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Thermodynamic quantities, such as heat and work, are not functions of state, but rather of the process
undergone by a physical system. Assessing them can therefore be difficult, since it requires probing the system
at least twice. This is even more so when these quantities are to be assessed at the stochastic level. In this
paper we show how to obtain optimal estimates of thermodynamic quantities solely from indirect measurement
unravelings of an auxiliary system. The method always yields the true average, and the mean-squared error of
the prediction is directly proportional to how well the method estimates the variance. As an application, we study
energy fluctuations in a driven system, and in an avoided crossing work protocol.
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I. INTRODUCTION

At the nanoscale, thermodynamic quantities, such as
heat and work, may fluctuate significantly [1-10]. Properly
accounting for these fluctuations is crucial, both from a fun-
damental as well as from an applied perspective. For instance,
in nanoscale engines both the output power [11,12] and the
efficiency [13-15] may fluctuate significantly, and the conse-
quences of this are only now starting to be explored.

A unique feature of thermodynamics, however, is that the
said quantities do not depend on the state of the system, but
rather on the process or transformation in question. Within a
quantum setting, several approaches have been developed for
tackling this problem [16-28]. But still today, the most widely
used is the two-point measurement (TPM) scheme [8—10],
where a projective measurement in the system energy basis is
applied before and after the process. Very often, however, the
“system” is actually composed of multiple parts. For instance,
in the case of a heat engine operating between two baths, the
full statistics of heat and work is in general only accessible by
performing a TPM in both the working fluid and the two baths
[29], which can be prohibitive.

When not all parts of the system are accessible, it becomes
necessary to develop strategies to estimate the thermodynamic
quantities indirectly [22,30-33]. A concrete experimental ex-
ample is the calorimetric method developed in Refs. [34-36],
which estimates work in a quantum system by measuring the
heat flowing to an ancilla (which acts as a finite reservoir).
This paradigm is also quite frequently seen in open quantum
systems, e.g., in the study of full counting statistics [9,37—40],
where the heat statistics is determined from measurements in
the bath.

Motivated by this issue, in this paper we approach the
problem from the angle of statistical inference. We consider a
system S undergoing a generic open process in contact with an
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ancillary system A, which can have any size. It is assumed that
the system can never be measured; however, one has access to
a certain set of outcomes of the ancilla, corresponding to the
unravelings of the open system dynamics [41,42]. Our goal is
to estimate the changes (at the stochastic level) in some sys-
tem observable G,, between two different times (e.g., 0 and 7).
More concretely, we ask what is the best possible prediction
one can make about the changes in G, given only stochastic
outcomes in the ancilla? We formulate our results using the
notion of statistical predictors [43]. Being inference based, our
method is thus directly applicable to experiments. Our main
result is Eq. (7), which specifies the optimal mean-squared
predictor as a function only of the Kraus operators determin-
ing the process. This, as we show, can then be directly applied
to thermodynamic protocols, e.g., for the estimation of work.
However, the result also holds for any system operator, and
thus extends beyond thermodynamics. To illustrate the ideas,
we consider the estimation of energy fluctuations in a driven
qubit, and the determination of work in an avoided crossing
protocol.

II. STATEMENT OF THE PROBLEM

We consider a system S prepared in a state pg, inter-
acting with an ancillary system A, prepared in a state p,.
The total Hamiltonian is taken to have the general form
H(t) = Hs(t) + Ha(t) + V(¢), and can in principle have any
kind of time dependence. The process will thus in general
involve the expenditure of work, as well as the exchange of
heat between S and A. The interaction lasts for a time T,
after which their joint state will be psa(t) = U, (ps ® ,oA)U:,
where U, = T e~ l 4H® and 7~ is the time-ordering operator.
The reduced state of the system will then be described by the
quantum channel ps(7) = A[ps], where Ale] =tryU;(e ®
,oA)U: . If one is concerned with a closed system, A entails the
open system dynamics due to the presence of the measurement
device, and, if the system is already open, A can include both
dynamics and measurement backaction.

©2022 American Physical Society
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Our main interest is in the changes undergone by some
system observable G;; this could be, for instance, the local
system energy Hs(t). The average change in G is, of course,

(AG) = tr{G; Alps] — Gops}. 9]

But our interest is in going beyond the average, and ac-
counting for the fluctuations. We do this using the two-point
measurement (TPM) protocol [8]. Let G = > 20 *20180) (8ol
and G, = ) ¢. Mg, 187)(g<| denote the eigendecompositions of
G, att = 0 and ¢t = 7. For now, we assume that [Gy, ps] = 0;
the case where this does not hold is subtle, and is discussed
below. The TPM protocol consists in measuring the system in
the eigenbases {|go)} and {|g.)}, respectively, before and after
the channel A[e]. This leads to the distribution

P(AG) = Z(grIA[Igo>(goI]Igf>p(go)8(AG — (8r — 80))-

80,87
(2)
where p(go) = (golpslgo). From this, higher-order statistics
can be readily computed. Of particular interest is the vari-
ance var(AG) = (AG?) — (AG)?, a quantity which has seen
a surge of interest, e.g., in connection with the so-called ther-
modynamic uncertainty relations [44-50].

III. PREDICTORS

In this paper we assume that the distribution P(AG) is
not accessible. Instead, all one has access to is a specific
unraveling of the channel A,

Ale]:=> "M, oM, Y MM, =1, (3)
Y Y

where M, = (y|U;|0) (we take ps = |0)(0| without loss
of generality [51]). The unravelings fix a positive-operator-
valued measure (POVM), E, = M;My, representing a set of
measurements one has access to, whose outcomes occur with
probability

P(y) = (M, psM})). (4)

Any function AG(y ) of the stochastic outcomes y can now be
viewed as a predictor of AG, in the sense that it conveys some
information about it. Our goal is to determine which function
AGop yields the best possible prediction.

We quantify the quality of the prediction in terms of the
mean-squared error (MSE)

MSE(AG) = Z/dAG(Ag(y) — AGYP(AG,y), (5)
v

where

P(AG.y) = [{g:IM, |80} P(g0)8(AG — (3.~ 80))  (6)

80,87

is the joint distribution of AG and y, which would have been
obtained if both S and A had been measured. The main result
of this letter is as follows:
Theorem. The predictor minimizing the MSE (5) is given
by
1
AGo(y) = W(M;GfMV — MMy, Go}>, )
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FIG. 1. Driven qubit model, as a function of the net driving time
7. (a) Probabilities P(y ), Eq. (4); (b) optimal predictors AGqy (Y ),
Eq. (7). (¢) Mean-squared error, Eq. (5). (d) True and predicted
variances, var(AG) and var(AGy). Parameters: o =a =1, g =
Q=03,5s=0.7.

where the average is over the system’s initial state pg. This
predictor always reproduces the true average (1),

D PWAGo(y) = (AG). ®)
Y

Moreover, it yields the MSE,
MSE(AGopt) = var(AG) — var(AGop ), 9)

which is thus simply the difference between the fluctuations
of the true quantity and those of the predictor.

The proof of this result given in the Appendix. The fact
that the optimal predictor always correctly reproduces the
correct average behavior is noteworthy. In addition, it yields
an MSE which directly links to the variance of AG. In fact,
Eq. (9) implies that if AG does not fluctuate [var(AG) = 0],
the same will also be true for AG, (since the MSE is strictly
non-negative). When applied in a thermodynamic scenario (as
will be done below), this result is consistent with the no-go
theorem of Ref. [52].

IV. ENERGY FLUCTUATIONS IN A DRIVEN QUBIT

To illustrate the idea, we consider a qubit system coupled
to a qubit ancilla, with total Hamiltonian H(¢) = Hg(t) +

wazA + g(o_f_af + Ofa_f) and

Hs(t) = oo} + a sin(Q)oy . (10)

The system is thus driven by a time-dependent horizontal field
o sin(2t)o,. We look for estimates of how the system energy
[G; = H(t)] changes from time O up to some generic time t.

The system starts in pg = s|0)(0] + (1 — s)[1)(1], while
the ancilla starts in p4 = |0)(0]. Moreover, we measure the
ancillas in the computational basis, leading to two possible
Kraus operators My = (0|U.|0) and M; = (1|U,|0), where U,
is obtained numerically. The results are shown in Fig. 1: The
probabilities P(y ) in Eq. (4) evolve as shown in Fig. 1(a), and
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for each such y, Eq. (7) predicts the results shown in Fig. 1(b).
We also plot in the black-dashed lines the true average (AG)
[cf. Eq. (8)].

We can estimate the quality of our predictions by plotting
the MSE (5) [Fig. 1(c)]. The predictions are better at some
values of 7 and worse at others. This can also be inferred
by comparing the actual variance of AG with the predicted
one var(AGep ), as shown in Fig. 1(d). This result makes
it particularly clear that very good predictions are possible,
despite the complexity of the problem. Of course, this will
depend on the model and the parameters.

V. INTERPRETATION, PARTICULAR CASES,
AND GENERALIZATIONS

The optimal predictor is a function f(y ), which provides
the best possible guess for the changes in the system observ-
able, from Gy to G, given only the specific unraveling in
the ancilla. Computing it thus requires a model. In classical
statistics, this is usually associated with a transition probabil-
ity P(y|x). In our case, this is determined by the the Kraus
operators {M,}, as well as the system’s initial state. In the
way the problem has been formulated, the operator G can
represent any system property. Hence, the results extend well
beyond thermodynamics. The unique thermodynamic flavor
appears in the fact that we are not estimating the value of G
itself, but rather the change in G due to a certain process.
In fact, if we artificially adjust Gy = 0, Eq. (7) reduces to
Agopt(y) = tr(Grpr\y)’ where Prly :Mpr;/P(V) is the
conditional state, given y. In this case the predictor is there-
fore only estimating the value of G, itself. Similarly, if G, =
0, Eq. (7) will provide a retrodiction [53] of the initial value
Gy before the open dynamics. We also note that the choice
of unraveling in the ancilla is arbitrary and model dependent.
Hence, some unravelings will be more precise than others.
This can be quantified using the MSE (9).

Equation (7) can be readily extended to more complex
types of unravelings. For instance, continuous measurements
will be characterized by a string of indices y = (y1, ..., ¥n)-
Equation (7) still applies. But now the Kraus operators will
have the form M, =M,, ---M,,. Predictions can also be
made when only parts of the outcomes are known. For in-
stance, if there are two outcomes yj, y», but only the latter is
known, then the optimal predictor will be simply AG(y») =

>, PUDAGop (11, v2)-

VI. THERMODYNAMIC APPLICATIONS

To make a connection with thermodynamics, we consider
the problem of determining the work associated with an
avoided crossing protocol [34]. We consider a qubit with pg =
s]0)(0] + (1 — s)|1)(1] and time-independent Hamiltonian
Hs = wo;o_. Initially the qubit is isolated and undergoes a
unitary pulse described by U,, = o,. The work associated with
this pulse can be either £w. In order to estimate this, we then
couple the system to an ancilla, after the protocol. For sim-
plicity, we take the ancilla at zero temperature, ps = |0)(0],
and take Hy = w|1)(1|. Moreover, the interaction is assumed
to be a swap unitary, which will hence transfer any excitations

TABLE 1. Trajectories, probabilities, and predicted work
[Eq. (11)] for the avoided crossing model. Here, AG, is the pre-
dictor for the system energy, while W, refers to the work, which
also includes the heat, as in Eq. (11).

M, Ply] AGop (V) Wop(y) Wopi(y) (coherent)
2

Mo s - — —0+ $ o
w sin~ 6

M, 1-s 0 w e S ey

from S to A. Overall, this will thus be a two-step process, with
anet unitary U = Usyap(Uyy ® Iy).

After the process, we measure the ancilla in the com-
putational basis, which leads to two Kraus operators M, =
(¥ | Uswap|0)Uy,, with y = 0, 1. We use the predictor (7), with
Gy = G; = Hs. To obtain the actual work performed in the
system, we must also include the heat transferred to the bath.
In more complicated scenarios, such as strong coupling, one
might also need to include the system-ancilla interaction. Our
formalism currently cannot account for this. In the present
case, however, the swap incurs no additional energy cost since
the system and ancilla are resonant. Hence, the work will
simply be given by W = Q + AHjs. Consequently, the optimal
predictor will be

(Wopt(y) = Q(V) + Agopt()’)a (11)

where, in this case, Q(1) = w and Q(0) = 0. There are thus
two possibilities (Table I). If M, is detected, the ancilla must
have absorbed an excitation, which means that the work pro-
tocol must have excited the system from |0) — |1). The work
associated to this is thus +w. Conversely, My means that no
excitation was detected in the ancilla, so that the state of the
system before the swap must have been |0). Hence, the work
performed must have been —w.

VII. INITIALLY COHERENT SYSTEMS

The optimal predictor (7) assumes that [Gy, ps] = 0. When
this is not the case, the problem becomes more delicate [52],
and several approaches have been put forward for handling it
[16-28]. Within our framework, the problem remains essen-
tially unaltered, in the sense that the quality of any prediction
is still given by the MSE (5). The subtle part is in how to
define the joint distribution P(AG, y ), as this would generally
be susceptible to the backaction from the first measurement.
A way of constructing P(AG, y), which does not suffer from
this problem, is through the concept of quantum Bayesian
networks (QBNs) [26,27]. Let ps = >, pol¥a) (¥ql, with the
bases {|V)} and {|go)} being generally incompatible. We then
consider [26,27]

P(AG.y) = > (gIMy|Ve)* PeojaPad(AG — (gr — g0)).
20,81,

(12)
where pg i« = [{g0l¥«)|” is the conditional probability of ob-
serving |go) given |, ). The QBN (i) is always non-negative,
(i1) reproduces the correct average (1), and (iii) reduces to the
TPM (6) when [Gy, ps] = 0. From an operational perspective,
it was also recently shown that QBNs can be directly accessed

| 2
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FIG. 2. (a) Work predictions in the avoided crossing model (last
column of Table I), as a function of the system initial coherence angle
0, with s = 0.9. (b) True and predicted variances. Their difference
yields the MSE (9), which quantifies the quality of the prediction.

in an experiment, provided one uses two identical copies of
the system, together with measurement postprocessing [54].

Plugging (12) in (5) and repeating the same procedure in
the Appendix yields the optimal predictor

1 4 1, .
AGon(v) = W)<M;GTMV - 5 {Mymy, D(Go)}>, (13)
where D(e) = >, Vo) (Vo ® [¥o) (¥4l is the full dephasing
operator in the basis of ps. Compared to (7), the only dif-
ference is that Gy is now replaced by D(Gy). This therefore
clearly reduces to (7) when [Gy, ps] = 0. Equation (13) con-
tinues to yield the correct average, as in Eq. (8). And the MSE
is still given by Eq. (9).

As an application, we revisit the avoided crossing model
in Table I and include the effects of initial coherence, by as-
suming that the system is prepared in p§t = ¢=0%/2 pgei?/2,
where pg = 5|0)(0] + (1 — s)|1)(1]. The results are shown in
the last column of Table I, as well as in Fig. 2(a). In the
latter, we also plot the average work (W) for comparison.
To assess the quality of the prediction, we plot in Fig. 2(b)
the true and predicted variances, var(W) and var(‘W). They
are equal in the incoherent case and grow with increasing
0, being maximal when 6 = /2. The presence of quantum
coherences therefore generally degrades the quality of the
prediction, which is intuitive, although this may not be true
for other models.

VIII. DISCUSSION

We have put forth a framework for finding the optimal
function to predict changes of a system property indirectly,
solely from measurements in an auxiliary system. The method
is applicable to both coherent and incoherent systems, and is
summarized by an explicit expression for the predictor solely
in terms of the Kraus operators determining the open system
unraveling. The predictor can always capture the correct aver-
age, and the quality of the estimation is directly related to how
well it captures the variance. These results are timely, due to
the growing progress in the manipulation of coherent quantum
devices and their potential thermodynamic applications. To
illustrate that, we analyzed the problem of estimating energy
fluctuations in driven qubit systems, and in the reconstruction
of work in an avoided crossing model.
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APPENDIX: PROOF OF THE MAIN THEOREM

We prove here the theorem in Eq. (7) of the main text,
namely, that the predictor AGqy () which minimizes the
mean-squared error (5) is that given by Eq. (7). Define

1
1) = 5o [ dAGGP@BG Y. @D
P(y)

We consider the MSE in Eq. (5) for a generic predictor AG.
Adding and subtracting f(y) leads to

MSE(AG) = ZfdAG(AG—f(y))ZP(AG, ¥)
Y
« Y [ 4a6(a6) - 1P )
Y

x Y. [ dacw6m) - ronse)
Y

— AGIP(AG, ). (A2)

Due to (A1), however, the last term vanishes. Moreover, in the
second term we can marginalize over AG and write the result
as an average over the original distribution P(y ):

MSE(AG) = ) / dAG(AG = f(y))'P(AG, y)
Y

+YPOIAG(Y) — F()P. (A3)
Y

Since the last term is always non-negative, comparing this
with Eq. (5) leads to

MSE(AG) > MSE(f), (A4)

for any other predictor AG. Hence, the optimal predictor is

exactly Agopl()’) = f(y).
For the optimal predictor the MSE (A3) reduces to

MSE(AG) = Z/dAG(AG—f(y))zP(AG, ¥). (A5)
Y

Expanding and using Eq. (A1) leads to Eq. (9) of the main
text.

Next, we obtain the explicit form in Eq. (7), in which the
optimal predictor is cast solely in terms of the Kraus operators.
Inserting Eq. (6) into Eq. (A1) leads to

1

Agopl(y) = m

Z |(g:I1M, 120) I’ P(g0)(gr — g0), (A6)

80,87
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which can also be written as
1

Agopt(y) = IT)/)

> clgelM, psM] |g:) — (g:IM, psGoM})|gx). (A7)
8t

Writing the remaining sum over g, as a trace yields precisely to Eq. (7). The coherent case, where P(AG, y) is given by Eq. (12),

is treated similarly.
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