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Diverging current fluctuations in critical Kerr resonators
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The parametrically pumped Kerr model describes a driven-dissipative nonlinear cavity, whose nonequilib-
rium phase diagram features both continuous and discontinuous quantum phase transitions. We consider the
consequences of these critical phenomena for the fluctuations of the photocurrent obtained via continuous
weak measurements on the cavity. Considering both direct photodetection and homodyne detection schemes,
we find that the current fluctuations diverge exponentially at the discontinuous phase transition. However, we
find strikingly different current fluctuations for these two detection schemes near the continuous transition, a
behavior which is explained by the complementary information revealed by measurements in different bases. To
obtain these results, we develop formulas to efficiently compute the diffusion coefficient—which characterizes
the long-time current fluctuations—directly from the quantum master equation, thus connecting the formalisms
of full counting statistics and stochastic quantum trajectories. Our findings highlight the rich features of current
fluctuations near nonequilibrium phase transitions in quantum-optical systems.
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I. INTRODUCTION

One of the core tenets of quantum theory is the fundamen-
tally random character of measurement. This randomness has
deep consequences for the foundations of quantum mechanics
[1] but is also practically important for any experimenter
trying to unravel the dynamics of a quantum system. A perti-
nent example consists of systems subject to continuous weak
measurement, which are now routinely studied in quantum
optics [2–4] and mesoscopic physics [5,6] experiments. The
resulting measurement outcomes are classical stochastic pro-
cesses that we refer to here as measurement currents: they are
the random stream of clicks in photodetectors, the diffusive
wandering of homodyne signals, and the fluctuating currents
through quantum point contacts. It is from these currents that
properties of continuously measured quantum systems are
inferred. However, the statistical character of the observed
current may differ significantly depending on the underlying
quantum state. This difference can be rich and illuminating,
especially in the vicinity of phase transitions [7,8].

A nonequilibrium phase transition [9] occurs when a sys-
tem undergoes a sudden change in its nonequilibrium steady
state (NESS). Such transitions can be described as either
continuous or discontinuous, corresponding to the behavior
of the order parameter across the critical point. Any NESS
is characterized by currents of quantities such as particles
and energy, and these currents may become singular near the
critical point. A current of particular interest is the entropy
production rate, which is always nonzero in a NESS by def-
inition. There have been several studies of classical [10–16]
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and quantum-optical models [17,18] showing that the aver-
age entropy production rate at criticality can distinguish the
nature of a nonequilibrium phase transition. Specifically, at
continuous transitions it is divergent but continuous [10–12],
while at discontinuous transitions it becomes discontinuous
[13,15]. Similar results are also expected for other types of
output currents. More recently, it has been realized that cur-
rent fluctuations exhibit dramatically different scaling near
the critical point of continuous and discontinuous transitions
in the classical regime [7,8,19,20]. However, to date there is
little commentary on the fluctuations of observed currents in
a purely quantum-mechanical phase transition.

Here we address this problem in the context of the paramet-
rically pumped Kerr (PPK) model, which describes a lossy,
nonlinear optical cavity subject to a two-photon drive and is a
paradigmatic example of optical bistability [21,22]. The com-
petition between dissipation and the parametric drive leads to
the system becoming critical [23–28], with a nonequilibrium
phase diagram featuring both continuous and discontinuous
transitions. Criticality arises here in the limit of weak nonlin-
earity, U → 0, so the parameter 1/U plays the role of volume
in the conventional thermodynamic limit, analogous to other
finite-component phase transitions [29–32].

We assume that the photons lost from the cavity are con-
tinuously monitored, generating a discrete photocurrent or
diffusive homodyne current when mixed with a local oscil-
lator. Naturally, the onset of criticality should present itself
in the fluctuations of the measured current, a fact which
has been explored in other nonequilibrium phase transition
models [7,8]. However, a key novelty of our setup is the
freedom to measure the system in different bases (e.g., via
direct or homodyne detection of emitted photons), giving rise
to very different conditional dynamics driven by quantum
measurement backaction. To quantify the current fluctua-
tions near criticality, we consider the steady-state diffusion
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coefficient D, which characterises the asymptotic dispersion
of the integrated measurement current. We employ tools from
the theory of full counting statistics (FCS) [33–35] to develop
formulas forD, which are numerically efficient to evaluate for
both measurement schemes. Doing so also serves to tighten
the connection between FCS, prevalent in condensed-matter
physics, and the quantum continuous-measurement approach
used in quantum optics [36,37].

Using these tools, we examine the finite-size scaling of
the current fluctuations close to criticality in the PPK model.
We find that fluctuations diverge exponentially with 1/U
at the discontinuous phase transition for both measurement
schemes, in accordance with results from classical systems
[7,8]. Interestingly, however, the fluctuations of the homodyne
current also diverge exponentially at the continuous phase
transition, in contrast to the photocurrent which diverges al-
gebraically in accordance with the expectation from classical
models [38]. As we explain, this discrepancy is due to the
nature of the measurement and the information that each
reveals about the NESS: Exponential divergence will occur
when the underlying bistable property of the system produces
a telegraphiclike switching in the observed current.

Before progressing onto the main body of this manuscript,
we briefly outline its structure. Initially, in Sec. II, we sum-
marize the characteristics of the PPK model, detailing its
continuous and discontinuous phase transitions. The former
can be predicted semiclassically while the latter cannot, thus
being purely quantum mechanical in nature. In Sec. III we
introduce the quantum trajectories formalism for both pho-
todetection and homodyne detection and use it to study the
dynamics of the PPK model close to criticality. In Sec. IV we
detail our approach to compute the power spectrum S(ω) and
subsequently the diffusion coefficient D, which measures the
divergent current fluctuations close to criticality. Finally, in
Sec. V we study the nature of this divergence and show that
it crucially depends on the employed measurement scheme.
To explain both the exponential divergences and this differing
behavior, we show that the rate of divergence in the PPK
at the discontinuous phase transitions is determined by the
average tunneling time between the metastable fixed states.
Our conclusions are presented in Sec. VI.

II. THE PARAMETRICALLY DRIVEN KERR MODEL

In this section we review the known critical properties of
the PPK model. The model consists of a single bosonic cavity
mode of frequency ωa containing a Kerr nonlinearity with
strength U , proportional to the third-order nonlinear suscep-
tibility. The cavity is parametrically driven by a pump mode
at the frequency ωp ∼ 2ωa, which creates two excitations in
the cavity mode per absorbed photon. Assuming a sufficiently
large separation of timescales between the cavity and pump
mode dynamics, we can adiabatically eliminate the pump and
describe the dynamics of the cavity mode via the interaction-
picture Hamiltonian (h̄ = 1) [21,22,39]:

Ĥ = −�â†â + U

2
â†2â2 + G

2
(â†2 + â2), (1)

where � = ωa − ωp/2 is the detuning of the cavity from the
pump, G corresponds to the strength of the two-photon para-

metric pump, and â (â†) is the annihilation (creation) operator
of the mode satisfying the commutation relation [â, â†] =
1. We further assume the cavity is subject to single-photon
losses, with a loss rate κ . As such, it can be described by the
Born-Markov quantum master equation:

d ρ̂

dt
= L(ρ̂ ) = −i[Ĥ, ρ̂] + κ

[
âρ̂â† − 1

2
{â†â, ρ̂}

]
. (2)

Throughout, we will generally use κ as our basic scale, plot-
ting all other parameters in units of κ = 1.

The general solution to this time-independent master equa-
tion is ρ̂(t ) = eLt ρ̂(0). In the long-time limit, the system
will generally tend to a unique nonequilibrium steady state,
ρ̂ss, which is the solution of L(ρ̂ss) = 0. This can be com-
puted analytically using either the generalized P function
method [24,25,40] or the coherent quantum absorber ap-
proach [39,41]. The NESS may undergo both a continuous
or a discontinuous phase transition as the parameters of the
Hamiltonian are varied. Technically speaking, the model only
becomes critical (in the sense that quantities become nonana-
lytic) in the limit U → 0 [25]. We shall therefore analyze the
results for different values of 1/U in order to characterize their
scaling as U → 0. The association of U → 0 with a thermo-
dynamic limit was discussed in detail in Ref. [42]. There the
authors showed that, starting from a many-body lattice model
with similar interactions plus a hopping term, performing a
mean-field approximation leads to the same Hamiltonian as
in Eq. (1) but with U scaled as U/N , where N is the actual
number of particles in the lattice.

Typically the phase transitions arising in the PPK model
are analyzed using the semiclassical equations of motion,
where Heisenberg-picture operators â (â†) are replaced by
complex variables α (α∗). From the semiclassical analysis one
can show [24] that above a critical driving, the system under-
goes a pitchfork bifurcation with an unstable fixed point at
α = 0 and stable fixed points at α = ±α0, with α0 = √

n0eiφ0

and

n0 = �

U
+

√
G2 − κ2/2

U 2
, φ0 = 1

2
arcsin

(
− κ

2G

)
. (3)

Imposing that n0 > 0 determines the critical detuning �c =
−

√
G2 − κ2/4 of this pitchfork bifurcation. For large driving

G, the steady state is very well approximated by an equal
mixture of positive and negative coherent states:

ρ̂ ≈ 1
2 (|α0〉〈α0| + | − α0〉〈−α0|). (4)

The PPK model also features a discontinuous transi-
tion occurring at a positive detuning �d , which has been
studied previously [24–26]. To see this we plot in Fig. 1
the numerically computed steady-state mean photon number
〈â†â〉U/κ—scaled by κ/U—for different choices of �/κ and
G/κ . As clearly seen in Fig. 1(a), 〈â†â〉 undergoes a con-
tinuous transition at �c < 0 and then a discontinuous jump
at �d , where both transitions become increasingly sharp for
increasing values of κ/U . The discontinuous nature of the
second transition is further revealed by plotting 〈â†â〉 as a
function of the parametric drive strength G/κ for increasing
values of κ/U , with fixed �/κ = 1 [Fig. 1(b)]: At the critical
driving, the mean occupation of the system suddenly jumps
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FIG. 1. Phase diagram of the PPK model described by Eqs. (1) and (2). (a) Steady-state average photon number 〈a†a〉U/κ as a function
of �/κ , for different values of κ/U (legend) and fixed G/κ = 1.0. For increasing values of κ/U the discontinuous transition becomes sharper
at around �d ∼ 2. The model becomes critical in the limit U/κ → 0, undergoing a continuous transition at � < 0 and a discontinuous one at
� > 0. (b) A plot of 〈a†a〉U/κ as a function of G/κ for the same values of κ/U (legend in a), with �/κ = 1, showcasing the discontinuous
nature of the transition when � > 0. For increasing κ/U the transition again becomes sharper and approaches a discontinuous step. (c)
〈a†a〉U/κ in the (G/κ,�/κ ) plane for κ/U = 10, sometimes called the instability tongue. The lower black-dashed line denotes the continuous
transition, determined analytically from the semiclassical theory as �c = −√

G2 − κ2/4. The upper red-dashed line indicates the discontinuous
transition. The asterisks correspond to different choices of (G/κ, �/κ ), which are used below in Fig. 2.

from zero to a finite value. Both transitions depend sensitively
on the interplay between the driving G and the detuning �.
We can study this interplay by constructing the phase diagram
of the mean photon number in the (G,�) plane, as shown
in Fig. 1(c). The critical region corresponds to G > κ/2. For
� < 0 the transition is continuous and the corresponding crit-
ical line �c = −

√
G2 − κ2/4 is shown by the black dashed

curve. Conversely, for � > 0 the transition is discontinuous
and cannot be captured by the semiclassical theory. The red-
dashed line in Fig. 1(c) indicates the approximate location
of the discontinuous phase transition critical line �d (G), as
inferred from the numerical results. Similar behavior exists in
Duffing resonators [43,44], which exhibit regions of instabil-
ity, sometimes referred to as instability “tongues,” in direct
analogy with the critical (shaded) region in Fig. 1(c). The
instability tongue and similar amplitude curves as Figs. 1(a)
and 1(b) have been observed experimentally in both microme-
chanical [45] and electromechanical [46,47] systems.

We can further visualize the nature of these phase transi-
tions by studying the steady-state Wigner function W (x, p),
where (x, p) are the field quadratures. Figure 2 shows example
plots of W (x, p) for the points marked in Fig. 1(c). For � 	 0,
the steady state is roughly a squeezed vacuum, which then
undergoes the continuous phase transition to the bimodal state
for increasing detuning. We can clearly see the trimodal nature
of the NESS arising for � ∼ �d and then suddenly becom-
ing a squeezed vacuum again, once the discontinuous phase
boundary is crossed. A similar trimodal structure is observed
in the Duffing resonator [44,48], thus further establishing the
analogy with the PPK model.

III. QUANTUM TRAJECTORIES AND CURRENTS

So far we have discussed the steady state of the PPK model.
We are now interested in studying its behavior when subject
to continuous measurements. Continuous measurement of a
quantum system conditions the dynamics on the measurement
outcomes. Given that the outcome of these measurements are
random, the evolution of the state follows stochastic quantum
trajectories, the theory of which is well developed [36,37].

Ultimately we will be concerned with the measurement cur-
rent I (t ) and its fluctuations, characterized by the diffusion
coefficient D. Before proceeding to this description, how-
ever, it is prudent to first summarize the method of quantum
trajectories for two commonly used measurement schemes:
photodetection and homodyne detection. The measurement
outcomes of these two schemes reveal differing characteristics
about the quantum state and its dynamics in the critical region.

A. Photodetection

For perfect photodetection—where the detector efficiency
η = 1 so that every emitted photon is detected—the evolution
of the density operator is governed by an Itô stochastic differ-
ential equation,

d ρ̂PD = −H
[

iĤ + κ

2
â†â

]
ρ̂PDdt + dN (t )G[â]ρ̂PD, (5)

where dN (t ) is a stochastic Poisson increment satisfying
dN (t )2 = dN (t ), and ρ̂PD indicates that the density operator

FIG. 2. Steady-state Wigner function W (x, p) at the different
asterisks shown in Fig. 1(c) (from bottom to top) corresponding
to �/κ = (−2,−1, 0, 1.5, 2, 2.5), with fixed G/κ = 1 and U/κ =
1/3. In all cases the Wigner function is non-negative (the color bars
are omitted for visibility).
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FIG. 3. Quantum trajectories for direct photodetection. The pa-
rameters are fixed at G/κ = 1, U/κ = 1/3, �/κ = 2, corresponding
to the onset of the discontinuous transition [Fig. 2(e)]. (Top) Con-
ditional mean photon number 〈â†â〉PD as a function of time during
a single trajectory. (Bottom) Observed photocurrent IPD(t ), corre-
sponding to a series of Dirac δ functions at each detection event.
The rate of clicks in the detector reduces dramatically whenever the
system is in the central lobe of Fig. 2(e).

has been conditioned on the photodetections. The two super-
operators above are defined by

G[Â]ρ̂ = Âρ̂Â†

〈Â†Â〉 − ρ̂, H[Â]ρ̂ = Âρ̂ + ρ̂Â† − 〈Âρ̂ + ρ̂Â†〉.
(6)

The observed photocurrent IPD(t ) = dN (t )/dt is a series of
δ-like peaks, corresponding to photons being registered as
“clicks” in the detector. Each click induces a discrete quantum
jump described by the superoperator G[â]. The average jump
rate is given by E[dN (t )] = κtr[âρ̂â†]dt , where E[•] denotes
a classical average over stochastic trajectories.

In the top panel of Fig. 3 we plot the conditional mean pho-
ton number 〈â†â〉PD of the cavity, alongside the conditional
variance �(â†â)PD = 〈(â†â)2〉PD − 〈â†â〉2

PD, when the system
is very close to the discontinuous phase transition. We see
that the cavity flips stochastically between two very different
states: one where the cavity is effectively empty and another
where it is highly populated. These correspond to the inner
and outer fixed points of the trimodal Wigner function shown
in Fig. 2(e). In the lower panel of Fig. 3 we also plot the ob-
served time series of the photon current IPD, which shows that
the rate of detection events rapidly changes between an active
phase, with a large number of emissions, and an inactive phase
with essentially no clicks. Thus from the photon current it is
possible to directly observe the system switching between its
two configurations near the critical point. Crucially, however,
photodetection cannot distinguish between the two outer fixed
points because it measures the amplitude and not the phase of
the output field.

B. Homodyne detection

In the homodyne (diffusive) unraveling, one measures in-
stead a generic quadrature of the form q̂θ = âe−iθ + â†eiθ

[the two directions x and p in the Wigner function plots of
Fig. 2 correspond to x̂ = q̂θ=0 = â + â† and p̂ = q̂θ=π/2 =
i(â† − â)]. The Itô stochastic master equation describing the
evolution of the density operator subject to perfect homodyne
detection along the quadrature q̂θ is [36]

d ρ̂Hom = (−i[Ĥ, ρ̂Hom] + κD[âeiθ ]ρ̂Hom )dt

+ √
κH[âeiθ ]ρ̂HomdW (t ), (7)

where D[â]ρ=âρ̂â† − 1
2 {â†â, ρ̂}, and dW (t ) is a Wiener in-

crement with E[dW (t )]=0, and a variance Var[dW (t )]=dt .
The current IHom(t )—after the background oscillator has been
subtracted—is given by

IHom(t ) = √
κ tr[q̂θ ρ̂Hom] + ξ (t ), (8)

where ξ (t ) = dW (t )/dt . In the examples considered below,
we will focus on θ = π/2, as it corresponds to the separation
axis of the bifurcation depicted in Fig. 2.

As an example, Fig. 4 shows the conditional evolution
under homodyne detection along p̂, at the same configuration
as Fig. 2(e) (close to the discontinuous phase transition). In
Fig. 4(a), the homodyne current IHom (after passing through
a low-pass filter) is plotted together with the conditional
moment 〈p̂Hom〉. As can be seen, both clearly follow a
tristable behavior, with the system tunneling between each
of the steady-state fixed points. This can also be visualized
in Fig. 4(c), where we plot the stochastic trajectories of the
system on top of the steady-state Wigner function. For com-
parison, the average photon number 〈a†a〉Hom is also plotted
in Fig. 4(b). When IHom 
= 0, irrespective of whether it is
positive or negative, the system will be in an active state
where 〈a†a〉Hom is nonzero. This underscores a key difference
between photodetection and homodyne detection: the latter
can resolve all three steady-state fixed points, while photode-
tection can only distinguish the outer pair from the inner one.
As we will show, this leads to very different fluctuations of the
two measurement currents across the critical region.

IV. QUANTIFYING CURRENT FLUCTUATIONS
VIA THE DIFFUSION COEFFICIENT

The fluctuations of the output currents can be quantified
via the diffusion coefficient D, which is a central quantity in
the theory of full counting statistics (FCS) [8,33,34]. In this
section we provide the precise definition of D and develop
efficient expressions for computing it. These will be used
in the following section to investigate the scaling of current
fluctuations in the critical region.

A. Diffusion coefficient

In the steady state ρ̂ss, temporal fluctuations of the current
are captured by the two-time correlation function [36],

F (τ ) = lim
t→∞{E[I (t + τ )I (t )] − J2}, (9)

where J = E[I (t + τ )] = E[I (t )], since the average current is
unchanging in the steady state. Note that F (τ ) = F (−τ ) is an
even function of the time difference τ only, because the steady
state is time homogeneous. By definition, the diffusion coef-
ficient measures the growth of the variance of the integrated
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FIG. 4. Quantum trajectories for homodyne detection along p̂, for the same parameters as in Fig. 3. The curves showcase the tunneling
dynamics of the system between three metastable states. (a) Homodyne current IHom(t ) (dark red) and underlying unconditional moment
〈 p̂〉Hom (light red); the former was processed by a low-pass filter to remove high frequency noise. (b) Corresponding mean photon number,
which cannot distinguish between the outer lobes but shows a sudden reduction when the system tunnels to the central lobe. (c) Quantum
trajectories of (〈x̂〉Hom, 〈 p̂〉Hom ), overlaid on the associated Wigner function of Fig. 2(e).

current at long times [34,35]:

D = lim
t→∞

d

dt
Var

[∫ t

0
dt ′I (t ′)

]
. (10)

It is straightforward to express this in terms of the autocorre-
lation function as

D = 2
∫ ∞

0
dτ F (τ ). (11)

In many experimental settings, rather than sampling the
temporal correlation function directly, it is simpler to measure
the power spectrum:

S(ω) =
∫ ∞

−∞
dτ e−iωτ F (τ ). (12)

This describes the amount of power in each frequency com-
ponent of the measured signal and is related to the diffusion
coefficientD by

D = S(0). (13)

Therefore to assess the critical fluctuations in the mea-
surement currents we must compute the zero-frequency
component of the power spectrum for both photodetection and
homodyne detection.

B. Photodetection

We begin by describing how to calculate the power spec-
trum of the current for photodetection. We first split the
Liouvillian L(ρ̂) [Eq. (2)] into a free and a jump evolution,
respectively [35]:

L = L0 +L1, L1(ρ) = κ âρ̂â†. (14)

By splitting the Liouvillian into two parts, we can easily define
the average current

E[I (t )] = tr[L1(ρ̂)] = κ〈â†â〉. (15)

One can also show that the two-point correlation function (9)
is given by [36]

FPD(τ ) = tr[L1(eLτ (L1ρ̂ss))] − J2
PD + JPD δ(τ ), (16)

= κ2tr[â†âeLτ (âρ̂ssâ
†)] − J2

PD + JPDδ(τ ). (17)

The final Dirac δ term ensures the two-time correlation func-
tion is well defined at τ = 0. Moreover, the first term is related
to Glauber’s second-order coherence function [49] and has a
very intuitive interpretation: it is the conditional probability
for the system to undergo a jump after a time delay τ follow-
ing a previous jump.

Now we seek to find an efficient way of calculating the
power spectrum associated with FPD(τ ). To handle this prob-
lem we use a vectorized representation of the Liouvillian
(2), whereby we interpret density matrices ρ̂ as kets |ρ〉
in a doubled Hilbert space [50]. Under this transformation,
superoperators are interpreted as matrices, and the trace is
replaced by a contraction with the vectorized identity 〈1|.
That is, for any superoperator S, we may define the trace
tr[S(ρ̂)] = 〈1|S|ρ〉. We further assume that the steady state is
unique andL is diagonalizable. Given thatL is not Hermitian,
it will in general have different right and left eigenvector pairs,
which we denote as

L|x j〉 = λ j |x j〉, 〈y j |L = λ j〈yi|. (18)

These satisfy the identity 〈y j |xk〉 = δ j,k . Furthermore, since
tr[Lρ̂] = 0, we know that both the steady state and identity
exist in the null space of the Liouvillian, i.e., are eigenvectors
with a zero eigenvalue, such that L|ρss〉 = 0 and 〈1|L = 0.
If the system is assumed to be stable—so that it relaxes to a
unique steady state—then it necessarily implies that all other
eigenvalues λ j have strictly negative real parts, Re(λ j ) < 0.
Bringing all this together, we can write

L =
∑

j

λ j |x j〉〈y j |, eLt = |ρ〉〈1| +
∑

j

eλ j t |x j〉〈y j |. (19)

This representation allows us to recast the average current
as JPD = 〈1|L1|ρ〉 and the two-time correlation function as

FPD(τ ) =
∑

j

eλ jτ 〈1|L1|x j〉〈y j |L1|ρss〉 + JPDδ(τ ). (20)

While this formula is appealing, it is difficult to evaluate
explicitly since it requires knowledge of the entire spectrum
of the Liouvillian, which may be hard to determine, even
numerically. Instead, we can directly compute the spectral
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density by taking the Fourier transform in Eq. (12), yielding

SPD(ω) = −2〈1|L1

(
L

L2 + ω2

)
L1|ρss〉 + JPD, (21)

which is equivalent to the power spectrum derived in [51].
Given that L is singular but L2 + ω2 is not, the inverse in the
above expressions is well defined for all ω 
= 0. Conversely,
for ω = 0 some care must be taken. Taking Eq. (20) as a
starting point, it is clear that

lim
ω→0

(
L

L2 + ω2

)
=

∑
j

1

λ j
|x j〉〈y j | ≡ L+, (22)

which is the Drazin inverse ofL and satisfiesL+L = LL+ =
I − |ρ〉〈1|. We thus arrive at

DPD ≡ SPD(0) = −2〈1|L1L+L1|ρss〉 + JPD, (23)

which we can evaluate numerically.

C. Homodyne detection

Now we turn to computing the fluctuations in the homo-
dyne current IHom(t ). Unlike photodetection, we cannot split
the Liouvillian Eq. (2) into a jump and free evolution like we
did in Eq. (14). However, we can carefully identify the mea-
surement superoperator in Eq. (7) associated with homodyne
detection of the q̂θ quadrature:

H1(ρ̂) = √
κ (âρ̂e−iθ + ρ̂â†e−iθ ). (24)

In this case, the average homodyne current along the given
quadrature can be expressed as

JHom = tr[H1ρ̂] = √
κ〈âe−iθ + â†eiθ 〉. (25)

Similarly, the two-point correlation function in the steady state
is given by [36]

FHom(τ ) = tr[H1(eLτ (H1ρ̂ss))] − J2
Hom + δ(τ ). (26)

This is structurally similar to the photodetection result (16) but
involves the operatorH1, which is linear in a and not quadratic
like L1. The first term is now proportional to Glauber’s first-
order coherence function. Note also how the singular term
in Eq. (26) is independent of JHom. This is associated to the
shot noise of the local oscillator that is used in the homodyne
scheme.

Repeating the same vectorization approach used in
Sec. IV B, we arrive at equivalent expressions for the two-time
correlation function:

FHom(τ ) =
∑

j

eλ jτ 〈1|H1|x j〉〈y j |H1|ρ〉 + δ(τ ), (27)

the power spectrum

SHom(ω) = −2〈1|H1

(
L

L2 + ω2

)
H1|ρ〉 + 1, (28)

and the diffusion coefficient

DHom ≡ SHom(0) = −2〈1|H1L+H1|ρ〉 + 1. (29)

V. CURRENT FLUCTUATIONS IN THE CRITICAL
PPK MODEL

A. Critical divergence of the diffusion coefficient

We now use the formulas developed in Sec. IV to an-
alyze the current fluctuations across the critical region of
the PPK model. We begin with the measurement current for
photodetection, IPD. Using Eq. (23), we compute the diffu-
sion coefficient for various parameters and analyze its scaling
with 1/U . At the critical detuning �d of the discontinuous
transition, Fig. 5(a) illustrates an exponential divergence of
the current fluctuations with 1/U . We confirm this by taking
the peak value of the diffusion coefficientDPD for � > 0 and
plotting it as a function of 1/U in Fig. 5(b), which clearly
shows the exponential scaling.

In contrast, the diffusion coefficient shows a far milder
divergence near the continuous transition, visible in Fig. 5(a)
as a small hump inDPD that appears near the critical detuning
�c ≈ −0.9κ for large κ/U . In fact, the diffusion coefficient
scales algebraically with κ/U at the continuous transition.
This is in accordance with previous results from classical sys-
tems, where current fluctuations have been found to diverge
algebraically with volume at a continuous nonequilibrium
phase transition [38]. The diffusion coefficient is plotted
across the phase diagram in Fig. 5(c), which highlights that
the exponential divergence of DPD is restricted to the critical
line of the discontinuous phase transition.

Turning now to the homodyne current, we find several no-
table differences as compared with photodetection. As shown
in Fig. 6(a), the homodyne diffusion coefficient is found to
diverge exponentially with κ/U over the entire critical region
�c � � � �d . The exponential scaling ofDHom is confirmed
in Fig. 6(b), where the maximum diffusion coefficient is again
plotted as a function of κ/U for various different values of G.
Finally, in Fig. 6(c) we plotDHom in the (G,�) plane, demon-
strating that the exponential divergence persists throughout
the critical region of the phase diagram, in stark contrast with
the photocurrent fluctuations shown in Fig. 5(c). This imme-
diately begs the question as to why the structure of the current
fluctuations differs between the measurement processes, and
fundamentally, what drives the exponential growth inD.

B. Metastability and tunneling

We are now in a position to explain how the expo-
nential divergence in the diffusion coefficient D originates
from tunneling between metastable states, as illustrated by
the quantum trajectories depicted in Figs. 3 and 4. Let
us first recap why exponentially diverging current fluctua-
tions arise in the classical context, following Refs. [7,8].
Discontinuous phase transitions in nonequilibrium systems
are typically characterized by the coexistence of multiple
degenerate steady states which become macroscopically dis-
tinguishable in the thermodynamic limit [52]. In finite-sized
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FIG. 5. Diffusion coefficientDPD/κ , Eq. (23), for direct photodetection (a) as a function of �/κ , for different values of κ/U (legend) and
fixed G/κ = 1, showcasing the exponential divergence at �d > 0 (notice the log-scale). (b) Maximum of DPD over all � > 0 as a function
of κ/U . Each increasing curve corresponds to the increasing value of G/κ (legend). Throughout the entire critical region (G/κ > 1/2) the
fluctuations are found to diverge exponentially with κ/U . The black dashed line has slope κ/U confirming the prediction that DPD ∼ eκ/U in
Eq. (31). (c) Diffusion coefficientDPD in the (G, �) plane with U/κ = 1/10 [compare with Fig. 1(c)].

systems the transition rates decrease exponentially with vol-
ume so that transitions become rare. These metastable steady
states therefore have a lifetime, τm, which diverges exponen-
tially in the thermodynamic limit. The current fluctuations are
sensitive to both fluctuations within each state, as well as the
switching between states. In fact, as shown in Ref. [8], the
diffusion coefficient of classical systems, close to the transi-
tion point, scales as

D � Dlocal + 1
4 (J1 − J0)2τm, (30)

where Dlocal describes fluctuations within each bistable state,
while J1(0) are the average currents in each state. Since τm

diverges in the thermodynamic limit, we see that as long as
J1 
= J0, the diffusion coefficient will be dominated by the last
term and hence will scale asD ∼ τm.

The PPK model is metastable near the discontinuous tran-
sition, as witnessed by the telegraphic switching in both
the observed currents (Figs. 3 and 4). The dynamics is
characterized by two distinct timescales, the first describing
fast relaxation within each metastable state and the second
describing rare transitions due to tunneling between these
macroscopically distinct configurations. Each of these config-
urations, corresponding to the lobes of the Wigner function
in Fig. 2(e), is effectively a squeezed coherent state. The rate
of tunneling between these states can be estimated from the
overlap between the corresponding coherent states [53,54].
In particular, tunneling between the inner and outer lobes
occurs with a rate proportional to |〈0| ± α0〉|2 = e−n0 , where

α0 = √
n0eiφ0 and n0 ∝ 1/U are defined in Eq. (3). Tunneling

directly between the two outer lobes can also occur but at
a rate |〈α0| − α0〉|2 = e−2n0 , which is exponentially smaller.
This can be seen in Fig. 4(a), where there are many more
tunneling events via the origin than directly between the outer
fixed points. Since the lifetime of each metastable state is the
inverse of the tunneling rate, we conclude that

D ∼ τm ∼ en0 = e1/U . (31)

This explains the exponential divergence in the fluctuations
of the observed homodyne and photocurrents but does not
explain the difference between the structure inD as a function
of � when comparing homodyne and photocurrent, as seen in
Figs. 5(a) and 6(a), which we turn to next.

C. Measurement-dependent criticality

The differing behavior of the diffusion coefficient for
photodetection and homodyne detection can be understood
by analyzing the quantum trajectories for both measurement
schemes. We investigate a series of trajectories using the same
parameters as those used to created the six Wigner functions
depicted in Fig. 2. The results are shown in Fig. 7, compar-
ing direct photodetection (left panels) to homodyne detection
(right panels).

Under photodetection, as the system initially undergoes
the pitchfork bifurcation at �c < 0, the only telling signature
is a sudden increase in the mean photon number 〈â†â〉PD.

FIG. 6. This figure uses identical parameters as those used Fig. 5 but for the homodyne diffusion coefficient DHom [Eq. (29)]. The
exponential divergence is no longer concentrated around the discontinuous transition but now extends throughout the entire critical region.
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† â
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〈â
† â
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FIG. 7. Comparison of quantum trajectories for the photodetection mean photon number 〈â†â〉PD (left) and the homodyne phase quadrature
〈 p̂〉Hom (right). Each row corresponds to a configuration in Fig. 2 from (a) to (f) in descending order with matching colors. When the system
crosses the continuous transition, � > �c (third plot from the top), the mean photon number becomes nonzero, but because photodetection
cannot resolve the phase quadratures, tunneling events cannot be measured. As a consequence, it is not until � ≈ �d (fifth from the top) that
we see the metastable behavior appear. Conversely, for the case of homodyning (right panel) one can resolve the metastable behavior already at
the continuous transition (third plot from the top), as they correspond to the tunneling events between the two lobes in Fig. 2(c). This explains
why we see an exponential divergence ofDHom (Fig. 6) over a broader region of detunings as compared toDPD (Fig. 5).

However, given that photodetection does not contain any in-
formation about which fixed point the state is in, the current
fluctuates but does not exhibit any signatures of tunneling
between the metastable states. The same cannot be said for
homodyne detection along 〈p̂〉Hom, which immediately col-
lapses the system into one of the metastable states once
the system bifurcates. The conditioned moment 〈p̂〉Hom then
exhibits telegraphic switching due to tunneling between the
two fixed points. As explained in Sec. V B, the emergence of
this bistable behavior in the homodyne current IHom ∝ 〈p̂〉Hom

at the continuous transition explains why we observe expo-
nential growth inDHom for detunings far below �d in Fig. 6.

The difference between the two detection schemes is most
evident when comparing the purple trajectories (third from
the top) in Fig. 7. These correspond to the Wigner function
depicted in Fig. 2(c), which has bifurcated along p̂ but has
not yet reached the discontinuous phase transition at �d .
We conclude that the distinct behavior of DHom and DPD is
directly related to the type of measurement being made and
the information it reveals about the state of the system. This
indicates that the choice of measurement basis plays a central
role in determining the current fluctuations of quantum critical
systems.

VI. CONCLUSION

In this article we have carried out one of the first inves-
tigations into the nature of observed current fluctuations in
dissipative quantum phase transitions. The system in ques-
tion is the PPK model, which exhibits both continuous and
discontinuous transitions. Both transitions are characterized
by the emergence of degenerate metastable states, between

which quantum-mechanical tunneling can occur for finite but
large values of 1/U . When this tunneling process is resolved
by the measurement, the metastability of the NESS reveals
itself as exponentially divergent fluctuations quantified by
the diffusion coefficient. As we have shown, D scales with
average tunneling time, which in the PPK model depends
exponentially on the mean photon number of the outer fixed
points n0 and thus explains the observed scaling. Moreover,
our results demonstrate that the observed fluctuations intrinsi-
cally depend on the choice of measurement scheme, whether it
be photodetection or homodyne detection. In particular, since
homodyne detection is sensitive to phase it can resolve the
tunneling process near the continuous critical point, unlike
photodetection which cannot.

While our results pertain to a specific model, our expla-
nation of the diverging current fluctuations is quite general.
Therefore our conclusions should apply to other phase tran-
sitions featuring degenerate metastable states, especially in
quantum-optical systems that can be continuously measured.
For example, much recent theoretical work has focused on
multicritical behavior in variants of the Rabi and Dicke
models [30,55–61], in which phase transitions have been
experimentally observed [62–64]. The fluctuations of mea-
surement currents in these systems will thus contain a wealth
of information about their nonequilibrium phase diagrams.

Looking beyond critical phenomena, current fluctuations
have received a lot of attention in the context of stochastic
and quantum thermodynamics with the discovery of thermo-
dynamic uncertainty relations (TURs) [65–69]. Since TURs
connect the fluctuations of currents to the mean entropy
production rate, it is unsurprising that nonequilibrium phase
transitions—characterized by singular entropy production
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rates—feature diverging current fluctuations. Nevertheless,
the role of TURs in constraining currents in the quantum
regime remains the subject of intense research [70–72]. Our
work provides another example where quantum-mechanical
current fluctuations can exhibit much richer behavior than
in the classical domain, in this case because of the different
conditional dynamics induced by backaction under distinct
measurement schemes. This finding may ultimately prove
relevant for ongoing efforts to understand thermodynamic
processes under continuous quantum measurement [73–79].
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