-
gular. Following our previous discussion, the entropy flux in
this case cannot be written solely in terms of the reduced
dynamics. This strengthens further the point we made in the
previous section on the importance of global information for

the consistent description of the thermodynamics of the sys-
tem.

V. CONCLUSIONS

We have investigated the thermodynamics of continu-
ously monitored quantum Gaussian systems, reformulating
the problem in a collisional model framework [31]. By fo-
cusing on continuous variables, we were able to connect the
entropy production and flux rates, characterizing the thermo-
dynamics of the quantum process, to purely informational
quantities and highlight the role of information in charac-
terizing the irreversibility of the dynamics and sustaining
nontrivial asymptotic states, i.e., the informational steady
states.

Our work also advances the results first presented in
Ref. [16], where a semiclassical, phase-space description of
continuously measured Gaussian systems thermodynamics
was presented. In particular, we have addressed here the is-
sue of how much global knowledge is required to properly
describe the thermodynamics of Gaussian systems. Indeed,
the dynamics of an open quantum system is determined by
the knowledge of its master equation. This, in turn, requires
certain information on the environment to which the system is
exposed. However, this information is in general not sufficient
to properly characterize the thermodynamics of the system, as
exemplified by the experiment in Ref. [35]. We have shown
that the collisional model framework allows to identify the
cases in which global information beyond the master equa-
tion is needed in order to have a consistent thermodynamic
description of the quantum process of interest.

The formalism we have developed in this work is applica-
ble to the wide class of Gaussian systems and processes which
are of pivotal importance in quantum information science and
quantum technologies. In fact, we also provided an account
of a recent experiment in optomechanics, showing that our
formalism should be useful in describing a broad variety of
quantum-coherent experiments.
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APPENDIX A: CONSTRUCTION OF THE GAUSSIAN CM2

In this Appendix we detail the derivation of the main
results of Sec. III A. We begin by focusing on a single
collision described by Hamiltonian (19). The Heisenberg evo-
lution of the quadratures after a time dt is given by R̂(dt ) =
eiXY Hdt R̂(0), where XY is the symplectic form of dimen-
sions 2(NX + NY ). Expanding for small dt , we then find

R̂X ′ = R̂X + AR̂X dt + CX R̂Y

√
dt, (A1)
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R̂Y ′ = R̂Y + AY R̂Y dt + CY R̂X

√
dt, (A2)

where the matrix A is defined in Eq. (21). In addition, we also
defined

AY = Y HY + 1
2CY CX . (A3)

From Eqs. (A1) and (A2) we then find that the first moments,
after the collision, are given by

rX ′ = rX + ArX dt, (A4)

rY ′ = CY rX

√
dt . (A5)

The ancilla is displaced by an amount proportional to rX , but
this is “filtered” by CY , which can cause the ancilla to become
blind to some of the system’s quadratures. This becomes par-
ticularly clear from the examples discussed in Appendix B.

Similarly, we can look at the evolution of the second
moments. We parametrize the covariance matrix after the
collision as

σX ′Y ′ =
(

σX ′ ξX ′Y ′

ξT
X ′Y ′ σY ′

)
. (A6)

Equations (A1) and (A2) then yield

σX ′ = σX + (AσX + σX AT + D)dt, (A7)

σY ′ = σY + (
AY σY + σY AT

Y + CY σXCT
Y

)
dt, (A8)

ξX ′Y ′ = (
σXCT

Y + CX σY
)√

dt

:= B[σX ]
√

dt, (A9)

where B was defined in Eq. (23) and D is the diffusion matrix,
defined in Eq. (21).

On the other hand, the conditional state of the system,
given a certain measurement outcome, is still Gaussian, with
first and second moments given by [34]

rX ′|z = rX ′ + ξX ′Y ′ (σY ′ + σm)−1(z − rY ′ ), (A10)

σX ′|z = σX ′ − ξX ′Y ′ (σY ′ + σm)−1ξT
X ′Y ′ . (A11)

Conditioning updates the average by a term proportional to
the correlations ξX ′Y ′ , as well as the outcomes z. Since z is
random, rX ′|z will be stochastic. The covariance matrix σX ′|z,
on the other hand, is reduced by the presence of the second
term in Eq. (A11), called the Schur complement. Note that this
term is, by construction, positive semidefinite, so that indeed
conditioning always reduces the uncertainty about the system,
as expected.

Equations (A10) and (A11) are general, in that they do not
require the collision time to be infinitesimal. On the other
hand, expanding in powers of dt and using Eqs. (A4)–(A9),
we find

rX ′|z = rX ′ + B[σX ](σY + σm)−1/2dw

= rX + ArX dt + B[σX ](σY + σm)−1/2dw, (A12)

σX ′|z = σX ′ − χ [σX ]dt

= σX + (AσX + σX AT + D − χ [σX ])dt, (A13)

where dw = (σY + σm)−1/2(z − rY ′ ) can be shown to be-
have as a Wiener white noise term (that is, 〈dw〉 = 0 and
〈dwdwT〉 = dt IY ).

The first line in Eq. (A13) can be viewed as a manifesta-
tion of the so-called law of total variance [60]. In classical
probability theory, the variance of a random variable X ′ can
be written as

var(X ′) = Ez(var(X ′|z)) + varz(E(X ′|z)). (A14)

The first term, called the within-group variation, measures the
fluctuations var(X ′|z) within a given outcome z (i.e., within
a given “group”), and then averages it over all outcomes.
Conversely, the second term, called between-groups variation,
quantifies how much the conditional average E(X ′|z) fluctu-
ates between different outcomes z.

The law naturally extends for covariance matrices. Then,
since we only condition on classical random variables z, the
logic remains true, even though the system is quantum. The
within-group term is thus Ez(σX ′|z ). However, since σX ′|z does
not depend on z, this simplifies to Ez(σX ′|z ) = σX ′|z. Similarly,
the between-groups term is Covz(rX ′|z ), where Cov stands for
the covariance matrix of the random vector rX ′|z. Hence, by
comparison, moving χ [σX ]dt to the left of Eq. (A13), we see
that the between-groups contribution is precisely

varz(rX ′|z ) = χ [σX ]dt . (A15)

This provides another neat interpretation to the innovation
matrix: It describes how rX ′|z fluctuates between different
outcomes z.

As a technical note, we mention that one could also, in
principle, write down equations for the conditional state of
the ancilla, given the measurement outcomes, that is, rY ′|z and
σY ′|z. This, however, is not so easy, for it requires knowl-
edge of the exact generalized measurement operators Mz. The
noise covariance matrix σm, we are using here, only specifies
the resulting positive operator-valued measure (POVM). And
there is an infinite number of nontrivial choices of general-
ized measurements which yield the same POVM. Luckily,
all quantities, both informational and thermodynamic, can be
expressed without knowledge of rY ′|Z and σY ′|Z , as will be
shown below.

Having established the evolution rules for a single col-
lision, it is now straightforward to compound them and
construct the continuous-time dynamics. The unconditional
dynamics, for instance, is given by the update rules (A4) and
(A7) which, when adapted to multiple collisions, become

rXt = rXt−1 + ArX dt, (A16)

σXt = σXt−1 + (AσXt−1 + σXt−1 AT + D)dt . (A17)

Dividing by dt on both sides and taking the limit dt → 0 then
yields precisely Eqs. (22).

For the conditional dynamics, some care must be taken.
Equations (A12) and (A13) refer to a single collision. Hence,
the quantities rX and σX that appear on the right-hand side,
are actually the state of the system before that collision. In the
case of a conditional dynamics, this would then be rXt−1|ζt−1

and σXt−1|ζt−1 . The left-hand side will then be associated with
Xt |ζt . Thus, the conditional evolution will be described by
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rXt |ζt = rXt−1|ζt−1 + ArXt−1|ζt−1 dt + B[σXt−1|ζt−1 ](σY + σm)−1/2dwt , (A18)

σXt |ζt = σXt−1|ζt−1 + (AσXt−1|ζt−1 + σXt−1|ζt−1 AT + D − χ [σXt−1|ζt−1 ]) dt . (A19)

Equation (A18) leads to the Langevin equation in Eqs. (27),
while Eq. (A19), when taking the limit dt → 0, leads to the
Riccati equation in Eqs. (27).

APPENDIX B: EXAMPLES OF SYSTEM-ANCILLA
INTERACTIONS IN THE CONTINUOUS-VARIABLE CASE

In this Appendix, we provide examples of some typical
system-ancilla interactions in the continuous-variable sce-
nario. We also discuss the basic structure of the resulting
matrices CX , CY in Eq. (20), as well as the matrices A and D in
Eqs. (21), which enter in many of the equations in Sec. III A.

1. Quantum-optical master equation

Suppose the system and ancilla are each comprised of a
single mode of radiation, described by annihilation operators
aX and aY and interacting with a beam-splitter Hamiltonian

H = ω(a†
X aX + a†

Y aY ) + i
√

2γ (a†
X aY − a†

Y aX ). (B1)

We introduce quadratures q = (aX + a†
X )/

√
2 and p = i(a†

X −
aX )/

√
2 (and similarly for Q and P for the ancilla). The

Hamiltonian then becomes of the form (19), with HX = HY =
ωI2 and

C =
(

0 −√
2γ√

2γ 0

)
. (B2)

As a consequence, the matrices CX and CY in Eqs. (20) be-
come

CX = −CY =
√

2γ I2, (B3)

so that A in Eqs. (21) becomes

A = ωX − γ I2 =
(−γ ω

−ω −γ

)
. (B4)

The interaction with the ancilla therefore introduces a damp-
ing term of intensity γ .

We also assume that the ancilla is initially thermal,

σY = (n̄ + 1/2)I2, (B5)

where n̄ is the thermal occupation. The diffusion matrix D
then becomes

D = CX σY CT
X = γ (2n̄ + 1)I2. (B6)

The resulting unconditional dynamics, compounding the ef-
fects of multiple collisions, therefore corresponds to the usual
quantum optical master equation

dρX

dt
= −i[HX , ρX ] + γ (n̄ + 1)D[aX ] + γ n̄D[a†

X ],

where D[L] = LρX L† − 1
2 {L†L, ρX }.

2. Position-position coupling

Next we consider the case in which the system and ancilla
are still given by a single mode each, but now coupled through
an interaction of the form

Hint = −√
gqQ. (B7)

The interaction matrix C in Eq. (19) becomes

C = −√
g

(
1 0
0 0

)
, (B8)

so that

CX = CY = √
g

(
0 0
1 0

)
. (B9)

Quite interestingly we see that in this case CXCY = CY CX = 0.
Hence, the drift terms in Eqs. (21) and (A3) vanish com-
pletely. The diffusion matrix, on the other hand, becomes

D = g(n̄ + 1/2)

(
0 0
0 1

)
.

A position-position coupling therefore introduces diffusion
only in the momentum quadrature (and no damping in either).

3. Ancillas with multiple components

As a final example, let us consider the case where each
interaction actually involves an ancilla with two components,
Y = (Q1, P1, Q2, P2). This helps to gain intuition about the
sizes of the matrices. It is also important when only some of
the ancillas are actually measured, which is an experimentally
meaningful hypothesis: normally, the system will interact with
many ancillas at once, but the experimenter may have access
to only some of them.

The interaction matrix C in Eq. (19) now becomes rectan-
gular:

C = (C1 C2), (B10)

with C1 and C2 being 2 × 2 matrices. The matrices CX and CY ,
in turn, become

CX = (CX1 CX2 ), CY =
(

CY1

CY2

)
, (B11)

where CXi and CYi are all 2 × 2. For instance, if (Q1, P1) inter-
acts with the system according to a beam-splitter interaction
(B1), then C1 will be given exactly by Eq. (B2) and CX1 , CY1

will be given by Eq. (B3).

APPENDIX C: CALCULATION OF INFORMATION
AND THERMODYNAMIC QUANTITIES IN THE

CONTINUOUS-VARIABLE SCENARIO

This Appendix provides details on the calculation of
information-theoretic and thermodynamic quantities in the
case of continuous-variable models. To do so we will use some
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of the results of Appendix A. The information rate appearing
in Eq. (10) is given by

�It = 1

2
ln

|σXt |
|σXt−1 |

− 1

2
ln

|σXt |ζt |
|σXt−1|ζt−1 |

. (C1)

But to compute Gt and Lt in Eq. (10) we need I (Xt :ζt−1). This
is obtained from the map

ρXt |ζt−1 = E (ρXt−1|ζt−1 ), (C2)

where E is the unconditional map ρXt = E (ρXt−1 ) :=
trYt {ρXtY ′

t
}. In the language of covariance matrices, this

consists in applying the unconditional evolution (A13) to
σXt−1|ζt−1 ; viz.,

σXt |ζt−1 = σXt−1|ζt−1 + (AσXt−1|ζt−1 + σXt−1|ζt−1 AT + D)dt . (C3)

We then immediately get, using definitions (8) and (9),

Gt = 1

2
ln

|σXt |ζt |
|σXt |ζt−1 |

, (C4)

Lt = 1

2
ln

|σXt−1 |
|σXt |

− 1

2
ln

|σXt−1|ζt−1 |
|σXt |ζt−1 |

. (C5)

As a sanity check, subtracting Gt − Lt clearly leads to
Eq. (C1).

Equations (C1), (C4), and (C5) do not assume infinitesi-
mal collisions. To obtain a continuous-time description, we
expand the determinants to leading order in dt . To do this,
the following result turns out to be quite useful: Consider the
Wigner entropy (29) and assume that σ = σ0 + σ1, where σ1

is small. A series expansion of |σ | in powers of σ1 then yields

1
2 ln |σ | = 1

2 ln |σ0| + 1
2 tr

(
σ−1

0 σ1
)− 1

4 tr
(
σ−1

0 σ1σ
−1
0 σ1

)+ · · · .

(C6)
This is a useful expression because all results just presented
are of this form.

We begin by applying it to Eq. (C1). First, from Eq. (A17)
we get

1

2
ln

|σXt |
|σXt−1 |

= 1

2
tr
(
2A + σ−1

Xt−1
D

)
dt,

where we used the fact that tr(A) = tr(AT). Similarly,
Eq. (A19) yields

1

2
ln

|σXt |ζt |
|σXt−1|ζt−1 |

= 1

2
tr
{
2A+σ−1

Xt−1|ζt−1
D−σ−1

Xt−1|ζt−1
χ [σXt−1|ζt−1 ]

}
dt .

In the limit dt → 0, Eq. (C1) therefore reduces to the result in
Eq. (31). Similarly, repeating the procedure for Gt and Lt in
Eqs. (C4) and (C5) and identifying Ġ = Gt/dt and L̇ = Lt/dt
leads to Eqs. (32) and (33).

To compute the thermodynamic quantities, we first note
that the relative Wigner entropy between two Gaussian states
ρ1 and ρ2, with covariance matrices σ1 and σ2, and first mo-
ments r1 and r2, can be written as [53]

D(ρ1||ρ2) = 1
2 tr[σ−1

2 (σ1 − σ2)] + S(σ2) − S(σ1)

+ 1
2 (r1 − r2)Tσ−1

2 (r1 − r2). (C7)

Thus, the entropy flux in a single collision can be written as

��t = 1
2 tr

[
σ−1

Yt
(σY ′

t
− σYt )

] + 1
2 rT

Y ′
t
σ−1

Yt
rY ′

t
. (C8)

Plugging in Eqs. (A5) and (A8) then leads to Eq. (36), where
�̇ = ��t/dt . We also need to use the fact that

tr(AY ) = tr(A) = 1
2 tr(CXCY ), (C9)

which follows from Eqs. (21) and (A3), together with the fact
that X HX and Y HY are traceless. Finally, to obtain 	̇u, we
use again the expansion (C6) to

S(Xt ) = S(Xt−1) + 1
2 tr{2A + σ−1

Xt−1
D}dt . (C10)

Combining this with Eq. (C8) and taking the limit dt → 0
then leads to Eq. (37).

We finish with a technical note. In deriving these expres-
sions we have tacitly assumed that ��c

t = ��u
t is satisfied.

In general, however, there is no guarantee that the state
of the ancilla after the (nonselective) measurement, ρ̃Y ′ =∑

z MzρY ′Mz, will still be Gaussian. This is due to the fact that,
despite the POVM of a (noiseless) general-dyne measurement
corresponds to the projection-valued measure (PVM) over
some (pure) Gaussian state, there are infinitely many (unitarily
equivalent) quantum operations corresponding to the same
POVM and some of these operations can give rise to a non-
Gaussian ρ̃Y ′ . It is, however, easy to see that any time the state
of the ancilla ρ̃Y ′ is Gaussian then the entropy flux is well de-
fined in terms of the Wigner relative entropy and ��c

t = ��u
t

is automatically satisfied. Physically speaking, this is always
the case when we assume the operations acting on the ancilla
to be the projections over Gaussian states. Moreover, since the
state of the ancilla after the measurement is rarely of interest,
and in accordance with the classical intuition spelled out in
Ref. [31], the possible mismatch between the conditional and
unconditional fluxes can be safely neglected.
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