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Fluctuation theorems are one of the pillars of nonequilibrium thermodynamics. Broadly speaking, they
concern the statistical distribution of quantities such as heat, work, or entropy production. Quantum experiments,
however, usually can only assess these distributions indirectly, or reconstruct them a posteriori. In this Letter we
report an experiment where the distribution of entropy production is obtained directly from the outcomes (clicks)
of an optical experiment simulating the interaction between a two-level system and a thermal reservoir. The setup
consists of entangled photon pairs, one of which is sent to an interferometer implementing a finite-temperature
amplitude damping channel, and is designed so as to allow full access to the two-point measurement statistics
of both system and reservoir. First, by measuring the entangled pair, we directly implement the two-point
measurement scheme in the system, avoiding the destructive nature of photodetection. Second, each optical
path of the interferometer is associated with a specific transition of the reservoir. Thus, by blocking all but one
of the paths, we can measure the conditional entropy production, given a specific reservoir trajectory.
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I. INTRODUCTION

In the micro- and mesoscopic domains, thermodynamic
quantities such as heat, work, and entropy production may
fluctuate significantly. They must therefore be described by
random variables, with an associated probability distribution.
This change in paradigm has led to ground-breaking new
insights in nonequilibrium thermodynamics. One reason in
particular was the discovery of fluctuation theorems (FTs),
special symmetries of these distributions which generalize the
second law of thermodynamics [1–5]. Thermodynamics, how-
ever, deals with processes, not states. That is, quantities such
as heat or work depend on the transformations a system un-
dergoes. Assessing these in an experiment therefore requires
measuring the system in (at least) two instants of time. For
classical processes, this is generally not an issue [6–8]; how-
ever, in the quantum domain, measurements become invasive.

The default protocol for estimating quantum thermody-
namic quantities is the two-point measurement (TPM) scheme
[9–11] [Fig. 1(a)]. It consists in measuring the system in the
energy eigenbasis, before and after the process. This yields
a stochastic trajectory of outcomes, γ → γ ′, from which the
corresponding thermodynamic quantities can be computed.
Notwithstanding its limitations [13–21], the TPM remains the
main methodology for obtaining thermodynamic properties of
quantum systems. However, experimentally implementing the
two measurements in sequence can be extremely challenging:
Quantum observables are often only inferred indirectly or via
a destructive process, such as photodetection.
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Instead, the distribution of outcomes P(γ , γ ′) is usually
written as P(γ , γ ′) = P(γ ′|γ )P(γ ) and the two terms are
determined from separate experiments. This was the case,
for instance, in Ref. [22], which was the first to report on
quantum fluctuation theorems. In one experiment the system
is prepared in some initial state (usually thermal) and the
initial probabilities P(γ ) are measured. Then, in a second
experiment one prepares a given state γ , runs the process,
and then measures it in γ ′, thus obtaining the transition
probability P(γ ′|γ ). The TPM is then reconstructed from
postprocessing, with the purpose of confirming the validity
of FTs. Similar issues are also found in other platforms,
where P(γ ) is extracted directly from the preparation of the
initial thermal state instead of being measured in the first
measurement of the TPM [23–25].

In recent years there has been significant progress in devel-
oping alternative implementations of the TPM. One approach,
used, e.g., in nuclear magnetic resonance experiments [26,27],
is based on Ramsey interferometry to indirectly estimate the
characteristic function (from which the distribution can be re-
constructed via a Fourier transform) [28,29]. Another method
is based on the interpretation of work as the direct outcomes
of a generalized quantum measurement (positive-operator-
valued measure), as put forth in [30]. This was implemented in
Ref. [31], to directly measure the work distribution in a quan-
tum gas, without having to resort first to the TPM. Continuous
weak measurements have also been used in superconducting
circuits [32], as an alternative to the two-point nature of the
TPM. The only experiment directly performing the two mea-
surements of the TPM in a single shot is that in Ref. [33],
which used nondemolition measurements on superconducting
qubits. That setup, however, is restricted to measurements in
the system only, being unable to access environmental degrees
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FIG. 1. (a) Standard TPM scheme, which consists in measuring a quantum system before and after a thermodynamic process. The first
measurement, with outcome γ , may invasively affect the process and in general is difficult to implement experimentally in a single experimental
run. (b) We bypass these issues using two features. First, we distinguish the different configurations of the bath (black and purple lines
inside the gray rectangle) by blocking specific arms of the interferometer. Second, we use entangled photon pairs, where only one is sent
through the thermodynamic process. Due to the coincidences postselection, measuring the other photon yields information about the initial
state, before the process. (c) Experimental setup. Pairs of entangled photons are created using SPDC. The photon in mode S is sent to a FTAD
channel, while the photon in mode A is detected after a projective measurement in its polarization. Coincidence counts are registered with
detections in Det1 and Det2. (d) Interferometric implementation of the FTAD channel (see the text and Supplemental Material [12] for more
details).

of freedom, which are crucial when heat exchange is also
involved [34].

In this Letter we report an experiment where both out-
comes of a TPM, in both the system and bath, are directly
associated with the clicks of a single experiment. We study
the entropy production in a system comprising an entangled
photon pair, where one of the photons is sent to an interfer-
ometer implementing a finite-temperature amplitude damping
(FTAD) channel, representing the interaction with a heat bath
[35–38]. To perform the TPM, we introduce two features,
which are unique to our setup [Fig. 1(b)]. First, each path
of the interferometer is mapped into a different bath config-
uration. Hence, by blocking all but one of the paths, we can
measure the statistics conditioned on a given stochastic trajec-
tory of the environment. These are usually very challenging in
other platforms, since they require projective measurements
on the reservoir, before and after the interaction. Second, we
use coincidence counts for measuring both photons in the en-
tangled pair. Detecting the polarization of the photon that went
through the interferometer yields γ ′. In addition, the outcomes
of the entangled pair determine the configuration γ , before the
process occurred. This does not have the artificiality of having
to measure P(γ ) in a separate experiment. A similar method,
but focused on work protocols, has been reported in [39,40].

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1(c). A He-Cd
laser pumps two β barium borate (BBO) crystals in a
crossed axis configuration. By type-I spontaneous parametric
down-conversion (SPDC), photon pairs in the entangled
state |ψSA〉 = √

δ|00〉SA + √
1 − δ|11〉SA are produced in

the modes S and A [41], where the computational bases
|0〉S (A) and |1〉S (A) corresponds to the horizontal and vertical
polarizations, respectively. The reduced state of S thus reads

ρS = δ|0〉S〈0| + (1 − δ)|1〉S〈1|, which is a thermal state, with
occupation δ.

The A photons are detected in an avalanche photon diode
(Det2), after polarization projective measurements, imple-
mented by a half waveplate (HWP) and a polarized beam
splitter (PBS). Due to the correlated nature of |ψSA〉 and the
postselection of the detection of coincidences, outcomes 0
and 1 for A imply initial states γ = 0, 1 for S and occur with
probability pγ = {δ, 1 − δ}.

The S photons, on the other hand, pass through an in-
terferometer which implements an FTAD channel of the
form �[ρS] = ∑4

j=1 EjρSE†
j , with Kraus operators (satisfy-

ing
∑

j E†
j E j = 1)

E1 = √
p

[
1 0
0

√
η

]
, E2 = √

p

[
0

√
1 − η

0 0

]
,

E3 =
√

1 − p

[√
η 0

0 1

]
, E4 =

√
1 − p

[
0 0√

1 − η 0

]
,

(1)
which can be thought of as a combination of emission (E1,2)
and excitation (E3,4) processes with coupling strength η ∈
[0, 1] and probabilities p and 1 − p [42]. The FTAD mim-
ics a thermal bath acting on a photon, with the parameter
p interpreted as the thermal occupation probability. In fact,
as discussed in [12], each index j = 1, 2, 3, 4 can also be
associated with a set composed of an initial and a final state
of the reservoir.

The FTAD interferometer is implemented by entangling
the photon polarization with path degrees of freedom, as
sketched in Fig. 1(d). The S photons are first sent to a bire-
fringent calcite beam displacer BD1 that transmits (deviates)
the vertically (horizontally) polarized photons, creating two
spatial modes (up u and down d), which we will call transver-
sal modes (TMs). The polarization of photons in mode d is
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FIG. 2. Experimentally determined probabilities and entropy production for all possible stochastic trajectories. (a) Probabilities (2) for
Kraus channels E1, . . . , E4 and the system transitions γ → γ ′, with η = 0.7(2). (b)–(e) Same as in (a) but as a function of η. Each panel
corresponds to a different channel E1, . . . , E4 and each curve to a transition γ → γ ′, as labeled in image (b). (f)–(i) Corresponding stochastic
entropy production σ [γ , γ ′, j] [Eq. (3)]. We only show curves for trajectories having P �= 0 in (b)–(e). Points correspond to the experimental
data, while the curves refer to the theoretical predictions. Error bars are calculated from Poissonian statistics for each outcome. In all curves
p = 0.19(1) and δ = 0.77(1).

rotated by a HWP at 45◦ and both TMs pass through a HWP,
whose axis is rotated by φ/2. The photons are thus reflected
(transmitted) in PBS1 with probability p = sin2 φ (1 − p =
cos2 φ) into the longitudinal mode (LM) long li (short si),
where the set of Kraus operators {E1, E2} ({E3, E4}) is im-
plemented. In our setup, we tune the coupling strength of the
channel with the angle θ/2 of two HWPs such that η = cos2 θ .
Hence, both parameters of the FTAD are adjusted at will.
It is worth mentioning that the interferometer in Fig. 1(d)
can also implement other environments, including dephasing,
bit flip, and depolarization [43,44]. Finally, the photons are
sent to PBS2, which incoherently combines both LMs and
splits the photons in the two final states of the reservoir, s f

and l f . All HPWs in 0◦ serve to compensate for the path
length, allowing a coherent superposition of the TMs at BD2
and BD3, necessary for the implementation E1 and E3. Beam
displacer BD4 plays two roles in our setup: (i) It traces out the
TM and, in conjunction with the plate T, (ii) it selects photons
coming from l f or s f , performing a projective measurement in
the computational basis of the reservoir. The optical elements
in the pink box are responsible for performing projective
polarization measurements, yielding final outcomes γ ′ = 0, 1.
The joint distribution P(γ , γ ′) is then obtained by registering
coincidence counts between Det1 and Det2.

As discussed above and formally demonstrated in the
Supplemental Material [12], each Kraus operator Ej is
associated with a specific optical path. Crucially, by blocking
three out of the four paths, we can thus also determine
P(γ , γ ′, j), which represents the joint probability that
the system undergoes a transition from γ → γ ′ in path
j = 1, 2, 3, 4, which is given by

P(γ , γ ′, j) = pγ |〈γ ′|Ej |γ 〉|2. (2)

Thermodynamically, this would be tantamount to the joint
TPM distribution of both the system and bath, where the
index j collectively describes the initial and final states of the

bath. In our case, this bath is represented instead by the path
degrees of freedom of the interferometer.

The experimentally obtained probabilities are shown in
Fig. 2 for fixed p = 0.19(1) and δ = 0.77(1). The image in
Fig. 2(a) summarizes all probabilities which are nonzero, with
fixed η = 0.7(2). In fact, out of the possible 16 outcomes
(γ , γ ′, j), only six are not zero. This is because E1 and E3

do not generate jumps and hence allow only for the transi-
tions 0 → 0 and 1 → 1 in the system. Conversely, E2 and E4

necessarily cause the system to jump, from 1 to 0 and from 0
to 1, respectively. This is a manifestation of the preservation
of the total number of excitations in the system and bath.
Figures 2(b)–2(e) depict the probabilities as a function of
η, each plot corresponding to a different Kraus channel Ej .
For comparison, the theoretical predictions from Eq. (2) are
also shown. In all cases, the fidelity (Bhattacharyya distance)
between theory and experiment is above 0.98, therefore con-
firming that the TPM protocol was successfully implemented.

III. STOCHASTIC ENTROPY PRODUCTION

The stochastic entropy production along a trajectory
(γ , γ ′, j) reads [37,45,46]

σ (γ , γ ′, j) = ln(pγ /p̃γ ′ ) + � j, (3)

where p̃γ ′ = ∑
γ , j P(γ , γ ′, j) is the probability associated

with the final state of S. The first term in (3) represents the
stochastic variation in the system’s entropy. Indeed, averaging
over Eq. (2) leads to 〈ln pγ /p̃γ ′ 〉 = S(�[ρS]) − S(ρS ), where
S(ρ) = −tr(ρ ln ρ) is the von Neumann entropy. The second
term in Eq. (3) is the entropy flux � j to the reservoir. It there-
fore depends only on the path j the photon undergoes (and not
on γ and γ ′). These fluxes are associated with quantum jumps
in the system [45]. Since E1 and E3 involve no jumps, we have
�1 = �3 = 0. Conversely, paths 2 and 4 must be accompa-
nied by finite fluxes �2 and �4, since they involve jumps from
1 to 0 and from 0 to 1, respectively. To determine �2 and
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FIG. 3. (a) Average entropy production 〈σ 〉 and (b) fluctuation theorem 〈e−σ 〉 as a function of η for p = 0.19(1).

�4 we use the fact that the time-reversed Kraus operators Ẽ j

should be related to the forward Kraus operators according to
Ẽ j = e−� j/2E†

j [37,47]. For the FTAD this yields the unique
solution �2 = −�4 = ln p/(1 − p). With these expressions
for � j , it then follows from Eq. (3) that σ satisfies the integral
fluctuation theorem

〈e−σ 〉 = 1. (4)

The experimentally determined values of the stochastic
entropy production (3) are shown in Figs. 2(f)–2(i) as a func-
tion of η for fixed p = 0.19(1) and δ = 0.77(1). Each plot
corresponds to a different channel j of the FTAD. For some
trajectories the corresponding probabilities [Figs. 2(b)–2(e)]
are identically zero, so these values will not contribute to any
averages. For instance, because of Fig. 2(b), in Fig. 2(f) the
only values of σ which will actually play a nontrivial role
are those corresponding to the trajectories 0 → 0 and 1 → 1
(gray and red curves).

As can be seen in Figs. 2(f)–2(i), at the stochastic level
some of the entropy productions can be negative. This does
not contradict the second law, which holds only at the level
of averages. Indeed, from Eq. (4) and Jensen’s inequality,
it follows that 〈σ 〉 � 0. This means that negative values are
less likely, which can be observed by comparing the prob-
abilities in Figs. 2(b)–2(e). The average entropy production
〈σ 〉 = ∑

γ ,γ ′, j σ (γ , γ ′, j)P(γ , γ ′, j) is shown in Fig. 3(a),
together with the fluctuation theorem (4) in Fig. 3(b). In both
cases, the experiment confirms the experimental predictions:
〈σ 〉 � 0 and 〈e−σ 〉 = 1.

IV. CONCLUSION

Thermodynamic quantities, such as heat, work, or entropy
production, characterize transformations (i.e., processes) that
the system undergoes. However, directly assessing processes
in quantum systems is notoriously difficult. We have demon-
strated a platform that overcomes this by implementing a
photonics simulation of a two-level system interacting with
a thermal reservoir. The key feature of our setup is the abil-
ity to obtain the full TPM statistics of both the system and
bath, directly from the clicks of an experiment. This was

accomplished by combining two features. First, the configu-
rations of the reservoir are characterized by a set of Kraus
operators, each corresponding to a specific optical path of the
interferometer. Hence, by blocking three out of the four paths,
we could directly study the statistics conditioned on each
bath configuration. Second, we used entangled photon pairs
to nondestructively measure the initial system configuration.
Combined with the final measurement, associated with the
photon that went through the interferometer, this yields the
full TPM statistics of both the system and bath.

As a proof of principle, we have focused on the entropy
production in a heat exchange process. This is convenient
since entropy production is a fully information-theoretic
quantity and hence avoids entering issues about the energetics
of photon processes. However, our approach is highly
flexible and can be extended to various other thermodynamic
protocols, including systems with initial coherences. The
latter in particular would be an interesting direction for
future research, since the TPM becomes invasive in the
presence of energetic coherences [14,16–21]. Our framework
can be readily extended to include initial coherences in the
system, for example, by rotating the initial states of the
entangled pair. These could be used to compare the TPM
with other alternatives that have recently been proposed to
overcome this invasiveness, such as Bayesian networks [19]
and quasiprobabilities [17,48].
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