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Quantum quench thermodynamics at high temperatures
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The entropy produced when a system undergoes an infinitesimal quench is directly linked to the work
parameter susceptibility, making it sensitive to the existence of a quantum critical point. Its singular behavior
at T = 0, however, disappears as the temperature is raised, hindering its use as a tool for spotting quantum
phase transitions. Notwithstanding, the entropy production can be split into classical and quantum components,
related with changes in populations and coherences. In this paper we show that these individual contributions
can continue to exhibit signatures of the quantum phase transition, even at arbitrarily high temperatures. This is a
consequence of their intrinsic connection to the derivatives of the energy eigenvalues and the energy eigenbasis.
We illustrate our results in the Landau-Zener model and the prototypical quantum critical system, the XY model.
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I. INTRODUCTION

At zero temperature a quantum many-body system can
manifest distinct behaviors depending on the values of its
internal couplings. And, as these values are altered, quantum
fluctuations may drive the system through a phase transition.
These quantum phase transitions are characterized by stark
modifications in the system’s ground state, frequently associ-
ated with a symmetry breaking at a critical point.

Such transitions can be characterized with a variety of in-
formation theoretic tools, such as ground-state fidelity, fidelity
susceptibility, and Loschmidt echo [1]. For finite systems, a
large overlap between the ground states of nearby Hamiltoni-
ans in parameter space is expected, giving a fidelity close to
unity. In contrast, the distinct properties of the ground states
pertaining to different phases make them more “distant,” and
this is revealed as a sharp drop in fidelity in the vicinity of the
transition point [2]. Equivalently, this effect can be verified as
an increase in the fidelity rate change, the fidelity susceptibil-
ity, signaling the existence of a phase transition [1,2].

In a similar way, the Loschmidt echo, which behaves as
a type of dynamic fidelity, gives a measure of the distin-
guishability between the time-evolved ground states of an
unperturbed Hamiltonian and its perturbed counterpart. When
the system is quenched through a critical point, the echo may
have a dip at the critical parameter and a series of decays and
revivals as a function of time, also indicating the presence of
critical behavior [3,4].

As the temperature T is raised above zero, a competition
between quantum and thermal fluctuations emerge, with the
latter quickly dominating the physics of the problem [5].
Nonetheless, fingerprints of the quantum critical point are
still visible for finite temperatures, albeit not as sharply as

at T = 0. A generalization of the ground-state fidelity and
Loschmidt echo approaches to thermal states was put forward
in Ref. [6]. A decay in their values close to the quantum
critical point was also observed, although gradually less sharp
with rising temperatures, up to a complete disappearance of
any distinct feature.

On another front, the correlations and/or coherences in the
system have been likewise used as tools for locating transi-
tion points. This started with entanglement measures [7,8] (or
some derivatives of it), which can show nonanalytic behavior
at a quantum critical point. Similar analysis was later extended
to mutual information, classical correlations, and quantum
discord [9,10], and more recently to quantifiers of coherence
[11–17] in several spin models. Commonly, the singularities
in these quantities disappear at finite T , and attempts to es-
timate the critical point from the extrema of these functions
generally become poorer with increasing temperature.

An exception, though, was demonstrated in Ref. [18] for
quantum discord. In this case, the authors showed that a kink
in the discord in the state of two nearest-neighbor spins, re-
duced from a global thermal state, in the XXZ model with
no external field, indicates the quantum critical points in
the system even at high temperatures. Still, further analyses
with other models [19,20] showed that for some transitions
these nonanalyticities can, again, disappear, with the peaks or
valleys that replace them becoming less pronounced and dis-
placed from the true critical point with increasing temperature.

Quantum phase transitions have also played a similar role
in the context of quantum thermodynamics, particularly in
the case of unitary work protocols. In fact, in Refs. [21,22]
it was shown that a divergence in the entropy production
during a sudden quench pinpointed the existence of a quantum
critical point. The entropy production is generally written as a
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quantum relative entropy and, therefore, similarly gives a
measure of distinguishbility between states. Here, a temper-
ature is naturally introduced from the start, but again, the
divergence at T = 0 is smoothed as T increases [21].

The entropy production, however, can be consistently
split into two parts, associated with classical and quantum
contributions, the latter steaming from quantum coherences
[23–26]. Beyond unitary work protocols [24], particularly in
critical systems [26,27], this type of splitting has found many
applications like in work extraction protocols [28], relaxation
towards equilibrium [23,29], quasistatic evolution and conse-
quences of coherences to the fluctuation-dissipation theorem
[25,30], thermodynamics resource theory [31], and quantum
optics thermodynamics [32]. In Refs. [26,27] we hinted at
the fact that this contribution could individually signal the
existence of a quantum critical point (hence T = 0) even with
protocols performed at any temperature. The aim of this paper
is to further explore and clarify this point.

Hence, we consider a system with Hamiltonian H (g), de-
pending on an externally tunable parameter g and initially
prepared in a thermal state at temperature T = 1/β. Thus,
the system’s initial state is given by ρ th

0 = e−βH0/Z0, where
H0 = H (g0) is the initial Hamiltonian and Z0 = tr{e−βH0} is
the partition function. The system then undergoes a sudden
quench work protocol, where g is changed to a final value
of gτ . Since the quench is assumed to be instantaneous, the
state of the system remains the same, ρ th

0 , but its Hamiltonian
changes to Hτ = H (gτ ). Therefore, the system is driven away
from equilibrium. The entropy production (or nonequilibrium
lag) due to this process is given by [33,34]

� = S
(
ρ th

0

∣∣∣∣ρ th
τ

)
, (1)

where S(ρ||σ ) = tr{ρ(ln ρ − ln σ )} � 0 is the quantum rela-
tive entropy, and ρ th

τ = e−βHτ /Zτ is the equilibrium reference
state associated with the final Hamiltonian Hτ . The en-
tropy production � may also be written in the enlightening
form � = β(〈W 〉 − �F ), where 〈W 〉 = tr{(Hτ − H0)ρ th

0 } =
tr{�Hρ th

0 } is the average work performed in the protocol
and �F = F (gτ ) − F (g0) = −T ln Zτ /Z0 is the difference in
equilibrium free energy. Due to this thermodynamic interpre-
tation, entropy production has recently been used extensively
as a quantifier of irreversibility, in both theory [35–43] and
experiment [44–55].

Let us consider the quench δg = gτ − g0 to be small. Then
we can make a Taylor expansion, and the entropy production
can be simplified to [25,26]

� = 	cl + 	qu, (2)

	cl = β2

2
Var0[�Hd], (3)

	qu = β2

2
Var0[�H c] − β2

2

∫ 1

0
dyIy

(
ρ th

0 ,�H c), (4)

where �Hd is the diagonal part of the perturbation in the
basis of H0 (and ρ th

0 ), �H c = �H − �Hd is the coherent part,
Var0[(•)] = tr{(•)2ρ th

0 } − tr{(•)ρ th
0 }2 is the variance of (•) in

the initial thermal state, and

Iy(
, X ) = − 1
2 tr{[
y, X ][
1−y, X ]} (5)

is the Wigner-Yanase-Dyson skew information [56,57]. The
term 	qu quantifies the entropy production associated with the
coherences generated by a noncommuting drive. Equations (3)
and (4) take into account only the leading contributions on the
small perturbation. Importantly, both 	cl and 	qu in Eq. (2)
are individually non-negative [26].

Moreover, for sufficiently high temperatures, the split-
ting (2) coincides with an alternative expansion used in
Refs. [23,24], which reads

� = S
(
DHτ

(
ρ th

0

)∣∣∣∣ρ th
τ

) + S
(
ρ th

0

∣∣∣∣DHτ

(
ρ th

0

))
, (6)

where DHτ
(ρ th

0 ) is the initial state dephased in the final energy
basis. Therefore, the first term gives a contribution due to
the mismatch between the populations of the initial and final
equilibrium states, while the second term gives the contribu-
tion to the entropy production stemming from the coherences
in ρ th

0 in the final energy basis as measured by the relative
entropy of coherence [58]. For T values high enough, they
coincide with 	cl and 	qu [26], respectively. This means that,
in this particular regime of infinitesimal quenches and high
temperatures, the splittings (2) and (6) are equivalent.

In what follows, in Sec. II we show why and how 	cl and
	qu can be used to investigate a quantum critical point. No-
tably, we see that this approach is useful at any temperature. In
Sec. III and IV we consider the Landau-Zener and XY mod-
els as examples of quantum critical systems to illustrate our
results. In Sec. V we discuss how, in principle, these results
could be verified experimentally. We conclude in Sec. VI.

II. QUANTUM CRITICAL SIGNATURES
AT HIGH TEMPERATURES

We consider a system described by the Hamiltonian

H (g) = H0 + gH1, (7)

where g is an externally adjustable parameter. If the two parts
of this Hamiltonian do not commute, [H0, H1] �= 0, in the ther-
modynamic limit the quantum fluctuations induced by H1 as
|g| is raised above zero may cause a continuous (second-order)
quantum phase transition in the system at some critical value
of gc. As noted earlier, the existence of this critical point may
imprint a signature in physically observable quantities, even if
the system is finite in size and/or is at a finite temperature.

Let us assume that H (g) has the following eigendecompo-
sition:

H (g) =
∑

i

εi(g) �i(g), (8)

where εi and �i are the energy eigenvalues and eigenpro-
jectors, respectively. These are generally functions of g, and
differentiating with respect to it, we get

(∂gH )δg = δg
∑

i

(∂gεi )�i + δg
∑

i

εi(∂g�i ). (9)

Note that for a system presenting a second-order quantum
phase transition, these first derivatives may present a kink
at a critical point but are still continuous and well-defined
functions for all g.

On the other hand, suppose we apply an instantaneous
perturbation δg on the system. We have H (g + δg) = H (g) +
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�H , where �H can be split as

�H = �Hd + �H c, (10)

with �Hd = ∑
i �i�H�i being the diagonal part of the per-

turbation in the eigenbasis of the original Hamiltonian H (g),
and �H c = �H − �Hd being the coherent part. Now, be-
cause H is continuous and linear on g we must have

�H = H (g + δg) − H (g) = (∂gH )δg. (11)

Combining Eqs. (9) to (11), we readily find that

�Hd = δg
∑

i

(∂gεi )�i, (12)

�H c = δg
∑

i

εi(∂g�i ). (13)

Now consider that we prepare the system in thermal
equilibrium, as discussed in Sec. I. For sufficiently high tem-
peratures (small β), the thermal state ρ th

0 = e−βH (g0 )/Z (g0) is
close to the maximally mixed state, ρ th

0 → 1
d , where d is the

dimension of the system. Such an approximation holds when
T (β) is much larger (smaller) than the energy of the highest
excitation on the system. For instance, below we consider the
example of the one-dimensional XY model, which is mapped
onto a system of free fermions. In this case, we must have
βεmax � 1, where εmax is the energy of the highest fermionic
excitation. Further assuming δg is small and tr{�Hd} = 0,
which can always be done, it is easy to show that to leading
order in β, Eqs. (3) and (4) reduce to

	cl = β2δg2

2

∑
i

di

d
(∂gεi )

2, (14)

	qu = β2δg2

2

∑
i

||εi(∂g�i )||2
d

, (15)

where di = tr{�i} is the dimension of projector �i, ||X || =√
tr{X †X } is the Hilbert-Schmidt norm of X , and we also use

that �H c is traceless, by construction. Corrections to these
formulas will be of order β3 at least and can be safely ignored
for small β.

From these results, we therefore see that 	cl and 	qu are
directly connected to the derivatives of the energy eigenval-
ues and the energy eigenbasis with respect to the critical
parameter of the Hamiltonian. But by definition [5], in the
thermodynamic limit, the ground state and the ground-state
energy of a quantum critical system are nonanalytic in the
vicinity of a critical point. Because of the form of Eqs. (14)
and (15), these singularities get imprinted on 	cl and 	qu

no matter how high the temperature is. Furthermore, since
for a system presenting second-order transitions the thermal
state ρ th

0 is a continuous function of β, the distinct behaviors
of 	cl and 	qu at the quantum critical point gc persists at
every temperature. Precisely, at any T > 0, 	qu and 	cl are
functions of the first derivatives of the energy eigenvalues and
eigenstates multiplied by a continuous function of β steaming
from ρ th

0 , with continuous first-order derivative. The kinks
on the Hamiltonian spectrum at g = gc are inherited by the
classical and quantum parts of the entropy production.

Contrastingly, in the limit T → ∞ (β → 0), using also
that tr{�H} = tr{�Hd} = 0, the total entropy production is

simply given by

� = β2

2
tr
{1

d
�H2

}
. (16)

But �H = δg(∂gH ) = δgH1, which makes � independent of
the critical parameter g. This is why in the high-temperature
limit the full entropy production can show no singularity at gc.

Hence, the classical and quantum contributions to the en-
tropy production, Eqs. (3) and (4), can be used to investigate
the existence of a second-order quantum critical point at
any temperature. We now illustrate this via two analytically
soluble examples. Before continuing, though, we emphasize
that, since Eqs. (14) and (15) involve a sum over all energy
subspaces, we cannot discard the possibility of systems where
the singularities in the ground and low-lying levels are too
weak and become eroded by this sum. Moreover, it is also
possible to have systems where the singularities on 	cl and
	qu at high temperatures are inherited from singularities on
the middle of the energy spectrum and not necessarily from
the ground state. This could be the case, for instance, in a
higher-dimensional and nonintegrable model with a critical
point at finite T . Due to the eigenstate thermalization hypoth-
esis, high-energy eigenstates would inherit the singularities of
the equilibrium states around the critical point [59].

III. LANDAU-ZENER MODEL

The Landau-Zener model is a single-qubit Hamiltonian
which can be regarded as a prototype of a quantum critical
system [22]. It reads

HLZ(g) =
(

−�

2
+ g

)
σ z + bσ x, (17)

where σ x,z are Pauli spin- 1
2 operators and g represents an ex-

ternally controlled magnetic field. This system has an avoided
crossing at gc = �/2 for b → 0, similar to what happens in
a system presenting a second-order quantum phase transition
[see Fig. 1(a)]. Importantly, however, we note that since this
is a single-qubit system, this is not a real critical system,
and there is no real phase transition in this case. The model
still neatly illustrates the behaviors of 	qu and 	cl as an
energy gap closes and how 	qu and 	cl capture the asso-
ciated singularities developed in the spectrum of the system
Hamiltonian—contrarily to the case of a real second-order
quantum critical point, though, the singularities here occur on
the first derivatives of the Hamiltonian eigenstuff.

The Landau-Zener Hamiltonian assumes the following di-
agonal form:

HLZ(g) = ε(g)σ̃ z, (18)

where ε(g) =
√

b2 + (g − �/2)2 gives the system eigenener-
gies, and

σ̃ z = |ψ+〉〈ψ+| − |ψ−〉〈ψ−|, (19)

|ψ−(g)〉 = cos(θ/2)|0〉 − sin(θ/2)|1〉, (20)

|ψ+(g)〉 = sin(θ/2)|0〉 + cos(θ/2)|1〉, (21)
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FIG. 1. Landau-Zener model. (a) ±ε vs g0, showing the avoided
crossing at the critical point g0 = 1/2. (b)–(d) �, 	qu, and 	cl

(scaled by 1/2β2δg2), for several values of inverse temperatures β,
as denoted in panel (c). In �, signatures of the transition are only
present at low temperatures (high β) and are completely washed
away for small β. Conversely, in both 	cl and 	qu, clear signatures
remain visible over the entire temperature range. Other parameters:
� = 1 and b = 0.01. Note that since the curves are divided by δg2,
we do not need to specify a value for it, just assume it is small enough
for Eqs. (3) and (4) to be valid.

(
cos θ, sin θ

) =
(

g − �/2

ε
,

b

ε

)
. (22)

Here σ z|i〉 = (−1)i+1|i〉, i = 0 and 1, is the usual computa-
tional basis.

For a perturbation �H = δgσ z, the dephased and coherent
parts in the energy eigenbasis read

�Hd = δg(∂gε)σ̃ z = δgcos θ σ̃ z, (23)

�H c = δgε(∂gσ̃
z ) = −δg sin θ σ̃ x, (24)

where σ̃ x = |ψ−〉〈ψ+| + |ψ+〉〈ψ−|.
The derivatives ∂gε and ∂gσ̃

z are discontinuous at gc when
b → 0, and this is reflected in the behaviors of 	cl and 	qu

around this point.
Consider a system initially in the thermal state,

ρ th
0 = e−βHLZ(g0 )

Z0
= e−βε0 |ψ0

+〉〈ψ0
+| + eβε0 |ψ0

−〉〈ψ0
−|

2 cosh(βε0)
, (25)

where ε0 = ε(g0) and |ψ0
±〉 = |ψ±(g0)〉. Hence, for small δg,

using Eqs. (3) and (4), we have

	cl = 1

2
β2δg2sech2(βε0) cos2 θ, (26)

	qu = 1

2
β2δg2 tanh(βε0)

βε0
sin2 θ, (27)

which reduce to 	cl = (1/2)β2δg2 cos2 θ and 	qu =
(1/2)β2δg2 sin2 θ to leading order on β, consistent with
Eqs. (14) and (15). In Figs. 1(b)–1(d) we plot �, 	qu,
and 	cl as a function of the initial field for several inverse
temperatures β. The net entropy production � shows
signatures of the closing energy gap at low temperatures. But
these are quickly washed away, and for high T (small β) �

becomes essentially flat. Conversely, the curves for 	qu and
	cl preserve the signatures of the ensuing singularities in the
Hamiltonian spectrum for all values of β, indicated by a sharp
peak (dip) in the plots of 	qu (	cl) at gc.

IV. TRANSVERSE FIELD XY MODEL

Next, we turn to the transverse field XY model, described
by a linear chain with N spins, which has the Hamiltonian

H (g, γ ) = −J
N∑

j=1

(
1 + γ

2
σ x

j σ
x
j+1 + 1 − γ

2
σ

y
j σ

y
j+1 + gσ z

j

)
,

(28)
where J > 0 is the ferromagnetic exchange interaction be-
tween spins, g is an applied magnetic field, and γ is the
anisotropy parameter. We also consider periodic boundary
conditions, �σN+1 = �σ1. For γ = 1, Eq. (28) reduces to the
transverse-field Ising model, and γ = 0 gives the XX model.
In the latter, the system eigenbasis is constant (does not de-
pend on g). We henceforth set J = 1, thus fixing all other
energy units.

Perturbations on the system may be introduced by varying
g and/or γ . In the thermodynamic limit, this model presents
critical lines at g = ±1, where the system changes from a
ferromagnetic phase, |g| < 1, to a paramagnetic phase for
|g| > 1. There is also an anisotropic transition line at (γ =
0, |g| < 1) where the ferromagnetic ordering changes from
the y direction, for γ < 0, to the x direction, for γ > 0.

After a Jordan-Wigner transformation that maps the system
onto spinless fermions, and a Fourier and Bogoliubov trans-
formations, the Hamiltonian (28) can be written in diagonal
form as (we ignore parity issues for simplicity and assume N
is even) [5,60]

H (g, γ ) =
∑

k

εk (2η
†
kηk − 1), (29)

where k = ±(2n + 1)π/N , n = 0, 1, . . . , N/2 − 1, are the
system quasimomenta; εk (g, γ ) =

√
(g − cos k)2 + γ 2 sin2 k

are the single particle eigenenergies; and

ηk = cos(θk/2)ck + sin(θk/2)c†
−k, (30)

(cos θk, sin θk ) =
(

g − cos k

εk (g, γ )
,

γ sin k

εk (g, γ )

)
, (31)
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Plots of 	qu (top row) and 	cl (bottom row) as a function of the initial field g0, scaled by Nβ2δg2, for several values of anisotropy
and inverse temperatures: (a) and (e) β = 5, (b) and (f) β = 3, (c) and (g) β = 1, and (d) and (h) β = 0.1. We consider the anisotropy to be
fixed, δγ = 0, and make small quenches δg in the field. Note that when divided by δg2 the curves are independent of its value. For γ = 0,
the system’s eigenbasis is constant and, therefore, 	qu = 0. For other values of γ , a kink in both quantities clearly indicates the critical points
gc = ±1, even at high temperatures. Particularly, in the limit T → ∞ (β → 0) we obtain the plateaus and depressions in panels (d) and (h),
respectively.

where {ηk} and {ck} are fermionic operators, satisfying the
usual anticommutation relations [5,27]. Note that the set {ck}
is independent of g and γ .

For the perturbation �H = −δγ /2
∑N

j=1(σ x
j σ

x
j+1 −

σ
y
j σ

y
j+1) − δg

∑N
j=1 σ z

j , its dephased and coherent parts were
shown in Ref. [26] to be given by

�Hd =
∑

k

(δγ sin k sin θk + δgcos θk )(2η
†
kηk − 1), (32)

�H c =
∑

k

(δg sin θk − δγ sin k cos θk )(η†
−kη

†
k − η−kηk ).

(33)

Considering the initial thermal state ρ th
0 = e−βH0/Z0, with

H0 = H (g0, γ0), and performing small sudden quenches δg
and δγ , we obtain

	cl

Nβ2
=

∫ π

0

dk

2π
sech2

(
βε0

k

)
(δγ sin k sin θk + δgcos θk )2,

(34)

	qu

Nβ2
=

∫ π

0

dk

2π

tanh
(
βε0

k

)
βε0

k

(δg sin θk − δγ sin k cos θk )2,

(35)

where we take the thermodynamic limit N → ∞ to convert
the sums over k into integrals, and ε0

k = εk (g0, γ0) are the
eigenenergies associated with the initial values of anisotropy
and field.

Equations (34) and (35) are general expressions for the
quench response of 	cl and 	qu, valid for any value of β.
In Fig. 2 we plot them assuming small quenches δg in the
field, with δγ = 0. Each curve corresponds to a value of the
anisotropy γ , and each column corresponds to a value of the
inverse temperature: (a) and (e) β = 5, (b) and (f) β = 3, (c)
and (g) β = 1, and (d) and (h) β = 0.1. For γ = 0, the sys-
tem’s constant eigenbasis makes 	qu = 0. In all other curves,
there are kinks at g0 = ±1, indicating the critical points at
high temperatures. In particular, for sufficiently small β we
have

	cl

Nβ2δg2
=

∫ π

0

dk

2π
cos2 θk, (36)

	qu

Nβ2δg2
=

∫ π

0

dk

2π
sin2 θk, (37)

which gives a total entropy production of �/Nβ2δg2 = 1/2,
containing no distinct feature whatsoever. Nonetheless, for
γ = 1, the integral in Eq. (37) evaluates to [27]

	qu

Nβ2δg2
=

{
1
4 , |g0| � 1,

1
4|g0| , |g0| > 1,

(38)

corresponding to the striking plateaus in the region of pa-
rameters associated with the quantum ferromagnetic phase
observed in Figs. 2(d) and 2(h). Note that these curves are
for β = 0.1, corresponding to a large temperature. In the Ap-
pendix we also analyze the effects of a finite number of spins
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Analogous to Fig. 2, but analyzing the anisotropic transition. Hence, the quenches are made on the anisotropic parameter, with
δg = 0. Divided by δγ 2, the curves are independent of its value. The peaks in 	qu above (dips in 	cl below) evidence the quantum critical line
at γ = 0. Again, each column has an inverse temperature which is equal to the corresponding column in Fig. 2.

N and show that, although the functions become analytic,
the thermodynamic limit behavior is quickly approached with
increasing N . This mean our analysis could be tested in an
Ising model with a relatively small number of spins.

In Fig. 3 we analyze the anisotropic transition by taking
δg = 0 and a small δγ . In this case, each curve corresponds
to a value of the transverse field g0, and, again, each column
corresponds to an inverse temperature, with the same values as
those in Fig. 2. A cusp in 	cl and 	qu at γ0 = 0 signals the ex-
istence of the quantum critical line associated with the change
in the ferromagnetic ordering, even at high temperatures.

V. EXPERIMENTAL ASSESSMENT OF �cl AND �qu

In this section we propose a way in which the classical and
quantum contributions to the entropy production, 	cl and 	qu,
could, in principle, be evaluated experimentally. Our idea is
based on their stochastic formulation using the standard two-
point measurement scheme [41] and the fact that they obey
fluctuation theorems [26].

The system is initially prepared in the thermal state ρ th
0 =

e−βH0/Z0 = ∑
i(e

−βε0
i /Z0)|i0〉〈i0| at inverse temperature β, as-

sociated with the Hamiltonian H0 = ∑
i ε

0
i |i0〉〈i0|, which we

assume to be nondegenerate, for simplicity. Hence, if we
perform an energy measurement in this state, we obtain the
energy ε0

i with the probability p0
i = e−βε0

i /Z0, while the asso-
ciated measurement backaction updates the state of the system
to |i0〉. We then perform the quench, and the Hamiltonian
changes to the final value Hτ = ∑

j ε
τ
j | jτ 〉〈 jτ |. Since we are

considering an instantaneous quench, and given that after the

first energy measurement the system is in the state |i0〉, a
second energy measurement will return the value ετ

j with the
probability pi | j = |〈 jτ |i0〉|2.

Therefore, the path probability corresponding to the
stochastic trajectory |i0〉 → | jτ 〉 is given by the product of the
probabilities for the system to be initially found in |i0〉 and
to transition to the final state | jτ 〉, after the quench; it reads
PF [i, j] = p0

i pi | j . The associated stochastic entropy produc-
tion is given by [24]

σ [i, j] = β
(
ετ

j − ε0
i

) − β�Fτ, 0, (39)

where w[i, j] = ετ
j − ε0

i is the stochastic work done on the
system, and �Fτ,0 = −T ln Zτ /Z0 is the change in equilibrium
free energy.

It can be readily checked that 〈σ [i, j]〉 =∑
i, j σ [i, j]PF [i, j] = � gives the expected average (1).

Moreover, the quantity σ satisfies an integral fluctuation
theorem [61,62], 〈e−σ 〉 = 1, from which follows the Jarzynski
relation 〈e−βw[i, j]〉 = e−β�Fτ,0 [35].

Thus, we see that if, in an experiment, one can determine
the work w[i, j] and the path probability PF [i, j], �Fτ,0 is
obtained from the Jarzynski relation and so, finally, is the
entropy production �. There are several proposals on how
this can be done, as well as successful experimental imple-
mentations [50,51,63–66]. In Ref. [67] the authors present a
general method for obtaining the transition probabilities pi | j

in a many-body system and use it to verify the Jarzynski
relation for two qubits.
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Having said that, next we note that 	cl and 	qu have
similar stochastic versions [26],

λcl[i, j] = β
(
ε̃τ

i − ε0
i

) − β�F̃τ, 0, (40)

λqu[i, j] = β
(
ετ

j − ε̃τ
i

) − β�F̃τ, τ , (41)

where ε̃τ
i = ε0

i + �Hii = ε0
i + δg(∂gε

0
i ) are the eigenenergies

associated with the Hamiltonian H0 + �Hd, and �F̃τ,0 =
−T ln Z̃τ /Z0, with Z̃τ = tr{e−β(H0+�Hd )}, is the change in the
equilibrium free energy due to the incoherent perturbation
�Hd. Additionally, �F̃τ,τ = −T ln Zτ /Z̃τ gives the difference
in free energy associated with the perturbation’s coherent
part �H c.

Naturally, we have 〈λcl〉 = ∑
i, j λcl[i, j]PF [i, j] = 	cl and

〈λqu〉 = ∑
i, j λqu[i, j]PF [i, j] = 	qu [26]. Furthermore, λcl

satisfies an integral fluctuation theorem, 〈e−λcl〉 = 1, and this
is equally valid for λqu in the infinitesimal and instantaneous
quench limit [26].

Now we observe that, up to second order on the perturba-
tion δg, the final energy eigenvalues are given by

ετ
j = ε0

j + δg
(
∂gε

0
j

) + 1

2
δg2(∂2

g ε0
j

)
= ε0

j + �Hj j + 1

2

∑
� �= j

|�Hj�|2
ε0

j − ε0
�

, (42)

where �Hi j = 〈i0|�H | j0〉.
Interestingly, in this limit of instantaneous and infinitesi-

mal quenches, the first term in Eq. (40), wd[i, i] = ε̃τ
i − ε0

i ≈
w[i, j]δi j , except in the vicinity of a critical point. In the latter
case, the third term in the right-hand side of Eq. (42) can
become relevant. Nonetheless, the smaller δg is, the better
the approximation and smaller the interval where it breaks
down. In the limit δg → 0, it should fail only at the critical
point. Hence, we can obtain wd from the measured stochastic
work w by postselecting the cases where the system changes
energy without jumping to a state with different label j. Using
again a Jarzynski relation, 〈e−βwd〉 = e−β�F̃τ, 0 , we get �F̃τ, 0,
and 	cl = β〈wd〉 − β�F̃τ, 0. From 	cl and �, we also obtain
	qu = � − 	cl. This approach, therefore, enables 	qu and
	cl to be determined from the standard two-measurement
protocol, provided the data is postselect, which is highly con-
venient.

VI. CONCLUSION

The entropy production associated with the work done on
a closed quantum system can be divided into a classical and
a quantum contribution [23–26]. The latter originates from
energetic coherences that can be generated by the drive.

In this article we showed that for instantaneous and in-
finitesimal quenches, these contributions, as given in Eqs. (3)
and (4), are respectively and explicitly related to the deriva-
tives of the energy eigenvalues and the energy eigenbasis
with respect to the work parameter. In a system presenting a
second-order quantum phase transition, one of these energy
eigenvalues and eigenstates becomes nonanalytic at a criti-
cal point, and this pathology gets engraved on 	cl and 	qu.
In particular, we demonstrated that their singularities remain

present even when the system is prepared at arbitrarily high
temperatures. We believe this makes these quantities particu-
larly useful in spotlighting such quantum critical points.

We illustrated this idea by applying our general results
to two paradigmatic examples, the Landau-Zener and XY
models. The Landau-Zener model is a single-qubit Hamilto-
nian incorporating an avoided energy crossing, analogous to
a second-order quantum phase transition. As a function of the
initial work parameter g0, the entropy production in this model
has a peak at the critical point gc, at low temperatures. As T is
raised (or β = 1/T is lowered) the relative height (when the
curve is divided by β2) of this peak decreases, and the curve
becomes flat in the limit T → ∞ (β → 0). The maximum
of 	qu (minimum of 	cl) at gc, however, remains present
even in this limit. Therefore, 	cl and 	qu can be used to spot
the critical point even when the system initially has a high
temperature.

In the case of the XY model we considered both the fer-
romagnetic and the anisotropic transitions. In the former we
considered quenches in the field with fixed anisotropy and
showed that in the thermodynamic limit 	cl and 	qu per
particle have kinks at initial fields equal to the critical values
g0 = ±1 at all temperatures. Notably, in the limit T → ∞,
the total entropy production becomes a constant function of
g0, while 	cl and 	qu present very distinct behaviors in the
regions corresponding to different phases, being constant for
|g0| < 1 but strictly monotonic when |g0| > 1. In the Ap-
pendix, we also considered the effects of a finite chain for
the Ising model. Although 	cl and 	qu become analytic in
this case, we see the thermodynamic limit behavior is quickly
approached with increasing N .

Similarly, considering quenches in the anisotropy, a kink
in the curves of 	cl and 	qu at the critical value γ0 = 0
signals the presence of the anisotropic critical line at high
temperatures.

Finally, we also suggested a way in which these results
could be obtained from an experiment. This is based on the
stochastic two-point measurement definitions of 	cl and 	qu

and the fact that they obey fluctuation theorems. The actual
feasibility of our scheme, however, depends on one’s ability
to determine the stochastic work performed in the protocol
and the associated path probabilities.
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APPENDIX: FINITE-SIZE EFFECTS IN
THE ISING MODEL

In this Appendix we consider the effects of a finite number
of spins N on the behaviors of 	cl and 	qu.
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FIG. 4. Plots of (a) 	qu and (b) 	cl scaled by Nβ2δg2 as a func-
tion of the initial field g0, for several values of N . The figure shows
the limit N → ∞—indicated by the bottom and top flat curve in
panels (a) and (b)—is quickly approached with increasing N . We
emphasize that we are considering β sufficiently small such that we
take only the leading-order contributions.

In particular we take γ = 1, which means we work with the
transverse-field Ising model. We also assume the temperature
is high enough so that we can approximate the initial thermal
state by the maximally mixed state, ρ th

0 = 1/2N , where 2N is
the dimension of the Hilbert space of a system with N spins.
Then, we have

	cl = β2

2
tr
{1

d
(�Hd)2

}
= β2δg2

∑
k>0

cos2 θk, (A1)

	qu = β2

2
tr
{1

d
(�H c)2

}
= β2δg2

∑
k>0

sin2 θk, (A2)

where k = ±(2n + 1)π/N , n ranging from 0 to N/2 − 1;
cos θk = (g0 − cos k)/ε0

k ; and sin θk = sin k/ε0
k , with ε0

k =√
(g0 − cos k)2 + sin2 k and g0 being the initial field. We also

used that cos2 θk and sin2 θk are even functions of k.
In Fig. 4 we plot 	cl/N and 	qu/N as a function of g0

for several N . The plots show that the thermodynamic limit
behavior (black flat curves) is quickly approximated with in-
creasing N .

This result can be further elucidated as follows. Equa-
tions (A1) and (A2) can be recast as

	cl

Nβ2δg2
=

∑
k>0

cos2 θk
�k

2π
, (A3)

	qu

Nβ2δg2
=

∑
k>0

sin2 θk
�k

2π
, (A4)

where �k = 2π/N . If we consider a partition,

P =
{[

0,
2π

N

]
,

[
2π

N
,

4π

N

]
, . . . ,

[
π − 2π

N
, π

]}
,

of the interval [0, π ], the right-hand sides of Eqs. (A3)
and (A4) are equivalent to midpoint Riemann sums of the
functions cos2 θk and sin2 θk over [0, π ] with partition P.
The absolute difference between these sums and the respec-
tive thermodynamic limit integrals in Eqs. (36) and (37) is
bounded by∣∣∣∣

∫ π

0

dk

2π
f (k) −

∑
k>0

f (k)
�k

2π

∣∣∣∣ � Mπ3

6N2
, (A5)

where f (k) is either cos2 θk or sin2 θk , and M =
maxk∈[0,π] |∂2

k f (k)| is the maximum absolute value of the
second derivative of f (k) in the interval [0, π ]. Note that f
is also a function of the initial field g0, but we omit this for
simplicity of notation. This derivative reads∣∣∂2

k f (k)
∣∣ = 2(

ε0
k

)4 | sin2 θk
(
g2

0 − 1
)2

+ ε0
k cos θk (1 − g0 cos k) cos k|. (A6)

One can graphically check that the maximum of this func-
tion occurs at the boundary k = 0 (π ) for g0 � 0 (g0 < 0).
Specifically, we have

M =
{ 2

(g0+1)2 , if g0 < 0,

2
(g0−1)2 , if g0 � 0.

(A7)

Hence, away from the critical points, the values of 	cl/N and
	qu/N for a finite chain converge to the thermodynamic limit
with a swiftly decreasing error of order 1/N2. The divergence
of M at the critical points g0 = ±1 also clarifies the slower
convergence in these regions.
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