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Machine classification for probe-based quantum thermometry
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We consider probe-based quantum thermometry and show that machine classification can provide model-
independent estimation with quantifiable error assessment. Our approach is based on the k-nearest-neighbor
algorithm. The machine is trained using data from either computer simulations or a calibration experiment. This
yields a predictor which can be used to estimate the temperature from new observations. The algorithm is highly
flexible and works with any kind of probe observable. It also allows one to incorporate experimental errors, as
well as uncertainties about experimental parameters. We illustrate our method with an impurity thermometer in
a Bose gas, as well as in the estimation of the thermal phonon number in the Rabi model.

DOI: 10.1103/PhysRevA.105.022413

I. INTRODUCTION

Measuring the temperature of a body has long been a
fundamental task in science and technology. The enormous
range of scales involved, from cosmology to ultracold gases,
motivates the development for a wide variety of strategies.
The drive toward the microscale has been pushing the de-
velopment of novel methods [1–5], and recent advances in
platforms such as ultracold atoms [6–10], nitrogen-vacancy
centers [11,12] and superconducting circuits [13] have opened
up entirely new frontiers [14,15].

There have been significant advances in understanding the
ultimate bounds on thermometric precision, which were an-
alyzed in a variety of models [16–23]. If the temperature is
estimated from direct measurements in the system, the opti-
mal strategy consists of performing projective measurements
in the energy eigenbasis [17,24,25]. Such a strategy, how-
ever, is seldom realistic. Instead, a more tractable scenario is
that of probe-based thermometry, where the temperature of
a system is estimated by first allowing it to interact with a
probe and then measuring the probe. Impurities in ultracold
gases represent a prototypical example [6–10], but several
experimental platforms also fit this description. For instance,
the phonon occupation number of a trapped ion [26,27] or a
mechanical resonator [28] are often estimated from quantum
optical measurements, and hence use light as the probe.

A single probe may be repeatedly measured [29], or mul-
tiple probes may be sent sequentially [30,31]. In Ref. [32],
it was recently shown that even using a single-qubit probe,
one can still retain ∼64% of precision (as compared to a
direct measurement), provided optimal strategies are used.
However, these studies focus on precision bounds, and most
existing strategies for building actual estimators are highly
model dependent [33,34]. For instance, Ref. [9] analyzed the
dephasing factor of impurities in cold Fermi gases.

In this paper, we show how machine classification algo-
rithms can be used to provide precise temperature estimation

in a flexible and experimentally friendly way. The scenario we
consider is shown in Fig. 1. The temperature T of a system
S is measured by first sending a probe P to interact with
it and then measuring the probe. This yields some data D,
from which we want to construct a reliable estimator T̂ (D).
Classification accomplishes this by training an algorithm in
advance, with a set of points (Di, Ti ). This can be obtained
from, e.g., computer simulations or a calibration experiment.
The result is a predictor function T̂ (D), which can be used to
estimate the temperature given any real observation D. Clas-
sification is a nonparametric technique and hence is model
independent, making it extremely flexible. It accepts any kind
of probe observable and any kind of S-P interaction strategy.
Moreover, it is also guaranteed to asymptotically converge to
the true temperature provided the number of training features
is increased [35–37].

Machine learning has recently seen an explosion of new
applications in physics [38,39], from quantum phase tran-
sitions [40–43] to quantum dynamics [44–52] and adaptive
estimation [53–57]. We will show below that classification in
thermometry is robust against many issues commonly faced
in realistic thermometry scenarios. First, it naturally handles
experimental noise. Second, and most remarkably, it handles
cases where other parameters in the process are not known.
For instance, we explore the scenario in which the S-P inter-
action strength is only known to lie within a certain range,
which is very reasonable from an experimental point of view.
Our methods are illustrated in two experimentally relevant
models: impurity thermometry in a Bose-Einstein condensate
and estimation of the thermal phonon number in the Rabi
model.

II. PROBE-BASED THERMOMETRY

We consider the setting depicted in Fig. 1. A system S,
prepared in a thermal Gibbs state ρS = e−βHS /Z , at a cer-
tain (unknown) inverse temperature β = 1/T , is coupled to a
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FIG. 1. Probe-based thermometry and machine classification.
The temperature of a system is estimated by coupling it to a probe,
which is subsequently measured. Machine classification uses pre-
viously trained data to predict the temperature from experimental
observations. Here we use the KNN algorithm, which constructs an
observation heat map (right plot) from a training set consisting of
pairs (Di, Ti ), corresponding to d-dimensional data Di (here, d = 2)
and associated temperatures Ti.

probe P prepared in an initial state ρP. The total Hamiltonian
is taken as Htot = HS + HP + HI , where HI is their interac-
tion. The state of the probe after a certain time t will then

be given by ρP(t ) = trS{e−iHtott (ρS ⊗ ρP )eiHtott }, from which
information about T can be extracted.

We assume this is accomplished by measuring the expec-
tation values of some probe observables 〈O〉t := tr[OρP(t )].
The uncertainty δT 2 resulting from ν measurements (obtained
in independent repetitions of the experiment) is then [8,58,59]

δT 2 = �2O
νχ2

T (O)
, (1)

where �2O = 〈O2〉t − 〈O〉2
t and χ2

T (O) = ∂T 〈O〉t . Some ob-
servables are more sensitive than others; the ultimate precision
is determined by the Cramer-Rao bound [58,60],

δT 2 �
1

νF (T )
, (2)

where F (T ) is the quantum Fisher information (QFI). When
the probe fully thermalizes with the system, the QFI can be
written solely in terms of the probe’s energy variance [14,15].
But, in general, the state of the probe is out of equilibrium,
and the QFI must be determined with the usual quantum
metrology tools [60].

Classification can make use of not only a single observ-
able, but a dataset D = (〈O1〉, . . . , 〈Od〉), of dimension d .
This could mean different observables or the same observable
measured at different times. In either case, each observable is
determined from independent experiments. Intuitively speak-
ing, the richer the dataset, the less likely it is that the data were
generated from any other temperature than the real one.

III. THE k-NEAREST-NEIGHBOR (KNN) ALGORITHM

We introduce the KNN classification algorithm [37,61,62]
as a model-independent (nonparametric) approach to ther-
mometry. Classification is a pattern-recognition method [63].
We first train the algorithm using N datasets (Di, Ti ) generated
from either computer simulations or a calibration experiment.
Each dataset Di is pictured as a point in a d-dimensional
grid (Fig. 1), which is also labeled by the corresponding
temperature Ti. When an actual observation D arrives, the
algorithm locates its position in this grid and computes the

Euclidean distance to its k nearest neighbors. The inverse
distances serve as weights to build the probability that D is
associated with each k neighbor. The average of said proba-
bility yields the estimator T̂ (D). And the variance yields the
so-called excess risk δT 2

exc, which represents the additional
uncertainty incurred from using a finite number N of training
points (which vanishes if N → ∞). From δTexc, we can then
compute the mean-squared error (MSE), which also takes into
account the bias,

MSE(D, T ) = δT 2
exc + [T̂ (D) − T ]2, (3)

with T being the real temperature. The MSE can only be
estimated if the true temperature is known in advance. Hence,
although it serves as a useful figure of merit, one generally
would not have direct access to it in an experiment. The KNN
algorithm is asymptotically unbiased [35,37], so the MSE also
vanishes when N → ∞. In the applications below, we have
used the KNN implementation in PYTHON from Ref. [64].

IV. IMPURITY THERMOMETRY IN A BOSE-EINSTEIN
CONDENSATE (BEC)

To illustrate the main idea, we start with the experimentally
meaningful problem of estimating the temperature of a Bose
gas by means of an impurity, for which the BEC acts as a bath
[6,8,65]. We follow an approach similar to [8,66] and consider
a Yb impurity (the probe), trapped in a parabolic potential of
frequency 	, and immersed in a K BEC with trap frequency
ωB. The solution for the reduced dynamics of the impurity
is given in [67] and is not restricted to weak coupling. To
illustrate the method, we focus on the steady-state fluctuations
of the impurity’s position, which reads [67]

〈x2〉 = h̄

2π

∫ ωB

−ωB

dω coth(h̄ω/kBT )χ̃ ′′(ω), (4)

where χ̃ ′′(ω) = (ωζ/mI )/[(ωζ )2 + (	2 − ω2 + ωθ )2] is the
impurity’s response function, with ζ = πγω3/2ω3

B and θ =
−(γω/2ω3

B)[ω2
B + ω2 ln((ωB/ω)2 − 1)]. Here, mI is the im-

purity’s mass and γ is a constant proportional to the
BEC-impurity interaction strength (see [67] for the full
Hamiltonian).

We fix γ = 30 Hz, ωB = 2	 = 2π × 50 Hz. As a first test,
we assume that 〈x2〉 can be measured with infinite precision.
To train the algorithm, we generate pairs (Di, Ti ) with N
equally spaced temperatures from 0.1 to 2 nK. The algorithm
is then tested using values of 〈x2〉 obtained from randomly
chosen temperatures within the same interval. Figure 2(a)
shows the predictions T̂ as a function of the real temperatures
T , using only N = 10 training points. The error bars represent
the excess risk δTexc. In Fig. 2(b), we plot the difference
T̂ − T ± δTexc for varying sizes N of the training set. Small
values of N lead to large uncertainties and systematic biases,
especially at the boundaries. But both are rapidly suppressed
with increasing N .

Next, we turn to noisy datasets. In principle, noise could
also be included in the training set, e.g., when the data are
obtained from another calibration experiment. In the present
case, however, the training set is based on the analytical model
(4), and is hence error free. Figure 2(c) shows the average
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FIG. 2. Impurity thermometry of a BEC, focusing on the steady-
state position fluctuations (4). (a) Estimator T̂ vs the real temperature
T using N = 10 points in the training set. Error bars represent the
excess risk δTexc and can be suppressed by increasing N . This is fur-
ther shown in (b), which plots T̂ − T ± δTexc for N = 10, 20, 30, 50
(from outermost to innermost). (c) Average MSE from ν = 2000
repetitions of a noisy experiment, for N = 20 (circles) and N = 100
(squares). Gray and black-dashed curves correspond to Eqs. (1) and
(2), respectively. When only 〈x2〉 is measured, no estimator can
improve below the gray curve.

MSE (3), obtained from ν = 2000 independent experiments,
for either N = 20 or N = 100 training points. We also plot
Eq. (1) in gray, and the Cramer-Rao bound (2) in dashed
curves (computed from [8,23]). The latter can only be reached
with special choices of measurement operators [60,68], while
Eq. (1) represents the best precision attainable using only
measurements of 〈x2〉 [8], as in our case.

When N = 20, the MSE is significantly above the gray
curve, but for N = 100, both the excess risk δTexc and the
systematic biases are suppressed, bringing the MSE very
close to (1). Our method is thus capable of producing
quantitatively precise estimates of T . The only exception
is the boundaries of the training set. This happens be-
cause the fluctuations generate points 〈x2〉 associated with
temperatures outside the interval. In real experiments, it is
important to avoid this by ensuring the span of the train-
ing set is sufficiently broad. There are also extensions of
the KNN algorithm which can monitor whenever a point
lies outside the training set, a problem known as anomaly
detection [69,70].

V. RABI MODEL

The previous model served to illustrate how our method
can efficiently handle realistic noise in the measurement data.
However, the model itself was far too simple, as it involved

only a single feature 〈x2〉, which could also be computed
analytically. We now turn to a more complicated model with
two new ingredients: (i) the dynamics are not analytically
soluble and (ii) the system-probe interaction strength is un-
known. The latter, in particular, is a very realistic assumption,
which is seldom considered in studies of probe-based ther-
mometry. Our algorithm can handle this efficiently using
additional features (d > 1) in the dataset. This combina-
tion of flexibility and robustness is the main advantage of
our framework.

We illustrate the idea using the Rabi model, which fre-
quently appears in a variety of platforms, from cavity quantum
electrodynamics to trapped ions and superconducting circuits.
Similar results can also be obtained, e.g., for the Jaynes-
Cummings model. The probe is a qubit, with Pauli operators
σ±, and the system is a bosonic mode, with annihilation oper-
ators a. The total Hamiltonian is

H = h̄ωa†a + h̄	σ+σ− + h̄γ (a + a†)(σ+ + σ−), (5)

where γ is the interaction strength. Estimation of the ther-
mal occupation number of the bosonic mode is one of the
most basic problems in, e.g., trapped ions [26,27]. Quan-
tities are measured in units of ω = 1. The probe is taken
to be resonant with the system (	 = ω) and start in the
excited state ρP = |1〉〈1|. The free parameters are thus the
coupling strength γ and the system’s initial temperature T .
We focus on the probe’s populations pt = 〈σ+σ−〉t , but the
algorithm also works with coherences. Numerically simu-
lated curves of pt vs ωt , for different T , are shown in
Fig. 3(a) (cf. [71] for experimental results). They serve to
illustrate the nontrivial temperature dependence, which would
be difficult to fit with standard methods (especially tak-
ing into account the computational complexity of simulating
the model).

We consider kBT/h̄ω ∈ [0.1, 2], and assume γ /ω is only
known to lie in the interval [0.5,1.5]. Populations were com-
puted numerically for a grid of 100 × 100 tuples (T, γ ), and
for different times ωt = 0.5, 1.0, 1.5, 2.0, . . . (other choices
of times only marginally affect the results). To analyze the
role of the number of features, d , we adopt the strategy that
a dataset with, e.g., d = 3 consists of D = (p0.5, p1, p1.5),
and so on. For simplicity, we also assume all data points
are noiseless, as the effects of such noise have already been
explored in Fig. 2(c).

Figure 3(b) shows the results of the estimation when d = 1
and d = 2. Since γ is not known, using only d = 1 yields
terrible results. But, remarkably, with as little as d = 2 fea-
tures, the results are already remarkably good. We explore
this further in Fig. 3(c), where the MSE is found to de-
crease dramatically with increasing d (note the logarithmic
scale), until saturating at a value that is ultimately deter-
mined by the number of points, N , in the grid. We also show
in Fig. 3(c) the results which would be obtained if γ was
known with certainty. In this case, the MSE is independent
of d , with a value once again determined solely by N (no-
tice that the value of N is different in the two curves since
when γ is known we only used 100 values of T ). Thus,
with sufficiently many measurements, the precision becomes
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FIG. 3. Temperature prediction in the Rabi model. (a) Population pt for γ /ω = 1 and different values of kBT/h̄ω. (b) Predicted vs real
temperatures for d = 1 (blue circles) and 2 (orange squares). (c) MSE vs d , when γ /ω is known with certainty (blue circles) or when it
is only known to lie within a certain interval (orange squares). The algorithm was trained by generating values of pt , with equally spaced
tuples of (T, γ ) in the intervals [0.1,2] and [0.5,1.5], at times t = 0.5, 1.0, 1.5, 2.0, . . .. A dataset with, e.g., d = 3 points consists in the array
D = (p0.5, p1.0, p1.5).

roughly independent of our uncertainty in the interaction
strength.

VI. THERMOMETRIC DATA STRUCTURES

The results just presented indicate that the use of
classification—and the KNN algorithm—in probe-based ther-
mometry is not only versatile, but also robust. Similar tests
have also been performed in various other systems, such as
qudit models and spin chains. Moreover, we have also ex-
plored a large variety of parameter choices: e.g., resonant vs
nonresonant energy gaps in Eq. (5), different initial probe
states, and so on. Even though the fine details differ from one
case to another, the overall performance is similar in all cases:
precise estimation with asymptotically diminishing errors.

We argue that this happens because the probe observables
depend smoothly on T . Even though the probe is intrinsically
out of equilibrium, the spirit is similar to equilibrium quan-
tities, such as energy, entropy, or specific heat. It is rare, for
instance, to find observables that are oscillatory in T or behave
very erratically. Instead, this smooth dependence causes the
data structures to be segmented into well-defined regions,
which is crucial for the KNN performance. Thermometry thus
represents a niche within the realm of parameter estimation,
where classification methods could prove to be particularly
useful.

FIG. 4. Qubit populations in the Rabi model, pt1 vs pt2 , for dif-
ferent choices of (T, γ ), with the color of each point representing the
corresponding temperature. (a) pt=2 vs pt=1. (b) pt=4 vs pt=1.

To corroborate this argument, we analyze the data struc-
tures stemming from the Rabi model (5). Figure 4 shows
curves of pt1 vs pt2 for two choices of (t1, t2). The conditions
are similar to those of Figs. 3. As can be seen, irrespective of
the value of γ , points are clearly segmented by temperature,
and changes from the hot to the cold regions are always
smooth. There are very few regions, for instance, where hot
and cold points mix together. This explains why the KNN
algorithm is successful. One should also bear in mind that
one often uses more than d = 2 observations, which help to
further disentangle the cold and hot regions.

VII. SIGNIFICANCE

We have shown that classification provides a general and
flexible platform that can be applied to any probe-based sys-
tem. It can accept any kind of observation as input, handles
noise in the dataset, and allows the inclusion of additional
uncertainties about the model parameters. Moreover, as we
have shown, it provides quantitative error assessment and is
asymptotically consistent. In light of these facts, we believe
classification may become a valuable tool in experimental
quantum thermometry. Indeed, several quantum coherent ex-
periments, such as trapped ions and optomechanics, already
fall under this category and could directly benefit from this
formalism.
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