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Classical dissipative cost of quantum control
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Protocols for nonadiabatic quantum control often require the use of classical time-varying fields. Assessing
the thermodynamic cost of such protocols, however, is far from trivial. Here, we study the irreversible entropy
produced by the classical apparatus generating the control fields, thus providing a direct link between the cost
of a control protocol and dissipation. We focus, in particular, on the case of time-dependent magnetic fields
and shortcuts to adiabaticity. Our results are showcased with two experimentally realizable case studies: the
Landau-Zener model of a spin- 1

2 particle in a magnetic field and an ion confined in a Penning trap.
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I. INTRODUCTION

Achieving realizable, robust, and high efficacy control is a
crucial challenge in the development of modern quantum tech-
nologies [1]. One approach is slow adiabatic driving, but such
long process times are inevitably susceptible to environmental
spoiling effects. Ideally, one aims to achieve high target state
fidelities on timescales faster than the decoherence rate. How-
ever, ramping a system arbitrarily will lead to nonadiabatic
transitions which will similarly spoil the performance. Thus,
there have been significant efforts to overcome this problem,
and a particularly fruitful approach is captured by shortcuts
to adiabaticity (STA) [2]. These techniques can achieve an
effective adiabatic dynamics in arbitrarily short times by im-
plementing a specially designed control Hamiltonian. The
viability of such strategies has been demonstrated in various
experimental setups [3–5].

There has been a great deal of interest in clearly estab-
lishing how the implementation of such controlled evolutions
implies an unavoidable cost in terms of some expended re-
source [6]. While intuitively one would expect that fast driving
should incur a higher penalty, it is nevertheless far from clear
how to properly gauge this, particularly from a thermody-
namic viewpoint [7]. Early work on STA attempted to address
this question for a variety of setups [8–10]. In parallel, several
measures of cost have been proposed such as the norm of
the driving Hamiltonian [11–16], the work fluctuations [17],
and the excess work [18] among others [19–23]. While many
of these approaches focused on the primary system being
controlled, Torrontegui et al. highlighted the importance of
also considering the controller in assessing the resource inten-
siveness of a given protocol [9]. Their model was classical,
however, so the system and controller were of comparable

*anthony.kiely@ucd.ie
†gtlandi@gmail.com

dimensions. In quantum control protocols this is never the
case: Time-dependent Hamiltonians are implemented by clas-
sical fields, produced by macroscopic apparatuses. There is
therefore a fundamental asymmetry, between the microscopic
system, and the macroscopic controller.

In this paper, we begin with this fundamental observation:
Quantum control protocols are always generated by classical
apparatuses. Hence from the second law of thermodynamics,
they will always be accompanied by a cost [24,25], associ-
ated with the dissipation in said apparatus. We analyze the
irreversible entropy production [26–30]—a thermodynamic
measure of dissipation—associated with the generation of this
classical field. In contrast to previous works, where costs
are largely defined in an ad hoc manner (see Ref. [2] for a
discussion), our approach gives an unambiguous connection
to a directly measurable physical quantity. This is based on
recent results for the stochastic thermodynamics of circuit
elements, and is thus robust and extendable to other settings.
We establish that while the qualitative behavior is inherently
protocol and setup dependent, this approach nevertheless pro-
vides a concrete, and experimentally meaningful, notion of
cost. We show that the entropy production consists of two
complementary components, which scale differently with the
ramp duration, allowing us to identify an optimal driving time
for which the classical entropy production is minimized.

II. IRREVERSIBLE ENTROPY OF THE CONTROL
PROTOCOL

To make our ideas concrete, we will neglect the generation
of any static fields which play no direct role in the control
protocol, and rather focus on time-dependent magnetic fields.
The starting point of our analysis is rooted in the observation
that time-dependent fields for a designated protocol must be
produced by classical circuit elements. The entropy produc-
tion for such a setup is connected to Joule heating and the
Johnson-Nyquist fluctuations [31]. More recently, it has been
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FIG. 1. Schematic of a classical control device acting on the
relevant quantum system of interest. In this setting, the classical
device is an RL circuit at a temperature T which generates an ap-
proximately uniform unidirectional magnetic field via a Helmholtz
coil. The quantum system considered is either a single spin or an ion
already in an electrostatic quadrupole potential, i.e., a Penning trap.

incorporated within the framework of classical stochastic ther-
modynamics, leading to a robust formulation, applicable to
generic circuit elements and architectures [32–34].

With the basic setting established, a natural question is
whether one can connect the entropy production with prop-
erties of the unitary driving. To answer this, we consider the
case of magnetic fields generated by a Helmholtz coil (cf.
Fig. 1). The field in the coil’s axial direction will be given
by B(t ) = AI (t ), where A is a constant depending on the coil
geometry and I (t ) is the coil’s current.

A given quantum control protocol determines the required
field B(t ), which in turn fixes I (t ). To generate this current,
we assume a direct drive scheme using a function generator
with output voltage V (t ). Assuming negligible capacitance in
the coil, the average current will be determined by V (t ) via
the Langevin equation 2Lİ + RI (t ) = V (t ) + √

2RkBT ξ̇ (t ),
where 2L is the total inductance of the coils, R the total
electrical resistance, kB is Boltzmann’s constant, T is the
temperature, and ξ̇ (t ) is a Gaussian white noise presenting the
Johnson-Nyquist fluctuations. Given a target average current
〈I (t )〉, we can use this to reverse engineer the required V (t ).
The choice of control protocol thus ultimately determines the
voltage that must be supplied to the function generator. We
note that a classically fluctuating control field B(t ) will cause
dephasing in the basis of the operator which it implements.
The resulting small error in the fidelity can be minimized
by an appropriate choice of STA control protocol (see, e.g.,
Ref. [35]).

In this setting entropy is constantly produced due to Joule
heating in the resistor. The instantaneous entropy production
rate �̇ can be computed using results from stochastic ther-
modynamics of electric circuits [31–34] (see Appendix A for
details), and is given by

�̇ = R

T
〈I (t )〉2 + R

4L2

(
kBT − 2L�2

I

)2

T �2
I

, (1)

where �2
I is the current variance. The first term is essentially

the dissipated heat in the resistor, while the second provides
an additional source of irreversibility, due to fluctuations.

Typical quantum control protocols are designed to minimize
said fluctuations, so one would naturally expect this contri-
bution to be small. Moreover, as shown in Appendix A, �2

I
evolves independently of the voltage V (t ), and has a steady-
state value �2

I,ss = kBT/2L, precisely canceling the last term
in (1). Therefore if the circuit is allowed to stabilize before the
protocol is initiated, the last term will remain zero throughout,
irrespective of the choice of V (t ). Assuming this is the case
and integrating over the duration of the protocol, we find

� = χ

∫ τ

0
dt〈B(t )〉2, (2)

where χ = R/(TA2) is a constant depending on various fixed
parameters of the circuit. Note that if the fluctuations are not
negligible, Eq. (2) will be a lower bound instead, since the
second term in Eq. (1) is always non-negative.

Equation (2) represents the irreversible entropy dissipated
due to a magnetic field control protocol and comes with two
important consequences: (i) The implementation of any pro-
tocol comes with an unavoidable entropic penalty due to the
classical circuitry used to implement the control fields; and
(ii) this entropy production is inherently related to the specific
physical setup. Thus, Eq. (2) neatly demonstrates that while
quantum control is never free, quantitatively examining the
“cost” of control can only be meaningfully done in a setting
specific manner, where the details of the physical architec-
ture dictate what sort of control fields are needed, while the
functional time dependence of these fields is fixed by the
control approach employed. We demonstrate these points in
the following by examining two experimentally relevant and
complementary case studies: the Landau-Zener model and an
ion confined in a Penning trap.

III. CASE STUDY: LANDAU-ZENER MODEL

Consider a single spin- 1
2 particle subject to a time-

dependent magnetic field,

H0(t ) = h̄�σx + h̄g(t )σz, (3)

where σi are the Pauli matrices. We assume the system is
initialized in the ground state of H (0) with g(0) = −g0 < 0,
and the goal is to drive it in a finite time τ to the ground state
of H (τ ) with g(τ ) = +g0, thus passing through an avoided
crossing at g = 0. The quantum adiabatic theorem establishes
that for insufficiently slow protocols, excitations will occur
and the target state will not be achieved with perfect fi-
delity. However, quantum control allows for this process to
be achieved in arbitrarily short finite times.

For such a system, one widely used control strategy is to
introduce an additional counterdiabatic (CD) field [3,4,36–
38], HCD(t ) = −h̄gCD(t )σy with gCD(t ) = �ġ

2[�2+g(t )2] . Evolv-
ing the system with the total Hamiltonian H = H0 + HCD

leads to unit fidelity for any τ and any choice of g(t ). Intu-
itively, one expects that implementing this control will come
at an unavoidable additional cost due to the additional field
required [39]. To assess the entropy production associated
with the generation of the classical control fields, we note
that the control parameters are directly proportional to the
magnetic field, g(t ) = μ〈B(t )〉/h̄, where μ is the magnetic
moment. Evidently for this model there are three fields, in the
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FIG. 2. Entropy production in the Landau-Zener model with counterdiabatic driving. The system is driven under the Hamiltonian (3) with
a cubic polynomial pulse G(s) shown in the inset of (a). The resulting counterdiabatic driving gCD is shown in (a) for g0/� = {0.2, 0.5, 1} (red
solid, blue dashed, green dotted-dashed). (b) The net entropy production of the z driving g(t ), ζZ (red solid), and the counterdiabatic driving
gCD, ζCD (blue dashed), as a function of the driving duration τ , for g0/� = 0.2. The total entropy production ζ = ζZ + ζCD is shown as a
green dotted-dashed line. (c) Minimal entropy production ζmin and the operation time where this occurs τmin vs Bures distance L. (d) Entropy
production ζCD vs Bures distance L for �τ = 1, compared with the lower bound in Eq. (6) (blue dashed line).

x, y, z directions, and we can assume that each is generated
by an independent coil. However, since only the fields in the
z and y directions vary in time, and thus are the only ones
which play a role in the control protocol, in what follows we
neglect the entropy production associated with the �σx field,
which is simply a constant. Using Eq. (2), the entropy produc-
tion from the two dynamical fields can then be expressed as
� = �Z + �CD, where �i = h̄2χζi/μ

2 and

ζZ = τ

∫ 1

0
ds G(s)2, (4)

ζCD = 1

τ

∫ 1

0
ds

�2Ġ2(s)

4[�2 + G2(s)]2
, (5)

with G(s) = g(sτ ) and s = t/τ .
From these expressions we find a clear connection between

the classical entropy production with other established notions
of cost. In particular, we see that �CD ∝ ∫ τ

0 dt ||HCD(t )||2, and
is therefore directly related to the operator norm-based ap-
proaches studied in Refs. [11–13]. It shows that the associated
cost is not related to the average change in energy of the sys-
tem, but rather to the integrated drive over the entire duration
where HCD is left on. Since the energy associated with HCD is
not strictly dissipated, it has been argued in Ref. [7] that the
invested resources for achieving control should be treated as
a catalyst, rather than a cost per se. However, Eq. (5) shows
that even if one takes this view, there is still an unavoidable
thermodynamic penalty to be paid due to the classical control
fields.

It is further interesting to note that Eqs. (4) and (5) exhibit
different scalings as a function of τ . The entropy production
associated with the HCD control driving field diverges for
small τ and vanishes as the drive time increases. This is
consistent with other analyses of the cost of quantum con-
trol, where the resources grow unboundedly as the protocol
duration is reduced, while for drive times that approach the
adiabatic limit there is no need for complex control proto-
cols, and the associated costs vanish [14,39]. In contrast, the
entropy production related to the bare Hamiltonian, Eq. (4),
scales in the opposite manner. This leads to a nontrivial trade-
off in determining the timescales when employing control is
thermodynamically beneficial.

One can also address how ζZ and ζCD depend on the dis-
tance between the initial [g(0) = −g0] and the target [g(τ ) =
+g0] states. Clearly, Eq. (4) scales as g2

0. As for Eq. (5), we
show in Appendix B that for any control protocol g(t ), it
satisfies the lower bound

ζCD � L2/τ, (6)

where L = arctan(g0/�) is the Bures distance between the
initial and target states [40]. Equation (6) elegantly demon-
strates the trade-off between speed and expended resources,
inherent in achieving coherent control [12,14,17], by connect-
ing the entropy production with the geometry of the quantum
states.

To demonstrate this point further, we consider a smooth
driving ramp G(s) = g0[20s3 − 30s4 + 12s5 − 1] [Fig. 2(a)
inset], which avoids any discontinuities in the field. The re-
sulting counterdiabatic field is shown in the main panel of
Fig. 2(a). The entropy production for both fields and the total
entropy production as a function of ramp duration τ are shown
in Fig. 2(b), where the ζZ ∼ τ and ζCD ∼ τ−1 dependencies
are visible. We see the total entropy production diverges
in both limits corresponding to instantaneous and adiabatic
protocols [cf. the green dotted-dashed curve in Fig. 2(b)].
Between these two extremes we find there exists an opti-
mal driving time τmin = τ

√
ζCD/ζZ , which corresponds to the

minimal entropy production ζmin = 2
√

ζZζCD. In Fig. 2(c) we
compare how this optimal drive time, and the associated total
entropy production, depend on the Bures distance L. We see
that the optimal operation time τmin tends to 0 as L→ π/2. It
is also apparent that transfer between distant states in Hilbert
space requires higher entropy production. Finally, Fig. 2(d)
shows ζCD as a function of the Bures distance for �τ = 1.
The dashed lines show the bound (6) for comparison. In the
limit of L→ 0 there is no state transfer and hence no entropy
production. Since a completely orthogonal state transfer in the
Landau-Zener model requires infinite field strength, the en-
tropy production diverges in the limitL→ π/2. The behavior
of ζZ with L is qualitatively similar.

IV. CASE STUDY: ION IN A PENNING TRAP

As a second example, we consider an ion confined in a Pen-
ning trap [41,42]. In cylindrical coordinates, this consists of
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an electrostatic quadrupole potential φ(r, z) = mω2
z

4q (2z2 − r2)

and a uniform time-varying magnetic field �B = 〈Bz(t )〉ẑ. The
Hamiltonian for the motional state of the ion is [43] H (t ) =
− h̄2

2m ∇2 + 1
2 mω2

r (t )r2 − ω(t )Lz + 1
2 mω2

z z2, where ω2
r = ω2 −

ω2
z /2 is the radial trapping frequency, ω = q〈Bz〉/(2m) is half

the cyclotron frequency, q is the charge, and m is the mass.
Note that the z component of the angular momentum operator
Lz = h̄

i
∂
∂θ

is a conserved quantity and the z coordinate decou-
ples from r and θ .

With the ion initialized in the ground state, the goal is to
vary the magnetic field 〈Bz(t )〉 to exactly reach the ground
state for a different radial trapping frequency ωr (τ ) in a finite
time. Furthermore, here we consider an alternative control
approach based on the formalism of Lewis-Riesenfeld invari-
ants [43,44]. We design an auxiliary function l (t ), which is
the characteristic radial length scale of the wave function.
The aim is to change this length from l (0) = l0 to l (τ ) =
lτ = l0/

√
c, which corresponds to ωr (0) = cωr (τ ). A value

of c > 1 therefore represents a compression of the trap, while
c < 1 is an expansion. The Bures distance between the two
ground states is then given by L = arccos( 2

√
c

1+c ). Interestingly,
a compression, c > 1, results in the same Bures distances as
an expansion, c′ = 1/c < 1, i.e.,L′ = L. To ensure perfect fi-
delity and continuous fields, this auxiliary function must fulfill

the boundary conditions l (tb) = ltb =
√

h̄
2mωr (tb) and l (n)(tb) =

0 for tb = 0, τ and n = 1, 2, 3.
The connection to the required magnetic field can be suc-

cinctly expressed in terms of l (t ) = l0λ(s), as 〈Bz(sτ )〉 =
h̄

ql2
0

1
λ(s)2

√
1 − λ(s)3λ̈(s)

η2 + ν2

2−ν2 λ(s)4, where η = τωr (0) is a
rescaled operation time and ν = ωz/ω(0). Note that not all
parameter combinations of η and ν are possible in a physical
setup (see Appendix C for details). A possible choice of λ

which fulfills all the required boundary conditions is the mini-
mal polynomial ansatz λ(s) = 1 + 20αs7 − 70αs6 + 84αs5 −
35αs4, where α = 1 − 1/

√
c.

The entropy production can be expressed as � =
h̄3χ

2mq2l6
0

(ζd + ην2

2−ν2 ), where we have used τ = h̄η/(2ml2
0 ) and

defined the dynamical part of the entropy production to be

ζd =
∫ 1

0

[
η

λ(s)4
− λ̈(s)

λ(s)η

]
ds. (7)

Despite considering a different approach to achieving con-
trol, we find here important qualitative similarities with the
Landau-Zener case. The entropy production also contains two
terms: one which scales linearly with operation time and one
which scales inversely with operation time. A fundamentally
distinct feature of this example, however, is that now we can
examine the differences between compression and expansion
protocols. In fact, the two generally incur different costs, even
if their Bures distances are equal.

Figure 3(a) shows the entropy production against operation
time for expansion and compression. The results are only
shown for times were the magnetic field remains real.
For such operation times, it is clear that the linear term
in ζd dominates. The faded lines show lower bounds
for expansion ζd � max[0, c2η + 84|α|

5
√

5η
] and compression
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FIG. 3. Dynamical entropy production ζd vs (a) operation time η

for compression c = 4/3 (red solid) and expansion c = 3/4 (blue
dashed) and (b) Bures distance L for η = 1, 3 (red solid, blue
dashed) with ν = 1/2. In (a) lower bounds are shown as faded lines.
In (b) upper lines correspond to compression and lower lines to
expansion.

ζd � max[0, η − 84|α|√c
5
√

5η
], developed in Appendix D.

Figure 3(b) plots ζd vs L. Note that ζd = η in the absence of
any dynamics (c = 1), which is clear from Eq. (7). For small
values of L, the entropy production is symmetric about η.
However, for increasing L, the entropic cost of compression
far exceeds that of expansion. This fundamental asymmetry
is highly relevant to the compression/expansion strokes of a
quantum heat engine [45,46].

V. CONCLUSIONS

We have examined the classical irreversible entropy pro-
duced by a control apparatus in achieving coherent quantum
control. Our analysis starts from the simple observation
that quantum control protocols are implemented through
time-dependent fields, generated by classical devices. This
provided a natural framework, which can be directly related to
currently established notions of cost, to quantitatively assess
the thermodynamic penalty associated with quantum control.
While there are several approaches to quantifying costs for
quantum control [2] (including the consideration of dissipa-
tion [10]), we establish a rigorous connection between the cost
of quantum control and the entropy production which is the
central quantity governing the second law of thermodynamics
and encapsulates a more general notion of dissipation.

Our results therefore represent a crucial step towards solv-
ing the problem of how to assess the thermodynamic costs of
a quantum control protocol. Our analysis clarified and eluci-
dated several important results: (i) that quantum control comes
with an inescapable cost that can be quantitatively examined
by considering the associated macroscopic classical appara-
tuses that implements the fields; (ii) the framework presented
is rooted in the stochastic thermodynamics of circuit elements,
and therefore is naturally extendable to more complex set-
tings; and finally (iii) that adiabatic and ultrafast protocols
are thermodynamically inefficient as both lead to diverging
entropy production. We were able to show that there can
exist optimal driving timescales, where the competing effects
between static and dynamic parts of the control protocol can
reach a minimum.
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APPENDIX A: INSTANTANEOUS ENTROPY
PRODUCTION RATE

In this Appendix we derive Eq. (1) of the main text,
and also explain why the last term is often negligible. This
equation is derived using the formalism of stochastic thermo-
dynamics of electric circuit elements [31–34]. Such systems
are described by Langevin equations [47]

ẋi = fi(x, t ) +
∑

i

Bi j ξ̇ j (t ), (A1)

where ξ̇ j are Gaussian white noises. Here, xi represents a set
of voltages and/or currents in the circuit, while Bi j is a matrix
characterizing the Johnson noise in the circuit, due to thermal
fluctuations. The voltages and currents are not all independent
of each other, due to Kirchhoff’s law. Techniques for obtain-
ing the minimal set need to describe a circuit are discussed in
Ref. [48]. The corresponding probability distribution P(x, t )
satisfies a Fokker-Planck equation

∂P
∂t

= −
∑

j

∂

∂xi
[ fi(x, t )P] +

∑
i, j

Di j
∂2P

∂xi∂x j
:= −

∑
i

∂gi

∂xi
,

(A2)
where D = 1

2 BBT is the diffusion matrix. The Fokker-Planck
equation can be interpreted as a continuity equation in
probability space, with the quantity gi(x, t ) representing the
probability current.

To define the irreversible entropy production of the circuit
dynamics, one must first establish which aspects of the dy-
namics are time reversible or not [49]. We define a variable εi

such that εi = ±1 whenever xi is even or odd with respect to
time reversal; voltages are even, while currents are odd. We
then define [33]

f irr
i (x, t ) = 1

2 [ fi(x, t ) + εi f (Ex, t )], (A3)

f rev
i (x, t ) = 1

2 [ fi(x, t ) − εi f (Ex, t )], (A4)

where E = diag(ε1, ε2, . . .). These represent the reversible
and irreversible components of the Langevin equation (A1).
With these definitions, we can now establish the correspond-
ing components of the probability currents, by decomposing
g = girr + grev, where

girr
i = f irr

i P−
∑

j

Di j
∂P
∂x j

, (A5)

grev
i = f rev

i P. (A6)

The entropy production occurs due to the irreversible currents
only girr . In fact, the entropy production rate of the system is

given, under rather general conditions, as [50,51]

�̇ =
∑
i, j

∫
dx
P

(D−1)i jg
irr
i girr

j . (A7)

This formula is quite general, in that it applies to any kind
of electric circuit subject to Johnson-Nyquist noise. It also
applies to generic nonlinear circuit models.

Next, we specialize it to the case of the Helmholtz coil
model studied in the main text. The only variable in this case
is the current I (t ) through the coils, which is odd under time
reversal. The corresponding Langevin equation reads

2Lİ + RI = V (t ) +
√

2RkBT ξ̇ (t ). (A8)

The corresponding irreversible probability current reads

girr = − R

2L
IP− RkBT

L2

∂P
∂I

, (A9)

while the diffusion coefficient reads D = RkBT/4L2. Plugging
this in Eq. (A7) then yields

�̇ = R

kBT
〈I (t )2〉 + RkBT

4L2
F − R

L
, (A10)

where

F =
∫

dI P
(

∂

∂I
lnP

)2

(A11)

is the Fisher information [52]. To proceed, we use the fact that
Eq. (A8) is linear and therefore P will be Gaussian. The cor-
responding Fisher information can then be computed exactly
and reads F = 1/�2

I , where �2
I is the current variance. Using

also that 〈I2〉 = 〈I〉2 + �2
I , the entropy production rate finally

simplifies to

�̇ = R

T
〈I〉2 + R

4L2

(kBT − 2L�2
I )2

T �2
I

, (A12)

which is Eq. (1) of the main text.
Next, we show why the second term in this equation gen-

erally vanishes. Using Eq. (A8) one can develop an evolution
equation for the variance �2

I . It reads

d

dt
�2

I = −(R/L)�2
I + RkBT

2L2
. (A13)

Crucially, one notices that this equation is independent of the
applied voltage V (t ) (which therefore only affects the average
current). Hence, irrespective of the quantum control protocol
(determined by a specific shape of V (t )), the variance will tend
to the steady state �2

I,ss = kBT/2L. This cancels out the last
term in Eq. (1) [or Eq. (A12)]. And since �2

I is independent of
V (t ), if the circuit is allowed to equilibrate before the control
protocol starts, this term will remain zero throughout. Notice
also that, if this is not the case, this term will simply add a
corresponding positive quantity, so that Eq. (2) will be a lower
bound to the actual entropy production.
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APPENDIX B: LOWER BOUND FOR ENTROPY
PRODUCTION IN THE LANDAU-ZENER MODEL

Equation (5) for the entropy production associated with the
counterdiabatic drive can be lower bounded as

ζCD =
∫ τ

0
dt g2

CD(t )

� 1

τ

(∫ τ

0
dt gCD(t )

)2

= 1

τ

(∫ g0

−g0

�

2(�2 + g2)
dg

)2

= 1

τ
arctan2

(g0

�

)
= L2/τ, (B1)

where we have used the Cauchy-Schwarz inequality
(
∫ τ

0 f (t )dt )2 � τ
∫ τ

0 f 2(t )dt .

APPENDIX C: PENNING TRAP—PHYSICAL
PARAMETER LIMITS

To ensure that 〈Bz〉 ∈ R for all times, the total time must
fulfill the constraint that

η � max
s∈[0,1]

√
λ(s)3λ̈(s)

1 + ν2(2 − ν2)−1λ(s)4
. (C1)

A second constraint is that we wish to have a positive trapping
potential, i.e., ω2

r > 0 at the start and end of the process. This

limits the range to 0 < ν <
√

2 min{1, 〈Bz(τ )〉/〈Bz(0)〉}. Note
that the ratio of the initial and final fields is

〈Bz(τ )〉
〈Bz(0)〉 =

√
c2 + (1 − c2)

ν2

2
, (C2)

which simplifies the final constraint to simply 0 < ν <
√

2.

APPENDIX D: LOWER BOUNDS FOR ENTROPY
PRODUCTION IN THE PENNING TRAP

Let us first focus on the case of expansion where c < 1.
We assume that 1 = λ(0) � λ(s) � λ(1) = 1/

√
c ∀s. We also

assume that the magnitude of the second derivative is upper
bounded by |λ̈|max, which is dictated by the maximum mag-
netic field strength applied during the process. Since ζd � 0,
the lower bound reads

ζd � max

[
0, c2η − |λ̈|max

η

]
. (D1)

For our choice of λ we have |λ̈|max = 84
5
√

5
|α|. For the case

of compression c > 1, we follow a similar logic and assume
1/

√
c � λ(s) � 1. The lower bound then reads

ζd � max

[
0, η − |λ̈|max

√
c

η

]
. (D2)
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