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Non-Gaussian work statistics at finite-time driving
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We study properties of the work distribution of a many-body system driven through a quantum phase
transition in finite time. We focus on the non-Gaussianity of the distribution, which we characterize through
two quantitative metrics: skewness and negentropy. In particular, we focus on the quantum Ising model and
show that a finite duration of the ramp enhances the non-Gaussianity of the distribution for a finite size system.
By examining the characteristics of the full distribution, we observe that there is a clear intermediate regime
between the sudden quench and adiabatic limits, where the distribution becomes increasingly skewed.
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I. INTRODUCTION

The work that is injected into, or extracted from, a micro-
scopic system may fluctuate significantly. These fluctuations
are not only relevant from a practical perspective, but they
also encode fundamental results concerning the second law
of thermodynamics [1,2]. Over the last two decades this
has motivated a flurry of interest in understanding and char-
acterizing work fluctuations. In the simplest scenario, the
problem can be framed as that of a system driven exter-
nally by a time-dependent work protocol, which causes its
Hamiltonian to be time dependent for a certain duration τ .
The work distribution P(W ) is then obtained by measuring
the system’s energy before and after the drive [3]. In par-
ticular, a problem that has received considerable attention
is the work statistics of quantum critical systems. It dates
back to the early days of quantum thermodynamics [4], and
is motivated by the goal of understanding how far from
equilibrium the system goes when driven across its critical
point [3,5,6].

In this regard, the duration τ of the drive plays a crucial
role. Extremely rapid dynamics (the so-called “sudden quench
regime”) tend to produce a large number of excitations and
have been the focus of several recent works [4,7–13]. Inter-
estingly, it has been observed that in this regime P(W ) for
a variety of closed many-body systems tends to a Gaussian
[9,14–18], and therefore most papers have focused only on the
first and second moments. At the other extreme, for slow pro-
tocols the dynamics will be effectively adiabatic. This regime
has also received a lot of attention because it is at the core
of thermal cycles and serves as a basis to achieve protocols
in which the system remains close to equilibrium [19,20].
Furthermore, in contrast to sudden quenches, in this case it has
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been shown that quantum coherences lead to non-Gaussian
work distributions [19,21].

In between the sudden quench and slow driving regimes,
finite time protocols can give rise to highly nontrivial behav-
iors, such as those captured by the Kibble-Zurek mechanism
[22–27]. Indeed, as discussed in Ref. [28], the interplay
between the time-dependent driving and the characteristic en-
ergy scales implies that contributions of different excitations
change dynamically. In practice, the speed of the external driv-
ing determines which states are accessible at the beginning
and the end of the process. This is encoded in the conditional
probabilities pm|n of the system being in state m given that it
was initially in state n. Modifying the structure of accessible
states, and consequently the possible transitions pm|n, has a
strong impact on the statistics of the work distribution that
extends beyond the first two moments. Recently, it was further
shown that the statistics of the work distribution exhibit a
universal scaling analogous to the Kibble-Zurek mechanism
(KZM) scaling of topological defects [27,29]. Moreover, finite
time effects have been used to refine bounds on probabilistic
violations of the second law in the work distribution [30].

In this work, we add to this endeavor by characterizing
the work distribution in terms of its Gaussianity. Focusing
on the transverse field Ising chain, we carry out a detailed
analysis of the skewness of the distribution as a function of the
chain size and the drive time. We show that there is a highly
nontrivial interplay between both, which precisely captures
the transition from fast to slow driving. In addition, we study
the relative entropy of non-Gaussianity, also known as negen-
tropy. We explain some subtleties in employing this metric for
discrete distributions, but notwithstanding demonstrate that it
does provide a useful quantifier of non-Gaussianity, which
goes a step beyond the skewness by also incorporating infor-
mation related to higher order moments of the distribution.
In particular, both methods establish that there is a clear in-
termediate regime between the sudden quench and adiabatic
limits, where the distribution tends to become increasingly
non-Gaussian.
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II. WORK STATISTICS IN DRIVEN QUANTUM SYSTEMS

A. Distribution, moments, and cumulants

We consider an isolated quantum system, prepared in an
initial state ρ. At time t = 0 the system is driven by a time-
dependent Hamiltonian Ht = ∑

n Et
n|nt 〉〈nt 〉 for a total time

τ . The final state of the system is thus ρτ = UρU †, where
U = T exp(− i

h̄

∫ τ

0 dsHs) and T is the Dyson time-ordering
operator. We are interested in the work distribution as the
system Hamiltonian is changed from H0 to Hτ . This can
be obtained following the standard two-point measurement
[3], which consists of projectively measuring the energy of
the system before and after the drive. For isolated systems,
as there is no surrounding environment, defining the work
extracted in terms of changes in the system’s energy is rea-
sonable since, by definition, there is no heat exchange. Even
in the case of mixed states, if the dynamics is unitary then
energetic variations due to changes in the Hamiltonian can
be solely identified as work [31] The corresponding work
will then be one of the possible energy differences between
the final and initial Hamiltonian, W = E τ

m − E0
n , which occur

with probability

P(W ) =
N∑

n,m

〈n0|ρ|n0〉 pm|n δ
[
W − (

E τ
m − E0

n

)]
(1)

where pm|n = |〈mτ |U |n0〉|2. Note that in the adiabatic limit
pm|n = δm,n and for sudden quenches pm|n = |〈mτ |n0〉|2.

The expression simplifies when the initial state is an
eigenstate of H0. For instance, if ρ is the ground state,
ρ = |gs0〉〈gs0|, the work distribution becomes

P(W ) =
∑

m

|〈mτ |U |gs0〉|2 δ
[
W − (

E τ
m − E0

gs

)]
. (2)

The work distribution in this case is a local density of states,
which is essentially probing the spectrum E τ

m of the final
Hamiltonian, with weights given by |〈mτ |U |gs0〉|2.

The characteristic function (CF) of the work distribution
Eq. (1) is given by

G(u) := 〈eiuW 〉 = tr(U †eiuHτ Ue−iuH0ρd ), (3)

where ρd = ∑
n |n0〉〈n0|ρ|n0〉〈n0| is the initial state, dephased

in the basis of H0. From G(u) the moments can be computed
as 〈W n〉 = i−nG(n)(0). Carrying out the expansion we find

〈W n〉 =
n∑

k=0

(
n

k

)
(−1)n−k tr

{
(U †HτU )kHn−k

0 ρd
}
. (4)

This provides a convenient expression to compute all mo-
ments, without having to actually construct P(W ). From the
CF one also builds the cumulant generating function (CGF)
C(u) = ln G(u). A series expansion then yields the cumulants
as κm = i−mC(m)(0). The first cumulant is the mean, κ1 ≡ μ,
and the second is the variance κ2 ≡ σ 2. The first three cu-
mulants coincide with the corresponding central moments,
μn := 〈(W − 〈W 〉)n〉, but this is no longer true for n > 3. For
instance, κ4 = μ4 − 3μ2

2, and so on.
The cumulants are particularly convenient to characterize

the dependence of the work distribution with the size L of
the system (e.g., the number of lattice sites, or the number of

particles). Depending on the structure of the Hamiltonian and
the type of drive employed, the dependence with L may vary
significantly. A useful reference, for comparison, is when the
work is associated to L independent sources. This happens,
for instance, if the system is composed of L noninteracting
particles. This is also naturally expected in models which are
exactly solvable via a mapping to free fermions [32].

In this case the statistics become extensive and the central
limit theorem applies. As a consequence, all cumulants of W
grow linearly with L:

κn(W ) ∼ L. (5)

If one defines a rescaled work variable w = W/
√

L, the cor-
responding cumulants will then scale as

κn(w) = (1/
√

L)nκn(W ) ∼ L1− n
2 . (6)

That is,

κ1(w) ∼
√

L, κ2(w) ∼ 1,

κ3(w) ∼ 1/
√

L, κ4(w) ∼ 1/L.

For large L all cumulants with n � 3 tend to be suppressed,
and the work distribution will therefore tend to a Gaussian.

B. Measures of non-Gaussianity and negentropy

The above discussion highlights the Gaussianity (or lack
thereof) of P(W ) as an interesting feature that may provide
insight in characterizing different models and/or dynamical
regimes [33–37]. In this section we discuss measures to quan-
tify the degree of non-Gaussianity. The simplest approach
is to analyze the cumulants κ3(W ), κ4(W ), etc. It is more
convenient to work with the dimensionless quantities

λm := κm(W )

κ2(W )m/2
. (7)

The skewness is λ3 = κ3/κ
3/2
2 = κ3/σ

3, while λ4 = κ4/κ
2
2 =

κ4/σ
4 is related to the kurtosis as λ4 + 3. In the standard

scenario of Eq. (5), they scale according to

λm ∼ L1−m/2, (8)

such that a vanishing λm (m � 3) can be used to quantify
whether the work distribution is tending to a Gaussian. Many
normality tests used in statistics, such as the Jarque-Bera [38]
or D’Agostino’s K-squared tests [39], are in fact based on λ3

and λ4.
Alternatively, one may employ an information-theoretic

approach, reminiscent of quantum resource theories. A mono-
tone of non-Gaussianity can be built using the relative entropy
(Kullback-Leibler divergence) between P(W ) and a corre-
sponding Gaussian distribution PG(W ) = 1√

2πσ
e−(W −μ)2/2σ 2

,

with the same mean μ and variance σ 2 as P(W ). For a given
P(W ), the quantifier is therefore defined as

J (P) := D(P||PG) =
∫ ∞

−∞
P(W ) ln

[
P(W )

PG(W )

]
dW. (9)

This quantity is usually termed negentropy. The integral can
actually be carried out further, leading to

J (P) = S(PG) − S(P) = ln(
√

2πeσ ) − S(P), (10)
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where

S(p) = −
∫ ∞

−∞
p(x) ln p(x) dx (11)

is the differential entropy of p(x). The concept of negentropy
can also be extended to quantum states, in the context of
resource theories of non-Gaussianity [33–36]. In that case, the
meaningful entropic quantities are instead the von Neumann
entropy and the quantum relative entropy. Despite the under-
lying quantum system, our interest here is in the classical
version of the negentropy, since our object of study is the
classical probability distribution P(W ).

For continuous probability distributions, the negentropy is
a very good quantifier of non-Gaussianity: it is nonnegative
and vanishes if and only if the distribution is Gaussian. In our
case, however, an issue arises concerning the discrete nature
of Eq. (1). Namely, because the support [the points W where
P(W ) �= 0] is not compact, the corresponding differential en-
tropy (11) is not well defined. In fact, this is a famous issue
found by Shannon, and later resolved by Jaynes using the
concept of a limiting density of discrete points [40]. However,
unfortunately there is no unambiguous way of addressing it.

One approach, which directly connects with the Jarque-
Bera test [38], is to approximate P(W ) by a continuous
smooth distribution using the Gram-Chalier series [41], which
effectively provides a systematic set of corrections to a Gaus-
sian distribution in terms of λ3, λ4, . . .. Stopping at fourth
order, the approximate distribution will have the form

Papp(W ) = PG(W )[1 + f (v)], (12)

f (v) = λ3

3!
He3(v) + λ4

4!
He4(v), (13)

where Hn(x) are the probabilist’s Hermite polynomials. For
λ3 ∼ L−1/2 and λ4 ∼ L−1, the correction terms become van-
ishingly small with increasing L. This expansion applies not
only to the standard scenario of Eqs. (5) and (8), but also to
any scenario where cumulants of order three or higher are
small. This includes, for instance, sub- or superextensive de-
pendences in L; that is, κm ∼ Lq for q ≶ 1, which then implies
λm ∼ Lq(1−m/2). We remark that there are circumstances in
which this approach may not provide a good approximation
for the distribution, particularly when the distributions are not
smooth, as is the case for certain chaotic systems [9,42,43]
and for systems with a fractal spectrum, such as the Aubry-
Andre-Harper model [44].

Following Ref. [45], when f is small we can series expand

Papp ln Papp ≈ PG

[
(1 + f ) ln PG + f + f 2

2

]
. (14)

The negentropy (10) can then be written as

J (Papp) = [1 − ln(
√

2πσ )]〈 f 〉G − 1
2 〈v2 f 〉G + 1

2 〈 f 2〉G,

where 〈. . .〉G denotes expectation values over PG(W ). Finally,
using the orthogonality relations of the Hermite polynomials,
we find that 〈 f 〉G = 0 and 〈v2 f 〉G = 0. This then leads us to
J (Papp) = 1

2 〈 f 2〉G or, more explicitly,

J (P) = 1

2

[
λ2

3

3!
+ λ2

4

4!

]
. (15)

This result, which also coincides with the Jarque-Bera test
[38] used in statistics, provides us with a clear measure of
deviations from Gaussianity in terms of λ3 and λ4. In princi-
ple, one could also extend this procedure and consider higher
order cumulants. However, in practice this is typically not very
useful since higher order cumulants are extremely sensitive to
numerical errors.

III. NUMERICAL RESULTS

We now apply the above ideas to a paradigmatic model for
critical quantum systems, namely, the transverse field Ising
model (TFIM) consisting of L sites described by Pauli matri-
ces σ

x,y,z
i , with Hamiltonian

Ht = −h̄ω

L∑
i=1

[
g(t ) σ x

i + σ z
i σ z

i+1

]
. (16)

We assume L is even, and use periodic boundary conditions
σ

x,y,z
L+1 = σ

x,y,z
1 . Moreover, we henceforth set h̄ω = 1, thus fix-

ing the scales of energy.
The model is well known to exhibit a second-order quan-

tum phase transition at gc = 1 [4,8,12,18,19,27,46–50]. It
has been demonstrated theoretically that, when the system is
driven at finite time through its critical point, the distribution
of topological defects follows an universal scaling compatible
with the Kibble-Zurek mechanism [51]. The power laws fol-
lowed by the first three cumulants were tested experimentally
with trapped ions [52] and quantum annealers [53,54].

We explore the properties of the full work distribution for
a system driven symmetrically through the critical point by a
linearly varying drive,

g(t ) = g0 + 2(gc − g0)t/τ, (17)

where τ is the duration, but remark that we expect our results
to be qualitatively similar for other suitable choices of ramp.
We assume that the system begins in the ground state manifold
for g0 = 0, and we calculate the full work distribution, Eq. (2),
of the TFIM via exact diagonalization (ED). Translational
and spin inversion symmetries allow us to solve systems with
up to 20 spins since the ground state only connects to states
sharing the same conserved quantum numbers [55]. The initial
condition g0 = 0 makes the ground state twofold degenerate,
with each state related by spin inversion symmetry in the z
direction. In an adiabatic evolution, this degeneracy implies
a splitting of the transition probabilities into two peaks with
equal weight pm|n = 1/2. In the limit of a sudden quench,
when many excitations are created, these two ground states
can overlap with a large number of eigenstates of the final
Hamiltonian. While quantitative differences will occur for
other choices of initial states, particularly if one restricts to a
specific symmetry sector, the qualitative behaviors discussed
remain largely unaffected.

In Fig. 1(a) we show the exact work distribution for a
L = 20 site chain for the twofold degenerate initial state. For
τω 
 1, P(W ) resembles a Gaussian: it is widely spread
throughout the full spectrum, with the largest contributions
centered at the average 〈W 〉. For such fast, but manifestly
not instantaneous, ramps we see that the distribution is nev-
ertheless invariant. This indicates that the sudden quench
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FIG. 1. (a) Full work distribution, Eq. (2), for an Ising spin chain with L = 20 as a function of quench duration. (b) Approximation to
the full distribution constructed using the first four cumulants. (c) Comparison between the exact discrete (bars) and approximate continuous
(dashed lines) distributions for fixed values of ramp duration τ . In all panels we consider a linear ramp, Eq. (17), with the system starting in
the ground state and g0 = 0.

approximation remains valid even for fast finite ramps.
Conversely, for very slow protocols (τω → ∞), the work
distribution splits into two peaks, each one associated with
the two ground states. An intermediate regime emerges for
1 � τω � 10, for which the work distribution appears more
involved and does not peak at the adiabatic ground states.
In this regime, the skewness of P(W ) is enhanced towards
negative values of the work.

From the full distribution we determine the first four mo-
ments 〈W m〉 and cumulants κm (m = 1, 2, 3, 4) as a function
of the duration of the ramp τ , for finite systems with sizes
from L = 8 to L = 20. In Fig. 2, the first row shows the
scaled moments 〈(W/L)m〉, while the second shows the scaled
cumulants κm/L. In both, we observe a crossover between

10−1 < τω < 10, which separates the sudden quench and
the (quasi)adiabatic regimes. Note that the scaling (W/L)k is
nonlinear, and the moments are sensitive to the system size.
Regions where the cumulants deviate from extensive scaling
[shown in the inset of Figs. 2(e) and 2(f)] are due to finite
size effects. While the first three scaled cumulants display a
similar behavior, the fourth shows a peak centered at τω = 1.
The fluctuations, given by the second cumulant, are amplified
for a fast driving due to the spread of the spectral weight of
the instantaneous wave function through the final states.

From the first four cumulants of the exact data in Fig. 1(a),
we can build an approximated distribution for P(W ) using the
Gram-Charlier series in Eq. (12) with the first four cumulants.
The result is shown in Fig. 1(b). The structure of the exact

FIG. 2. (a)–(d) Moments of work distribution for Ising chains of size L = 8 (dark red solid line), L = 10 (orange dotted line), L = 12
(yellow dot dashed line), L = 14 (lime green dotted line), L = 16 (cyan solid line), L = 18 (blue solid line), and L = 20 (indigo dotted line).
(e)–(h) Cumulants of work distribution for Ising chains of size L = 8 (dark red solid line), L = 10 (orange dotted line), L = 12 (yellow dot
dashed line), L = 14 (lime green dotted line), L = 16 (cyan solid line), L = 18 (blue solid line), and L = 20 (indigo dotted line). In all panels
we consider a linear ramp, Eq. (17), with the system starting in the ground state and g0 = 0.
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FIG. 3. Measures of non-Gaussianity of the work distribution for
the linear ramp protocol. (a) Skewness and (b) negentropy for finite
Ising chains. The inset in (a) shows a linear fit of each curve in
the region where a power law is observed. The inset in (b) displays
the unscaled, long-time values which the negentropy reaches near
τ ∼ 102. In the quasiadiabatic regime, systems with different size
become distinguishable: for τω > 50, the curve associated with the
smallest system L = 8 is at the bottom of the curves set, while the
largest L = 20 is at the top.

distribution is preserved: close to a sudden quench, one can re-
cover a nearly Gaussian profile, while at intermediate driving
speeds, a skewed distribution emerges before then converging
to a single sharp peak in the adiabatic limit. A comparison
between the exact and approximated distributions for τω ≈
0.05, 2.5, 116 is shown panel Fig. 1(c). The accuracy of this
approximation is expected to improve with increasing system
size.

Turning to the characteristics of the distributions, we quan-
titatively examine deviations of the work distribution from a
Gaussian and its dependence on the speed of the external drive
employing the metrics outlined in Sec. II B. To this aim, in
Fig. 3(a) we inspect the skewness λ3 of the full distribution
calculated via ED as a function of τω for different L. As
remarked previously, given that all cumulants of a normal
distribution vanish after second order, the skewness provides
a readily accessible figure of merit to understand the effects
of the finite-time dynamics in the work distribution. From
Fig. 3(a) we observe that in the fast driving regime the skew-
ness is constant and scales as 1/

√
L. At short times, we see

that there is a residual value of λ3, which in effect quantifies

the smallest distance between the actual distribution and a per-
fect Gaussian for a finite system after a sudden quench. Notice
that since the skewness scales inversely with the system size,
it is clear that in the thermodynamic limit, one would expect
λ3 → 0 for the Ising model. As we increase the ramp duration,
the skewness increases for intermediate driving times before
peaking around τω ∼ 3, after which it decreases according to
a power law in τω. We see a clear universal behavior for the
sudden quench and intermediate regimes, while features due
to finite size effects become evident as the ramp approaches
the adiabatic limit; the onset of the power law decay emerges
at progressively longer ramp durations for larger system sizes
due to the fact that the ground state energy gap decreases as
L−1. Thus, the time scales to reach adiabaticity necessarily
increase, approaching infinity as L → ∞.

In Fig. 3(b) we plot the scaled negentropy JL as a function
of ωτ for different system sizes. We immediately see some
qualitative similarities with the skewness. In particular, the
negentropy of the approximate distribution is constant for
fast dynamics, where the sudden quench approximation is
valid. However, in contrast with the skewness, the negentropy
asymptotically approaches a fixed value for a given system
size in the adiabatic limit, cf. the inset of Fig. 3(b) shows
the (unscaled) values attained at τ ∼ 102. Once again, this
can be understood from the distribution tending towards two
equally likely values of work for the given choice of initial
state, and in this limit the negentropy tends to J → 1/12.
Note that there is a slower convergence towards this value for
larger system sizes as the decreased energy gap results in a
longer timescale required for adiabaticity, as can be inferred
from the inset of Fig. 3(b) where N = 8 is already close to the
asymptotic value, while larger systems clearly require longer
timescales. In the intermediate regime we see that the negen-
tropy captures the increasingly non-Gaussian characteristics
of the full distribution, similarly peaking for a finite drive but
now also exhibiting a sharp minimum which appears to signal
the transition toward the adiabatic regime and arises due to
contributions coming from the fourth cumulant.

IV. CONCLUSIONS

We have examined how characteristics of the work distri-
bution are dependent on the rate at which a system is driven
through a quantum phase transition. In particular, we have
established that there is an interesting trade-off between the
(lack of) Gaussianity of a distribution and speed with which
it is ramped. Higher order moments of the distribution were
shown to be useful indicators of different dynamical regimes.
While the first and second moments (corresponding to the
mean and variance) are typically the most studied, in line with
Ref. [28] we have shown the the skewness provides valuable
information about the response of the system to the ramp
protocol.

In particular, we have developed a general framework to
assess the Gaussianity of the work distribution in terms of the
negentropy. This can be approximated by a series expansion of
cumulants providing a simple means of calculation; however,
we stress that due to the discreteness of the full distribution for
finite sizes, systematic errors can emerge since the approxima-
tion attempts to resolve the fine structure of the distribution.
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These errors can be more critical in scenarios in which the
system’s spectrum and its level statistics constrain the set of
accessible energy transitions to a few. For this reason, we
have demonstrated that restricting to the first four cumulants is
sufficient to obtain a very good approximation, while largely
avoiding such pathological issues.

While our results are demonstrated for the Ising model,
we expect that qualitatively similar behaviors would be ex-
hibited in other models that can be mapped to free fermions.
Future work could go beyond the scenario presented here,
e.g., considering thermal initial states, the effect of non-
integrability, nonlinear ramps, or more carefully assessing
the role that non-Gaussian features play in the dynamics of
quantum systems [21,56]. Furthermore, the characterizations
of non-Gaussianity that we have proposed requires knowledge

of only a few cumulants and hence could be applicable to
settings where cumulants can be easily calculated, but the full
distribution is difficult to access.
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