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The interaction with the environment is one of the main obstacles to be circumvented in practical implemen-
tations of quantum information tasks. The use of local unitaries, while not changing the initial entanglement
present in a given state, can enormously change its dynamics through a noisy channel, and consequently its
ability to be used as a resource. In this way, local unitaries provide an easy and accessible way to enhance
quantum correlations in a variety of different experimental platforms. Given an initial entangled state and a
certain noisy channel, what are the local unitaries providing the most robust dynamics? In this paper we solve
this question considering two-qubit states, together with paradigmatic and relevant noisy channels, showing its
consequences for teleportation protocols and identifying cases where the most robust states are not necessarily
the ones imprinting the least information about themselves into the environment. We also derive a general
multipartite law relating the interplay between the total correlations in the system and environment with their
mutual information built up over the noisy dynamics. Finally, we employ the IBM Quantum Experience to
provide a proof-of-principle experimental implementation of our results.
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I. INTRODUCTION

Considerable theoretical and experimental advances have
been achieved in the quantum control of a variety of systems,
leading recently to the first examples of quantum supremacy
[1–3], that is, a quantum-based protocol outperforming, by
of orders of magnitude, the efficiency of existing classical
platforms. These examples, however, solve problems of lim-
ited applicability and, more importantly, are not fault-tolerant
[4] or error-corrected [5]. Indeed, any operational universal
quantum computer will unavoidably need to counteract the
detrimental effects of decoherence and faulty logical opera-
tions, which would otherwise accumulate exponentially fast,
and wash out any quantum advantage [4–6]. The use of
fault-tolerant quantum error-correction mechanisms provides
a reliable implementation of quantum devices [7]. However,
such mechanisms introduce enormous overhead in the com-
ponents that, moreover, require precise control over each of
the constituents and are still in their infancy [8–10].

Fortunately, as illustrated by the recent quantum
supremacy experiments, a wide variety of particular
computational and communication tasks with quantum
advantages and, more importantly, without the need for error-
correction codes have been identified. Quantum correlations
and, in particular, entanglement have been recognized over the
last two decades as the key resource in a variety of physical
tasks [11]. These range from teleportation [12], dense coding,
and communication complexity [13] to metrology protocols
[14] and randomness certification [15]. For some tasks, the

detrimental effects of decoherence can be minimized, and
sometimes even ignored, without resorting to any complex
fault-tolerant error correction scheme. For example, in a
teleportation protocol, bipartite quantum systems provide gain
over their classical counterparts whenever the quantum state is
entangled [16]. Using this, faithful quantum teleportation with
80% accuracy, far beyond the classical limit of 67%, has been
experimentally realized over distances of up to 1400 km [17].

For fragile quantum states, a possible way to enhance the
robustness of their entanglement and other quantum properties
is to properly choose their local encoding prior to the action
of noise. For instance, while local unitaries do not change the
entanglement of the initial state, the situation is dramatically
changed for its dynamics through a noisy channel [18–24].
Interestingly, the enhancement is achieved passively, without
having to perform any error syndrome—and, more impor-
tantly, with no cost at all in terms of extra qubits. The local
encoding alone guarantees high robustness of the entangle-
ment. Local unitaries were also proven to play a nontrivial role
in the entangling power of bipartite unitaries [25,26]. Despite
its simplicity and applicability to many current experimental
platforms [27], the quantum enhancement—be it on entan-
glement or other forms of correlations [28–30]—provided by
local unitaries is still fairly unexplored even in the two-qubit
case. For a certain initial state and a given noisy channel, what
is the local unitarily equivalent state preserving most of its
correlations through the decoherent dynamics?

This is the question we address in this paper. Considering
generic initial multipartite states and noisy dynamics, we first
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show a general law relating the mutual information between
the system and environment with the changes in their total
correlations [28,29]. Following that, we consider what are the
optimal unitaries that can be applied to a given two-qubit
entangled state to preserve, as best as possible, its entangle-
ment through the dynamics. We obtain analytical answers
to specific classes of states and channels, also showing its
consequences in the use of these noisy states as a resource
in a quantum teleportation protocol. Surprisingly, for some
choices of initial entangled states and channels, we observed
a counterintuitive phenomenon: the most robust state against
noise is exactly that which is most entangled with the envi-
ronment. Finally, by employing the IBM Quantum Experience
(Q-Experience), we also test experimentally the enhancement
provided by local unitaries.

The paper is organized as follows. In Sec. II we introduce
the quantum channels considered in this work. In Sec. III
we describe our implementation in the IBM Q-Experience.
In Sec. IV we discuss the measure of correlations intro-
duced in [28,29] and derive a general law, valid for arbitrary
multipartite states, connecting such a measure of correlation
with the system-environment mutual information generated
through the noisy dynamics. In Sec. V we consider different
entanglement measures and analytically show what are the
most and least robust two-qubit entangled states and a number
of consequences. In Sec. VI we discuss our findings and point
out interesting directions for future research.

II. OPEN QUANTUM SYSTEMS DYNAMICS

In what follows, we consider a system of N qubits, pre-
pared in a generic, globally correlated state ρS . It is worthy
remarking that even though the general multipartite setting
will be employed when we derive general laws for the dy-
namics of total correlations, we will restrict our attention to
two qubits only when analyzing the entanglement dynamics.

Each qubit will be individually coupled to its local envi-
ronment. This represents a typical situation, where a source
distributes subsystems to distant parties. The dynamics of the
ith qubit is governed by a completely positive trace-preserving
map �i that can be described in terms of Kraus operators Ki j ,
such that the evolution of the ith subsystem ρi is given by
�i(ρi ) = ∑

j Ki jρiK
†
i j . The strength of the noise and the time

it acts are conveniently parametrized by a variable p ∈ [0, 1],
such that p = 0 for t = 0 and p → 1 for t → ∞. Thus, the
joint noisy state after time p is obtained by the composition
of the individual evolutions �i, i.e., ρS (p) = �(ρS ) := �1 ⊗
· · · ⊗ �N (ρS ).

Here we will be mainly interested in two paradigmatic
noisy channels: dephasing and amplitude damping. The de-
phasing channel (D) has Kraus operators given by

K0 =
√

1 − p

2

(
1 0
0 1

)
, K1 =

√
p

2

(
1 0
0 −1

)
(1)

and represents the situation in which, without any energy ex-
change, there is loss of quantum information with probability
p. This channel describes many experiments with atomic or
ionic qubits, where the dominant source of noise is dephasing
from, e.g., magnetic-field or laser-intensity fluctuations [31].

In turn, the amplitude damping (AD) has Kraus operators
that are given by

K0 =
(

1 0
0

√
1 − p

)
, K1 =

(
0

√
p

0 0

)
(2)

and represents a purely dissipative process, describing the
relaxation from the excited state to the ground state, as in
spontaneous emission.

For our purposes it will also be relevant to analyze the
joint system-environment quantum state. Without loss of gen-
erality, we will assume that each local environment is also
composed of a single qubit. The initial state is taken to be
pure, and factorized, as ρSE = ρS ⊗ ρE . Moreover, we take
ρE = (|0〉〈0|)⊗N . Since each subsystem ρi is coupled locally
to its own environment, they evolve according to a global uni-
tary such that �i(ρi ) = TrEi [Vi(ρi ⊗ |0〉〈0|)V †

i ]. In this unitary
evolution description, the dephasing channel is described by
the map

|0〉S|0〉E →
√

1 − p/2|0〉S|0〉E +
√

p/2|0〉S|1〉E ,

|1〉S|0〉E →
√

1 − p/2|1〉S|0〉E −
√

p/2|1〉S|1〉E . (3)

In turn, the amplitude damping channel is given by

|0〉S|0〉E → |0〉S|0〉E ,

|1〉S|0〉E →
√

1 − p|1〉S|0〉E + √
p|0〉S|1〉E . (4)

III. EXPERIMENTAL IMPLEMENTATION
IN THE IBM Q-EXPERIENCE

For the experimental implementation, we have used the
online platform IBM Q-Experience [32,33] that offers access
to real quantum computers. In particular, we have used a five-
qubit computer with 32 quantum volume ibmq_manila. To
create the circuits we used the open-source SDK Qiskit [34],
which allows one to create, compile, and run quantum circuits
on the desired platform; it also provides tools to analyze and
postprocess the experimental data.

In this paper, we simulate the open system dynamics
by implementing the AD channel on the two-qubit en-
tangled states, |�0〉 = (1/

√
2)(|00〉 + |11〉) and |�π/2〉 =

(1/
√

2)(|01〉 + |10〉). This is accomplished with the circuits
shown in Fig. 1. Note that the decoherence factor is controlled
by the rotation gate Ry(θ ), with p = sin2( θ

2 ).
To obtain the experimental density matrix we use Qiskit’s

tools for performing quantum state tomography. For that, mea-
surements corresponding to all Pauli-basis combinations are
implemented, with a total of 8192 shots for each combination.
The final state is obtained by a maximum-likelihood estima-
tion state tomography fitter [35]. Due to external noise effects
that cause a wrong readout output, it is crucial to perform an
error mitigation process. Once again, we employ a template
tool provided by Qiskit, which consists of performing a mea-
surement calibration given by a list of circuits that prepare
each basis state.

With the density matrix at hand, we can evaluate any func-
tion of it, and, in particular, compute the entanglement and
correlation dynamics of the system environment. To reduce
the unavoidable fluctuations of the IBM quantum computer,
we realize each tomography multiple times and average over
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FIG. 1. Circuits implementing the amplitude damping channel.
(a) For the state |�0〉 = (1/

√
2)(|00〉 + |11〉). (b) For the state

|�π/2〉 = (1/
√

2)(|01〉 + |10〉). All the qubits in the circuit are ini-
tialized as |0〉. Notice that the single difference between both circuits
is an X gate applied in the beginning of the circuit. As we will explore
in detail, this is already enough to enhance substantially the dynamics
of the correlations in the system of interest.

these realizations when computing a given entanglement or
correlation measure.

IV. TOTAL CORRELATIONS AND
SYSTEM-ENVIRONMENT CORRELATIONS

As the system of interest interacts with the environment,
they become entangled with each other. The quantum infor-
mation and correlations originally contained in the system
spread over the joint system-environment quantum state. In
this context, our first result will be an equation connecting the
flow of correlations from the system to the environment, as
correlations build between them.

As a benchmark to analyze the flow of correlations from
system to the environment we will employ the so-called total
correlations [28–30]. It is defined for a density matrix ρ, of N
parties, as

T (ρ) =
N∑

i=1

S(ρi ) − S(ρ), (5)

where ρi is the reduced density matrix of the ith subsystem,
and S(ρ) = −Tr[ρ log2 ρ] is the von Neumann entropy of
state ρ. The total correlation is thus positive by construction
and represents the total amount of information contained in
the global state ρ, which is lost upon marginalization. It is

worth pointing out that for bipartite systems, the total correla-
tions equal the mutual information, defined as

IρAB = S(ρA) + S(ρB) − S(ρAB), (6)

where ρA = TrB(ρAB) and ρB = TrA(ρAB).
For pure bipartite states, the total correlations are propor-

tional to the entanglement of formation [11,36], defined as

EF (ρAB) = S(ρA) = −Tr(ρA log2 ρA), (7)

and can be also understood as the mutual information between
subsystems A and B, given that I (A : B) = S(ρA) + S(ρB) −
S(ρAB) = 2EF (ρAB) (since for pure states the von Neumann
entropy is null).

Notice that the global system-environment interaction can
always be assumed to be unitary and thus cannot change the
von Neumann entropy of the joint state, that is, S(ρ ′

SE ) =
S(ρSE ). Furthermore, since the system and environment are
assumed to be initially uncorrelated, their initial mutual in-
formation IρSE = S(ρS ) + S(ρE ) − S(ρSE ) is null and thus
S(ρ ′

SE ) = S(ρSE ) = S(ρS ) + S(ρE ). The mutual information
Iρ ′

SE
= S(ρ ′

S ) + S(ρ ′
E ) − S(ρ ′

SE ) at later times can then be
rewritten as

Iρ ′
SE

= S(ρ ′
S ) + S(ρ ′

E ) − S(ρS ) − S(ρE ). (8)

Using the definition (5) of total correlations we obtain

Iρ ′
SE

=
N∑

i=1

[S(ρ ′
Si

) + S(ρ ′
Ei

) − S(ρSi ) − S(ρEi )]

− T (ρ ′
S ) + T (ρS ) + T (ρE ) − T (ρ ′

E ). (9)

Note that the terms between brackets involve only local quan-
tities and in particular define the local mutual information
between subsystems and their respective environments:

I local
ρ ′

SE
=

N∑
i=1

Iρ ′
Si ,Ei

=
N∑

i=1

[S(ρ ′
Si

) + S(ρ ′
Ei

) − S(ρSi ) − S(ρEi )]. (10)

We then obtain that the variation �TS = T (ρ ′
S ) − T (ρS ) in

the total correlation of the system can be generally decom-
posed as

�TS = −Iρ ′
SE

+ I local
ρ ′

SE
− �TE , (11)

where �TE = T (ρ ′
E ) − T (ρE ) is the corresponding variation

of the total correlations in the environment. Interestingly, the
equation above shows a rule for the flow of information be-
tween system and environment.

Naively, one might think that to minimize the loss of cor-
relations within the system, it would be enough to simply
minimize its correlations with the environment. The presence
of the terms −�TE and I local

ρ ′
SE

shows, however, that the corre-
lation dynamics is more intricate. As we will see below with
specific examples, in decoherent dynamics the total correla-
tions of the system decrease with time, that is, �TS is negative.
In turn, this will lead not only to correlations to be built
between system and environment, be it the global Iρ ′

SE
or the

local I local
ρ ′

SE
mutual information, but also to a positive variation
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(a) (b) (c)

FIG. 2. Dynamics of correlations for the amplitude damping dynamics. (a) Increase in the total correlations of the environment. (b) De-
crease of total correlation of the system. (c) Mutual information built between system and environment. The system is initially in |01〉 + |10〉
[yellow curve—up in (a) and (b), down in (c)—for theoretical result and yellow dots for experimental results] or |00〉 + |11〉 [blue—down in
(a) and (b), up in (c)—curve for theoretical result and blue dots for experimental results]. All experimental results were obtained using the
quantum computer ibmq_manila from IBM Q-Experience [32,34].

in total correlations between the different components of the
environment.

A. The effect of local unitaries

The central question we pursue in this paper is to under-
stand how local unitaries Ui, applied before the interaction
with the baths, affect the correlations in the system. That is,
we aim to compare the evolution of the correlations in the
state TrE (ρ ′

SE ) = �(ρ(0)) with those in ρ̃ ′
S = �((U1 ⊗ · · · ⊗

UN )ρ(0)(U †
1 ⊗ · · · ⊗ U †

N )).
In general the unitaries optimizing the total correlations of

the state over time will depend intrinsically on the initial state
under consideration and the type of noisy dynamics. In the
particular case where the single-qubit marginal states are the
maximally mixed state, for instance, as happens for bipartite
maximally entangled states or the GHZ states, we notice that
the individual states of the system remain unaltered by local
unitaries. This implies, in particular, that the local correlations
between system and environment I local

ρ ′
SE

are independent of the
local unitaries. Hence, there will be a conservation law, given
by

�TS + Iρ ′
SE

+ �TE = �TS̃ + Iρ̃ ′
SE

+ �TẼ , (12)

where �TS̃ = T (ρ̃ ′
S ) − T (ρ̃S ) and similarly for �TẼ .

For states with maximally mixed marginals, we thus see
that the local correlations generated between system and en-
vironment play no role in the optimization provided by local
unitaries.

Figures 2 and 3 consider specific examples showing the
interplay and flow of these correlations during the system-
environment evolution. In Fig. 2 the AD dynamics is analyzed
by considering two different initial states: (1/

√
2)(|01〉 +

|10〉) and (1/
√

2)(|00〉 + |11〉), both maximally entangled
states related by simple local unitaries. As one could intu-
itively expect from the conservation law (12), the most robust
state—i.e., the one losing its total correlations slower than
the others—should be exactly the one generating the fewer
correlations with the environment, as the results corroborate.
Curiously, however, is the fact that the more robust the state
is, the faster the total correlations build up in the environment.
We notice that Eqs. (11) and (12) leave open whether this is a

general feature or particular to given states and specific open
dynamics.

Nonetheless, as shown in Fig. 3, a similar behavior happens
for the dephasing dynamics, in which we consider the initial
states (1/

√
2)(|01〉 + |10〉) and (1/

√
2)(|0+〉 + |1−〉) [where

|±〉 = (1/
√

2)(|0〉 ± |1〉)]. The most robust state generates
fewer correlations with the environment at the same time that
this robustness is associated with the total correlations build-
ing up faster within the environment. In this case, however, we
see that the initial state (1/

√
2)(|0+〉 + |1−〉) is such that the

system loses its total correlations but no total correlations are
transferred to the environment.

V. ENTANGLEMENT DYNAMICS IN OPEN
QUANTUM SYSTEMS

Moving beyond the total correlations we also analyze the
entanglement dynamics generated by the system and en-
vironment interaction. For pure bipartite states, the central
entanglement quantifier is the entanglement of formation (7).
For mixed states one should optimize over all possible de-
compositions of the quantum state ρAB. Precisely for that aim,
the concurrence C has been introduced [36]. Not only does it
allow one to compute the entanglement of formation for any
bipartite qubit states, but it has itself turned into an important
entanglement monotone. It is defined for a pair of qubits as

C[ρ] = max{0, λ1 − λ2 − λ3 − λ4}, (13)

in which {λ1, λ2, λ3, λ4} are the singular values, in decreasing
order, of the operator

ω =
√√

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy)
√

ρ, (14)

where σy is a Pauli matrix, and ρ∗ is the complex conjugate
of ρ.

Important for our objectives is that the concurrence can be
expressed using a factorization law [37]. For instance, for a
one-sided channel it follows that

C[(I ⊗ �2)ρ] � C[(I ⊗ �2)|�+〉〈�+|]C[ρ]. (15)
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(a) (b) (c)

FIG. 3. Dynamics of correlations for the dephasing dynamics. (a) Increase in the total correlations of the environment. (b) Decrease of the
total correlation of the system. (c) Mutual information built between system and environment. We consider that the system is initially in the
quantum state |01〉 + |10〉 [yellow curve—down in (a) and (b), up in (c)] or in the state |0+〉 + |1−〉 (blue curve—up in (a) and (b), down in
(c)].

By the convexity of the concurrence, this can be turned into
an inequality for two-sided channels as

C[(�1 ⊗ �2)ρ]� C[(�1 ⊗ I )|�+〉〈�+|]
×C[(I ⊗ �2)|�+〉〈�+|]C[ρ], (16)

with |�+〉 = (1/
√

2)(|00〉 + |11〉).
In turn, the negativity (N ) [38–40] is an easily computable

measure of entanglement in any bipartition of multipartite
states, being defined for a two-qubit state as

N (ρ) = ‖ρTA‖1 − 1

2
, (17)

ρTA standing for the partial transpose of ρ in the biparti-
tion under consideration. Importantly, the negativity upper
bounds the singlet fraction [16], the maximal overlap of the
state with a maximally entangled state |ψ〉, that is, F (ρ) =
max〈ψ |ρ|ψ〉, as F (ρ) � [1 + N (�)]/2. In turn, F is an op-
erational entanglement measure, related to the teleportation
fidelity [12,41] as f = (2F + 1)/3.

A. Optimal local encoding protecting
the entanglement evolution

A typical scenario we encounter in quantum informa-
tion is given by a source which has to distribute entangled
pairs among distant nodes. At the source one can generate
high-quality entangled pairs, that if assumed to be pure can
generally be written as (U1 ⊗ U2)|θ 〉 where U1 and U2 are
local unitaries and

|θ 〉 = cos θ |01〉 + sin θ |10〉, (18)

in which {|0〉, |1〉} is the computational basis representing the
eigenstates of the Pauli matrix σz. Notice that local unitaries
do not change the entanglement of the initial state |θ 〉, that
is, E (|θ 〉) = E ((U1 ⊗ U2)|θ 〉), and even though the local
unitaries do not change the entanglement of the initial state,
they might greatly affect the entanglement over the decoherent
dynamics [18,19,21,22]. Given that, it is natural to wonder
what is the optimal local encoding (local unitaries) leading to
the most robust entanglement over time.

In particular, given a certain noise channel and an initial
entangled state, one would like to find the most robust en-
coding (that is, the unitaries U1 and U2) preserving the most
entanglement of the state through the noisy evolution. Ideally,

this enhanced robustness should hold for any entanglement
measure E . Unfortunately this is not possible, since even in
the bipartite case different entanglement measures do not gen-
erally agree on the ordering of states, that is, E1(�1) < E1(�2)
but possibly E2(�1) > E2(�2). This is a known effect arising
from the fact that the entanglement structure of mixed quan-
tum states cannot be captured by a single monotone. On the
practical side, different entanglement quantifiers are related
to distinct quantum information protocols. For instance, the
entanglement of formation quantifies (asymptotically) how
many Bell states are required to prepare a given state us-
ing local quantum operations and classical communication.
In turn, the negativity provides lower bounds (and, in some
cases, precise values, as we will see below) to the singlet
fraction and fidelity in a teleportation protocol. Because of
this general feature, we will rely on the particular measures of
entanglement introduced above, such as the concurrence [36]
and negativity [40].

We will also be interested in quantifying the degree of
entanglement between system and environment. The deco-
herence in the system of interest can always be understood
via its unitary coupling to external degrees of freedom. That
is, assuming that initially both the system and environment
are pure states, the whole system environment undergoes a
joint unitary transformation, and it is maintained pure along
all the evolution. In this case, to quantify the entanglement
of formation ESE between system and environment we need
only to compute the von Neumann entropy of the system,
ESE = S(ρS ) = −ρS log2 ρS .

To begin, we consider the concurrence of the noisy states.
Starting with the dephasing channel (D), it is straightforward
to compute the concurrence if we set U1 = U2 = I , obtaining

C
((

�D
2 ⊗ �D

2

)|θ 〉〈θ |
) = (1 − p1)(1 − p2) sin (2θ ). (19)

A direct comparison shows that the concurrence for state |θ 〉
undergoing local dephasing reaches the bound (16); that is,
|θ 〉 is the state with the most robust concurrence against local
dephasing.

A similar analytical conclusion is obtained if we consider
the amplitude damping channel (AD) or even for a concate-
nation of D and AD channels. We further note that since any
local rotation eiφZ commutes with the channels D and AD,
there are infinitely many local equivalent initial states with the
same entanglement dynamics. Moreover, for the D channel,
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the state |�θ 〉 = cos θ |00〉 + sin θ |11〉 also satisfies the bound
(16) and provides the most robust concurrence.

Since we are interested in the relation between the ro-
bustness of state and the entanglement that it generates with
the environment, more than knowing the most robust state,
it is also useful to know how the system-system entanglement
evolution depends on the local unitaries. In this case the bound
(16) is of no use, and we must resort to the direct brute-force
calculation of the concurrence, taking into account the local
unitaries. Focusing on a maximally entangled state, we can
perform this calculation analytically. First, note that

|�〉 = (U1 ⊗ U2)|�+〉 = (I ⊗ U )|�+〉
= 1√

2
eiφ1Z1+iφ2Z2

(|0〉∣∣ψ0
γ

〉 + |1〉∣∣ψ1
γ

〉)
,

with
∣∣ψ0

γ

〉 = cos γ |0〉 + sin γ |1〉,∣∣ψ1
γ

〉 = − sin γ |0〉 + cos γ |1〉.

Since the local phases commute with the D and AD channels
(or their concatenation), they cannot change the entangle-
ment dynamics, and the optimization can be restricted to
states |�γ 〉 = |0〉|ψ0

γ 〉 + |1〉|ψ1
γ 〉. For the AD channel, the

concurrence can be analytically computed and shown to be
a monotonically decreasing function of γ , reaching its maxi-
mum at γ = π/2 and minimum at γ = 0. That is, as argued
previously, for the AD channel the maximally entangled state
with most robust concurrence is |�π/2〉 = (1/

√
2)(|01〉 +

|10〉). In turn, the least robust is |�0〉 = (1/
√

2)(|00〉 + |11〉).
Considering now the dephasing channel, the maximum is

achieved for γ = {0, π/2} and the minimum for γ = π/4.
As concluded previously, the state with the most robust con-
currence against dephasing is |�π/2〉 = (1/

√
2)(|01〉 + |10〉).

In turn, the least robust is |�π/4〉 = (1/
√

2)(|0+〉 + |1−〉),
corresponding to a two-qubit graph state [42] where |±〉 =
(1/

√
2)(|0〉 ± |1〉).

Despite having no factorization law (15) for the negativity,
we can verify by inspection what are the most and least robust
maximally entangled states undergoing local noise. Consider-
ing the AD channel, the negativity is maximized for γ = 0
and minimized for γ = π/2. Similarly, for the dephasing
channel the negativity is maximized for γ = {0, π/2} and
minimized for γ = π/4; that is, while for the D channel both
concurrence and negativity agree on the ordering of states
|�γ 〉, for the AD channel the least robust maximally entangled
state according to the negativity is the most robust according
to the concurrence, and vice versa.

We turn our attention to the entanglement generated be-
tween the system and its environment through the noisy
evolution. Once more, we restrict to the maximally entangled
states. It is not difficult to compute the eigenvalues of the
general state |�γ 〉 undergoing AD or D channels. It can be
seen that for the D evolution, for both the concurrence and the
negativity, the more robust the state is, the less entanglement
is created with the environment. However, for the AD chan-
nel, the situation changes. As shown in Fig. 4, while for the
concurrence the expected intuition prevails, for the negativity,

FIG. 4. The dynamics of N (continuous curves for theoretical
results and dots for experimental ones), C (inset), EE (�SE ) (dashed
curves for theoretical results and dots for experimental ones) for the
maximally entangled state |�γ=0〉 (blue—up in the main graph, down
in the inset) and |�γ=π/2〉 (red—down in the main graph, up in the
inset) undergoing the AD channel. Note that the ordering given by
N and C is reversed. Surprisingly the most robust state according to
the negativity is exactly the one generating more entanglement with
the environment. All experimental results were obtained using the
quantum computer ibmq_manila from IBM Q-Experience [34].

the most robust state is exactly the one maximizing the entan-
glement with the environment. Remarkably, for p1 = p2 = p,
its negativity reads

N = 1 − 2p + p2, (20)

which equals to 2F (ργ=0) − 1, F (·) being the singlet fraction
and ργ=0 the state of the system after the AD channel. Hence,
for those states the singlet fraction saturates the upper bound
imposed by the negativity, which together with the fact that
N (ργ=0) � N (ργ=π/2) implies that even though |�γ=0〉 gen-
erates more entanglement with the environment nonetheless is
also the most useful state in a teleportation protocol.

B. The maximally entangled state is not the optimal
resource in the noisy scenario

In an ideal noiseless scenario, the maximally entangled
state is the paradigmatic state, allowing the optimal execution
of information tasks. For one-sided channels it is known that
the maximally entangled states are still the most robust states,
maximizing the entanglement over the whole dynamics [19].
Formally, for any state ρ,

E ((I ⊗ ε)ρ) � E ((I ⊗ ε)|〉〈|), (21)

where E is any entanglement monotone and |〉 represents
some maximally entangled state. As we show next, the maxi-
mally entangled state is not necessarily the most robust against
noise for the more realistic scenario of two-sided channels.
Moreover, considering a teleportation protocol, this leads to
an unexpected situation, where in the noisy scenario it is
advantageous to start out with a less entangled state than a
maximally entangled one.

To prove that (21) is not valid in general we will focus
on the negativity [40] and the AD channel. As shown before,
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FIG. 5. Negativity dynamics for the AD channel. The blue curve,
starting with N = 1.0, and dots represent the maximally entangled
state, and the red curve and dots the nonmaximally entangled state
(we use θ = 0.7π

4 in this example), curve for theoretical results and
dots for experimental results.

the most robust maximally entangled state according to the
negativity is |�γ=0〉. Plotting the negativity for |�γ=0〉 and the
negativity for a nonmaximally entangled state |θ 〉, following
definition (18), for a certain θ �= π/4, one can see in Fig. 5
that the curves cross each other. That is, the initially more
entangled state is not the most robust against noise through all
the dynamics. Moreover, for the state |θ 〉 undergoing local
AD channels, it is possible to show that, for the resulting
noisy state �θ , F (�θ ) = 〈θ |�θ |θ 〉 = [1 + N (�θ )]/2; that
is, in this particular case the negativity gains an operational
meaning in terms of the teleportation fidelity, thus showing
that a less entangled state may be a better resource in the
realistic implementation of some quantum information tasks.

VI. DISCUSSION

To counteract the unavoidable effects of decoherence is a
step of primal importance for the establishment of quantum
technologies. Error correction provides a general framework
for that; however, due to the large overhead in extra qubits,
it remains impractical to near-term quantum devices. It is
thus important to explore complementary alternatives that,
even though they cannot replace error correction in the long
term, still can provide experimental less demanding ways to
preserve quantum properties and consequently improve its use
as a resource in several applications.

Previously, considering particular classes of multipartite
states, it has been noticed that simple local unitaries can
greatly improve the robustness of the entanglement dynamics
[22]. However, even for bipartite systems, it was not known
what are the unitaries leading to an optimal dynamics.

Here we solve this question by analyzing two paradigmatic
and relevant noise channels, the amplitude damping and de-
phasing and combinations of both. For pure initial qubit states,
we analytically find what are the unitaries leading to best
and worst concurrence. As one could expect, the more the
system is entangled with the environment, the lower is the
concurrence between the qubits of the system. As a proof
of principle, we also show the effect of these unitaries in

practice, by implementing the corresponding quantum circuit
simulating the system-environment evolution in the IBM Q-
Experience.

By considering the negativity instead, a surprising effect
occurs: the optimal unitary is exactly that generating the most
entanglement with the environment. Furthermore, we show
that the negativity of an initially less entangled state can be
more robust against decoherence than a maximally entangled
one. As a consequence, there is a range of noise parameters for
which the best teleportation protocol is achieved with such an
initially less entangled state. The fact that to start with a less
entangled state provides a larger probability of success is a
result that resembles the seminal result of Eberhard [43], in the
achievement of a loophole-free Bell test. This kind of result
happens also in different contexts. For instance, as shown
in Ref. [44], too entangled states turn out to be useless for
the measurement-based quantum computation model. Also, in
what is known as the nonlocality anomaly (see Refs. [45,46]),
a nonmaximally entangled state can be more nonlocal (in the
Bell sense) than maximally entangled ones. Something similar
also happens for the quantum violation of causal bounds (see
Ref. [47]).

Finally, we go beyond the understanding of entanglement
dynamics and also derive a general law relating the mu-
tual information between system and environment with the
changes in the total correlation. Even though we cannot reach
general conclusions, for the specific cases we have analyzed
the unitary that best preserves the total correlations of the
system is exactly that generating less mutual information and
entanglement between system and environment. At the same
time, however, this optimal unitary is the one that gener-
ates the most correlations between the different parts of the
subsystem.

We believe our results may help to enhance the robustness
of quantum information protocols of practical relevance and
to better understand the dynamics of quantum correlations
and their use as a potential resource. In particular, it would
be interesting to understand whether local unitary encod-
ings can also lead to improvements in quantum computation
algorithms. We hope our results might trigger further devel-
opments in this area.
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