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Wigner dynamics for quantum gases under inhomogeneous gain and loss processes with dephasing
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We present a Wigner function-based approach for the particle density evolution in fermionic and bosonic
open quantum many-body systems, including the effects of dephasing. In particular, we focus on chains of
noninteracting particles coupled to Lindblad baths. The dissipative processes, described by linear and quadratic
jump operators, are modulated by inhomogeneous couplings. Following a semiclassical approach, we find the
differential equation governing the Wigner function evolution, which can be solved in closed form in some
particular cases. We check the accuracy of the Wigner approach in different scenarios (i.e., Gaussian jump
rates), describing the density evolution and the transport phenomena in terms of classical quasiparticles.
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I. INTRODUCTION

Studying the particle transport in out-of-equilibrium quan-
tum systems has always been a very attractive topic. In
this direction, methods involving the Wigner function have
achieved great success in semiclassical contexts [1,2]. The
theory, based on mapping quantum observables into phase-
space real-valued functions, reduces to the famous Boltzmann
transport equation for the Wigner quasiprobability distribution
[3–5], elegantly defined as the Weyl transform of the density
operator [6–8].

Despite the surge in interest, several scenarios still re-
main partially unexplored, such as the k-body gain and loss
processes in one-dimensional systems [9–13]. Recently, a
characteristic function approach has been developed to treat
open fermion systems [14], similarly to the phase-space
method widely used in quantum optics [15–18]. The charac-
teristic function approach is based on building a map between
the Liouville-Fock space and the Grassmann algebra. For
general quadratic Hamiltonians and linear Lindbladian oper-
ators, the quantum master equation of the density matrix is
transformed into a first-order partial differential equation for
the characteristic function, exactly solvable by standard tech-
niques. This approach represents a valid alternative to the
third quantization method [19], thanks to the rich analytic and
algebraic tools for functions in the Grassmann algebra. For
instance, the average of one-body or two-body observables
can be expressed by partial derivatives of the characteristic
function.

Particle transport in open Markovian systems has been
attracting a lot of attention [20–28]. This work got inspiration
from the hydrodynamic approach of Refs. [29–50], based on
the intriguing idea of describing the open dynamics in terms
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of classical noninteracting quasiparticles, to grasp the appar-
ent complexity of the dissipative processes. In particular, our
goal here is to put forth a hydrodynamic description of open
process in systems combining inhomoheneous gain and loss,
and dephasing.

In particular, we consider quantum chains of free spin-
less fermions coupled to Lindblad baths, whose interaction
is described by linear and quadratic jump operators, and can
describe arbitrary emission and absorption, both in position
and momentum space. In addition, we also introduce dephas-
ing, a type of reservoir which introduces noise in the system,
but without an accompanying particle current. This type of
noise is well-known in continuous measurement scenarios, in
which a quantum chain of noninteracting fermions is cou-
pled to an external monitoring apparatus detecting the local
occupation [49,51–58]. The dephasing rate coincides with
the monitoring frequency or, using the generalized hydrody-
namics approach, the annihilation rate of quasiparticle pairs
spreading ballistically with opposite momentum. In weak
measurement protocols, it has been proved that the inverse
of the monitoring rate corresponds to the characteristic time
at which the ballistic regime is replaced by a diffusive one
[49,59].

In the first part of this paper (Sec. II), we define the
Lindblad dynamics and give the equations of motion of the
two-point functions. In Sec. III, taking the hydrodynamic
limit, we derive a Wigner phase-space representation of the
dynamics of the correlation matrix which turns to be gov-
erned by a linear differential equation. In the semiclassical
limit, we show that the equation of motion admits a simple
probabilistic interpretation in terms of noninteracting clas-
sical quasiparticles. We consider first the situation without
dephasing and local potential (Sec. IV) for which the equa-
tion of motion is exactly solvable by standard techniques. We
then show in Sec. V that a constant dephasing dramatically
affects the Wigner function dynamics after a crossover time,
with a new emerging evolution reflecting the diffusive motion
of the quasiparticles through the chain. Our main findings
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TABLE I. Description of the main coefficients entering the mas-
ter equation (5).

Coefficient Interpretation

h0 Translationally invariant Hamiltonian;
Eigenvalues εp

Vxy = Vxδxy Diagonal potential
γ +

x , γ −
x Injection and extraction rate at position x

ω+
p , ω−

p Injection and extraction rate with
momentum p.

λx Dephasing at position x
ζp Dephasing with momentum p
�x = γ −

x ± γ +
x Dissipation at position x

	p = ω−
p ± ω+

p Dissipation with momentum p
n(x, p, t ) Wigner function, Eq. (12)
ρ(x, t ), ρ̃(p, t ) Densities [Eqs. (13)]
Np(t ) = ∑

x ρ(x, t )
= ∑

p∈B ρ̃(p, t ) Number of particles in the chain

are summarized in Sec. VI, where we draw some future
perspectives.

II. GENERAL FRAMEWORK

Let ρ̂ be the density operator of a quantum system whose
dynamics is generated by the Liouvillian L(ρ̂ ) of the form

d ρ̂

dt
= L(ρ̂ ) = −i[Ĥ, ρ̂] + D(ρ̂), D(ρ̂) =

∑
j

ϒ jD(L̂ j ),

(1)
where Ĥ denotes the Hamiltonian, D(ρ̂) is the dissipator, and
D(L̂ j ) is the superoperator

D(L̂ j ) = L̂ j ρ̂L̂†
j − 1

2 {L̂†
j L̂ j, ρ̂}, (2)

acting on the Linbladian operators L̂ j . The jump operators
characterize the interaction with the environment and the rates
ϒ j > 0 determine the coupling strength system-bath.

In this paper, we will consider N-site quantum chains under
periodic boundary conditions. Our main interest will be on
spinless fermions. However, the results also hold for bosons,
with minimal modifications. In what follows, we will there-
fore consider both statistics side by side. To express formulas
in compact form, every time the commutation (anticommuta-
tion) rules induce a change of sign, the one on top refers to
fermions and the one on bottom to bosons.

We consider a quadratic Hamiltonian Ĥ = Ĥ0 + V̂ , where
Ĥ0 is translationally invariant and V̂ is assumed to be diagonal
in real-space representation. In the most general case, Ĥ0 and
V̂ are not commuting observables; Ĥ0 describes the hopping
between sites (tight-binding) and V̂ plays the role of a local
potential which, for instance, may depend on experimentally
tunable parameters. The explicit form of the operators Ĥ0 and
V̂ is

Ĥ0 = ĉ†h0ĉ, V̂ = ĉ†Vĉ, ĉ =

⎛
⎜⎝ ĉ1

...

ĉN

⎞
⎟⎠, (3)

where the ĉ’s are the fermionic (bosonic) operators and
h0,V are N × N Hermitian matrices. By assumption,

FIG. 1. Open quantum dynamics: Sketch of an open fermionic
quantum system. We consider different dissipative effects. Rates γ +

x ,
γ −

x , ω+
p , and ω−

p are related to local and nonlocal fermion gain and
loss processes; λx and ζp are the dephasing rates, corresponding to
the monitoring rates of position and momentum in the formalism of
quantum trajectories.

Vxy = Vxδxy and, without loss of generality, we can suppose
(h0)xx = 0 ∀x. Therefore, the full Hamiltonian is Ĥ = ĉ†hĉ,
with h = h0 +V being the complete coefficient matrix.

By hypothesis, Ĥ0 is translationally invariant and may be
put in diagonal form with the canonical transformation,

η̂p = 1√
N

∑
x

e−ipxĉx, η̂†
p = 1√

N

∑
x

eipxĉ†
x , (4)

where the label x runs over all the chain sites; the p’s are
the so-called Fourier modes belonging to the Brillouin zone
B = {p = −π + 2π l/N : l ∈ [0, N − 1], l ∈ N}; (η̂†, η̂) are
the rising and lowering operators in momentum space.

We consider the following general form for the dissipators
in Eqs. (1), including both linear and quadratic jump opera-
tors:

D(ρ̂) =
∑

x

γ +
x D(ĉ†

x ) + γ −
x D(ĉx ) + λxD(ĉ†

x ĉx )

+
∑
p∈B

ω+
pD(η̂†

p) + ω−
pD(η̂p) + ζpD(η̂†

pη̂p). (5)

A description of each coefficient, together with its physical
interpretation, is provided in Table I. In Fig. 1, a schematic
representation of an open fermionic quantum system, with
dissipation (5). It is important to remark that all the cou-
pling constants appearing in Eq. (5) depend on the interaction
Hamiltonian and the hypothesis on the bath. Ideally, one
should always attempt to derive the dissipators and the jump
rates starting from a microscopic theory. For instance, it is
quite common to assume baths of bosons (fermions) and
linear couplings to the system. In this way, the dissipa-
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tor gives physically reasonable results and reproduces some
expected behaviors like the relaxation to a Gibbs thermal state.
However, as expected, building a microscopic theory is not
always possible and this problem is commonly avoided by
using phenomenological dissipators. In view of presenting the
most general case, we will not assume any constraint on the
jump rates, which will be considered independent quantities.

One of the possible ways to visualize intuitively the Lind-
blad dynamics (1) with the dissipator (5) coincides with the
quantum trajectory techniques [60–64]. These techniques in-
volve rewriting the master equation as a stochastic average
over individual trajectories, which evolve in time as pure
states. In particular, in the so-called jump unravelling, a
non-Hermitian effective Hamiltonian generates a nonunitary
dynamics, which is perturbed by quantum jumps randomly
appearing with characteristic rates. The jump operations act-
ing stochastically in time may involve one or more chain sites.
For instance, the Lindblad operators ĉ†

x , ĉx create and de-
stroy localized particles, while η̂

†
k , η̂k create and destroy fully

delocalized particles, as plane waves. Finally, the quadratic
Lindblad operators ĉ†

x ĉx and η̂
†
k η̂k represent the dephasing

baths, which conserve the particle number, acting on the state
like projectors.

To obtain a hydrodynamic description, we use the Wigner
function formalism to get the particle density under the
Lindblad evolution (1). This allows us to cast the hydrody-
namics in terms of noninteracting quasiparticles.

Let Cxy = 〈ĉ†
y ĉx〉 = tr(ĉ†

y ĉxρ̂ ) be the elements of the so-
called correlation matrix. From Eqs. (1), these quantities
evolve according to

d〈ĉ†
y ĉx〉

dt
= −i〈[ĉ†

y ĉx, Ĥ ]〉 + tr(ĉ†
y ĉxD(ρ̂ )). (6)

Thanks to the algebraic properties of the fermionic or bosonic
operators, the differential equation for the two-point function
takes a closed from. To see this, let us first introduce the fol-
lowing matrices γ +, γ −, λ, ω̃+, ω̃−, ζ̃ , ζ̃ (α,β ) with elements:

γ +
xy = γ +

x δxy, γ −
xy = γ −

x δxy, λxy = λxδxy, (7a)

ω̃+
xy = 1

N

∑
p∈B

eip(x−y)ω+
p , ω̃−

xy = 1

N

∑
p∈B

eip(x−y)ω−
p , (7b)

ζ̃xy = 1

N

∑
p∈B

eip(x−y)ζp, ζ̃ (α,β )
xy = ζ̃α+x,β+y. (7c)

Using the dissipator (5) with some algebraic manipula-
tions, we obtain the differential equation

dCαβ

dt
= − (WC + CW † − F − diag(λC))αβ

+ 1

N
tr(ζ̃ (α,β )C), (8)

where

W = ih + (γ − ± γ + + λ + ω̃− ± ω̃+ + ζ̃ )/2, (9)

and F = γ + + ω̃+ [65]. Equation (8) describes the exact
microscopic dynamics of the correlations. As expected, in
the absence of dephasing, Eq. (8) reduces to the Lyapunov

equation:

dC

dt
= −WC − CW † + F. (10)

In principle, the solution of Eq. (8) gives everything
necessary to extrapolate the time-evolved spatial density of
particles. The same goes for the particle occupation in Fourier
space by taking the unitary transformation:

C̃qp = 〈η̂†
pη̂q〉 = tr(η̂†

pη̂qρ̂ ) = 1

N

∑
xy

e−iqxCxyeipy. (11)

However, providing a simple physical description of the den-
sity evolution in this dissipative process is generally difficult.
For this reason, our goal is to build a one-to-one map between
the correlation matrix and a new real-valued function; hope-
fully, this will give us the insight to create a simple picture
starting from the new equation of motion. The accuracy of
such a picture will be tested by comparing the provided results
with the exact microscopic dynamics (8).

In this view, the well-known Wigner function will play a
key role in this paper; it is defined as

n(x, p, t ) := ∑
y e2ipyCx−y,x+y(t ) = ∑

k∈B e−2ixkC̃p−k,p+k (t ),

(12)

where x and p are the discrete position-momentum variables
generating the phase space [34,36,49,50]. The Wigner func-
tion is a joint quasiprobability distribution, and its marginals
coincide with the single-particle densities in real and momen-
tum space:

ρx = 〈ĉ†
x ĉx〉 = 1

N

∑
p∈B

n(x, p, t ),

ρ̃p = 〈η̂†
pη̂p〉 = 1

N

∑
x

n(x, p, t ), (13)

which follow from Kronecker delta relations δxy =
(1/N )

∑
k∈B eik(x−y) and δpq = (1/N )

∑
x eix(p−q). The

total number of particles spreading on the chain is
Np(t ) = (1/N )

∑
x

∑
p∈B n(x, p, t ), which is an extensive

quantity.
In the absence of dephasing, the Lindblad dynamics is

Gaussian preserving. In such a case, if the system is properly
prepared in a Gaussian state at time t = 0, then the Wigner
function (12) provides a complete description of the quantum
dynamics. Indeed, Gaussian states are fully characterized by
the two point functions and the Wick theorem provides any
many-particle quantity.

III. HYDRODYNAMICS

The next goal is getting the equation of motion of the
Wigner function from Eq. (8). We will proceed by evaluating
each single contribution coming from (8) for the correlation
matrix elements. According to Eqs. (1) and (12):

∂t n(x, p, t ) =
∑

y

e2ipytr{ĉ†
x+yĉx−yL(ρ̂(t ))}. (14)

Let’s start from the unitary contribution describing the dynam-
ics of closed systems. By hypothesis, the Hamiltonian Ĥ0 is
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diagonal in the Fourier space,

(h0)xy = 〈0|ĉxĤ0ĉ†
y |0〉 = 1

N

∑
p∈B

eip(x−y)εp, (15)

where |0〉 is the vacuum state and εp are the single-particle
eigenvalues of Ĥ0.

Combining relations (4) and (15) with (12):

−i
∑

y

e2ipytr{[ĉ†
x+yĉx−y, Ĥ ]ρ̂(t )} = −i

∑
k∈B

e−2ikx (εp−k − εp+k )C̃p−k,p+k (t ) − i
∑

y

e2ipy(Vx−y −Vx+y)Cx−y,x+y(t ). (16)

Proceeding similarly for the dissipative part containing linear jump operators:

∑
y

e2ipy
∑

z

tr{ĉ†
x+yĉx−y(γ +

z D[ĉ†
z ] + γ −

z D[ĉz])} = γ +
x − 1

2

∑
y

e2ipy[γ −
x−y + γ −

x+y ± (γ +
x−y + γ +

x+y)]Cx−y,x+y(t ) (17)

and

∑
y

e2ipy
∑
k∈B

tr{ĉ†
x+yĉx−y(ω+

k D[η̂†
k ] + ω−

k D[η̂k])} = ω+
p − 1

2

∑
k∈B

e−2ikx[ω−
p−k + ω−

p+k ± (ω+
p−k + ω+

p+k )]C̃p−k,p+k (t ). (18)

Concerning the dephasing, one obtains∑
y

e2ipy
∑

z

tr{ĉ†
x+yĉx−y(λzD[ĉ†

z ĉz])}

= λxCxx(t ) − 1

2

∑
y

e2ipy(λx−y + λx+y)Cx−y,x+y(t ) (19)

and

∑
y

e2ipy
∑
k∈B

tr{ĉ†
x+yĉx−y(ζkD[η̂†

k η̂k])}

= ζpC̃pp(t ) − 1

2

∑
1k∈Be−2ikx (ζp−k + ζp+k )C̃p−k,p+k (t ).

(20)

Up to now, any calculation has been exactly solved with-
out any approximation. In the following, we will go to a
continuous limit for the position-momentum variables. Since
hydrodynamics applies for mesoscopic scales, we assume the
Wigner function as well as the jump rates, εp and Vx, to
be slowly varying functions in the microscopic scale, char-
acterized by the lattice spacing and the distance d p = 2π/N
between two consecutive Fourier modes. In the thermody-
namic limit (N → ∞), position and momentum become de
facto continuous variables and the Wigner function n(x, p, t )

and all the quantities εp,Vx, γ
+
x , γ −

x , λx, ω
+
p , ω−

p , ζp smooth
analytical functions with domain in the phase space (x, p).

For analytic functions, we can expand in powers of k
and y,

gp−k + (−1) jgp+k

2
= (−1) j

∞∑
n=0

∂2n+δ j,1 gp

(2n + δ j,1)!
k2n+δ j,1 , (21a)

fx−y + (−1) j fx+y

2
= (−1) j

∞∑
n=0

∂2n+δ j,1 fx

(2n + δ j,1)!
y2n+δ j,1 , (21b)

for j ∈ {0, 1}, fx = Vx, γ
+
x , γ −

x , λx, and gp = εp, ω
+
p , ω−

p , ζp.
In this limit, the real and momentum space densities are

ρ(x, t ) = 1

2π

∫ π

−π

d pn(x, p, t ),

ρ̃(p, t ) = 1

N

∫
dx n(x, p, t ), (22)

with total number of particles

Np =
∫

dx ρ(x) = N

2π

∫ π

−π

d p ρ̃(p)

= 1

2π

∫
dx

∫ π

−π

d p n(x, p, t ). (23)

Finally, using Eqs. (21a) and (21b) in (16)–(20), one obtains

∂t n(x, p, t ) = 2(εp +Vx ) sin

(
1

2
(
←
∂ x

→
∂ p −

←
∂ p

→
∂ x )

)
n(x, p, t ) − (ω−

p ± ω+
p + ζp + γ −

x ± γ +
x + λx )

× cos

(
1

2
(
←
∂ x

→
∂ p −

←
∂ p

→
∂ x )

)
n(x, p, t ) +

∫
dx′

∫ π

−π

d p′
(

ζp′

N
δ(p − p′) + λx′

2π
δ(x − x′)

)
n(x′, p′, t ) + γ +

x + ω+
p ,

(24)
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which is a linear differential equation in n(x, p, t ). The arrows

indicate the direction of differentiation and sin( 1
2 (

←
∂ x

→
∂ p −

←
∂ p

→
∂ x )) is the well-known Moyal product [1,2,35,66]. Equa-

tion (24) describes the time evolution of the Wigner function.
By hypothesis, all the terms involved in Eq. (24) are slowly
varying functions of position and momentum. By neglecting
higher order derivatives, one gets

∂t n(x, p, t ) = {εp +Vx, n(x, p, t )}PB + γ +
x + ω+

p

− (	p + ζp + �x + λx )n(x, p, t )

+ ζpρ̃(p, t ) + λxρ(x, t ), (25)

where 	p = ω−
p ± ω+

p , �x = γ −
x ± γ +

x and

{F ,G}PB = ∂xF ∂pG− ∂pF ∂xG, ∀F ,G (26)

indicates the Poisson bracket, describing the closed dynamics
at the lower order in the ∂x, ∂p derivatives [2,8,35,66,67].
For a recap of the meaning of each parameter, see
Table I.

Equation (25) is our main result. It provides a compact
partial differential equation for the Wigner function, describ-
ing inhomogeneous gain and loss terms, in both position and
momentum space, as well as dephasing. Observe the presence
of nonlocal terms in Eq. (25), making it difficult to find the
full analytical solution. Unlike the case for isolated systems,
the external environment introduces terms of zero order in the
∂x, ∂p derivatives.

Regarding the range of applicability of the truncation of
higher order derivatives, Eq. (24) suggests that the approxima-
tion is more inefficient for open systems. Indeed, in absence
of external baths, the Wigner dynamics may be studied by the
classical evolution plus quantum corrections at the third order
in the partial derivatives. On the other hand, Eq. (25) neglects
contributions of the second order in the partial derivatives,
involving jump rates. As a consequence of this, the reason-
ableness of the truncation operation needs to be evaluated
more carefully, case by case.

Equation (25) can be described as a stochastic average
over individual trajectories of classical particles. In the same
spirit of the generalized hydrodynamic description (GHD),
weakly-entangled but highly excited initial states behave like
a reservoir of classical non-interacting quasi-particles. For
closed systems, at t > 0 the particle dynamics is governed
by Newton’s laws and the total number of particles is a con-
stant of motion ([Ĥ, N̂p] = 0). For instance, in the absence of
local potentials, the particles spread ballistically with group
velocity vp = ∂pεp. A nonzero local potential breaks the mo-
mentum conservation and any excitation in the phase-space
point (x0, p0) at time t0 moves to (x0 + vp0 dt, p0 + Fx0 dt ) at
time t0 + dt , with Fx = −∂xVx.

In the interest of clarity, we will discuss the effects of
the dissipators one by one, starting from the single-particle
gain and loss processes and concluding with the dephasing.
The linear jump operators affect the Winger evolution in two
different ways. The first important difference compared to
the closed dynamics regards the particle lifetime. According
to the hydrodynamic equation (25), the classical particles
crossing the phase-space point (x, p) are destroyed with local

frequency α(x,p) = �x + 	p. The other consequence derives
from the source term γ +

x + ω+
p , being the creation rate of new

excitations in the phase space: γ +
x dt represents the probability

in every interval dt of injecting quasiparticles at position x and
random momentum p uniformly distributed in the Brillouin
zone; ω+

p dt is the probability of creating quasiparticles with
momentum p and random site x uniformly distributed along
the chain. One fundamental aspect of the open dynamics
emerges: The presence of only linear jump operators cannot
change the transport features. The motion of each classical
particle is still governed by Newton’s laws and the dissipators
only add or remove excitations in the phase space. The possi-
ble addition of dephasing terms changes that, and makes the
dynamics much more interesting. The particle lifetime further
reduces, with destroying frequency α′

(x,p) = α(x,p) + λx + ζp.
However, there are also the last two nonlocal terms λxρ(x, t )
and ζpρ̃(p, t ) in Eq. (25). For each quasiparticle crossing
the site x, a new excitation is created with frequency λx, at
position x and random momentum p uniformly distributed
in the Brillouin zone. Finally, for each quasiparticle with
momentum p, a new excitation is created with frequency ζp,
momentum p, and random site x uniformly distributed in
(0, N ). Quadratic jump operators strongly affect the transport
features: the pure and homogenous dephasing case (λx =
λ) is explicative from this point of view, where the single-
particle density ρ(x, t ) satisfies a Fokker-Planck differential
equation

∂tρ(x, t ) = D

2
∂xx ρ(x, t ) (27)

with diffusive coefficient D = λ−1, in the large λ limit [49,59].
The quasiparticle approach for open systems represents

the second main result of this paper. In the next sec-
tions, we will test the picture in some concrete examples,
where the quasiparticle motion clearly emerges in the
phase-space.

IV. WIGNER DYNAMICS WITHOUT DEPHASING

To gain some intuition on the physics of the problem,
we first focus on the Wigner function evolution (25) with-
out local potentials (Vx = 0) and dephasing (ζp = λx = 0).
This choice is motivated by the huge interest in the trans-
port regimes of boundary-driven spin chains, where the
fermionic jump operators determine the exchange of exci-
tations with the external environment. On the other hand,
in quantum optics, inhomogenous single-particle gain-loss
processes may be engineered by experimentalists. For in-
stance, coherent bosonic dynamics may be perturbed by
electronic beams to remove atoms from selected sites [68],
while local excitations may be created by the Raman pumping
process [69].

Under these assumptions, Eq. (25) reduces to

∂t n(x, p, t ) = − vp∂xn(x, p, t ) + γ +
x + ω+

p

− (	p + �x )n(x, p, t ), (28)
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with analytical solution

n(x, p, t ) = exp −	pt −
∫ t

0
dt1 �(x − t1vp)n(x − tvp, p, 0) +

∫ t

0
dt1γ

+(x − t1vp) exp −	pt1 −
∫ t1

0
dt2�(x − t2vp)

+ ω+
p

∫ t

0
dt1 exp −	pt1 −

∫ t1

0
dt2�(x − t2vp), (29)

where n(x, p, 0) is the local density at time t = 0, which is
assumed to be known by hypothesis. We now illustrate this
within specific examples.

A. Jump operators creating (destroying) delocalized particles

Let us suppose γ +
x = γ −

x = 0, so particles can be injected
(ejected) only as plane waves (with rates ω+

p and ω−
p ). The

evolution of the Wigner function is given by

∂t n(x, p, t ) = −vp∂xn(x, p, t ) − 	pn(x, p, t ) + ω+
p , (30)

with explicit solution

n(x, p, t ) =
⎧⎨
⎩e−	pt

(
n(x − tvp, p, 0) − ω+

p

	p

)
+ ω+

p

	p

n(x − tvp, p, 0) + ω+
p t 	p = 0.

(31)

For bosons, 	p = ω−
p − ω+

p and, for the system to be stable,
we must have ω−

p > ω+
p . For fermions, 	p = ω+

p + ω−
p � 0

and no such restriction applies. According to Eq. (31), the
system exponentially reaches a steady state for 	p > 0. In the
long-time limit, the filling factor is

κ∞ := lim
t→∞

Np(t )

N
= 1

2π

∫ π

−π

d p
ω+

p

	p
. (32)

If there are no emissions in a fermion system, ω+
p �= 0, ω−

p =
0, and the filling factor goes to 1. This is an example of trivial
evolution where the system starts absorbing particles until all
sites are full and the Pauli principle freezes the dynamics. On
the other hand, if ω+

p = 0 and ω−
p �= 0, the Wigner function

goes exponentially to zero and the system reaches the vacuum
steady state. Another interesting case is ω+

p = ω−
p �= 0, where

the system tends to a maximally mixed state with particle
number Np = N/2, which is the condition of half filling.

Finally, if ω+
p = ω+, ω−

p = ω− are p independent, then
κ∞ = χ/(1 ± χ ), where χ = ω+/ω− is the ratio between
the absorption and emission rates. For bosonic systems, the
asymptotic filling factor is defined only for χ ∈ [0, 1), which
is the condition for the dynamical equilibrium.

B. Jump operators creating (destroying) localized particles

Next we discuss local gain and losses in real space (ω+
p =

ω−
p = 0). The differential equation (28) reduces to

∂t n(x, p, t ) = −vp∂xn(x, p, t ) − �xn(x, p, t ) + γ +
x , (33)

with analytical solution

n(x, p, t ) = exp −
∫ t

0
dt1 �(x − t1vp)n(x − tvp, p, 0)

+
∫ t

0
dt1γ

+(x − t1vp) exp −
∫ t1

0
dt2�(x − t2vp).

(34)

Observe that, for all the examples collected here, we will
take H0 to be a tight-binding Hamiltonian with nearest neigh-
bors only; viz., (h0)i j = −(δi, j+1 + δi, j−1)/2, which leads to
single-particle eigenvalues εp = − cos(p) and group velocity
vp = ∂pεp = sin(p).

In Fig. 2, we consider the dynamics for hopping fermions
and emission (absorption) processes modulated by

γ α
x = Aα√

2πσx,α

exp − (x − xα )2

2σ 2
x,α

, α = +,−, (35)

where Aα, σx,α, xα play the role of three experimental parame-
ters. In particular, Aα is related to the coupling amplitude, the
standard deviation σx,α introduces a dispersion along the real
axis, and, finally, xα defines the peak position. We prepare the
initial state:

n(x, p, 0) = �(N/2 + δ − x) − �(N/2 − δ − x). (36)

For the particular choice of parameters in Figure 2, one can
intuitively expect a net flux of particles on the right-hand
side (RHS) of the chain. In Fig. 2 (a), we plot the density
ρ(x, t ) as a function of the position x at time t , comparing
the analytical result (34) with the solution of the Lyapunov
equation (10).

Once the dynamics starts, the dissipator will begin to
eject particles from the double domain wall, which is
melting inside the light cones |x − N/2 − δ| < t and |x −
N/2 + δ| < t . The particle lifetime tlife is a random vari-
able following the exponential distribution P(tlife; x0, p0) =
Z exp − ∫ tlife

0 ds �(x0 + v(p0)s), where Z is a normalization
constant and x0, p0 are the initial quasiparticle posi-
tion and momentum. In this scenario, the average lifetime
t̄life(x0, p0) = ∫ ∞

0 tP(t ; x0, p0)dt is not the same for any ex-
citation. At the same time, the source term γ +

x is perturbing
the dynamics, with the net result of creating new excitations
on the RHS of the chain. Let t+ be the waiting time between
two consecutive events of particle creation at position x: t+
is a stochastic variable following the exponential distribu-
tion Q(t+; x) = γ +

x e−t+γ +
x . On average, a new quasiparticle is

created at position x after any time interval (γ +
x )−1. As a con-

sequence of the particular jump frequency profiles, the particle
density becomes more and more asymmetric over time. In
fact, only a few residual particles with negative velocity are
able to cross the chain section dominated by the dissipation
rate �x and spread ballistically to the left-hand side (LHS).
In Fig. 2(b), we can appreciate the full Wigner function
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FIG. 2. Density time evolution—gain and loss processes: 200-
site chain of hopping fermions with Gaussian-like jump rates (35).
Here we set A+ = 2.0, σx,+ = 8.0, x+ = 140.0, A− = 6.0, σx,− =
16.0, x− = 100.0. We prepare the system in the Wigner function (36)
with δ = 10. (a) Time evolution of the density ρ(x, t ); the red spots
and the black dashed line refer to the microscopic dynamics (10)
and the hydrodynamic approach (34), respectively. As expected, this
particular choice of parameter generates a net flux of fermions on
the RHS of the chain. In the inset, we compare the Lyapunov solu-
tion with the classical quasiparticle ansatz (blue line) by generating
stochastic trajectories according to the protocol of Sec. III. (b) Full
evolution of the phase-space Wigner function.

evolution, both determined by the dispersion law εp =
− cos(p) and the jump rates (35).

In Fig. 3(a), we pictorially show the density evolution
for a domain-wall initial configuration n(x, p, t ) = �(−x).
This choice was motivated by the large interest in out-of-
equilibrium physics, where such a setup may be prepared with
the help of confining potentials. After quenching the state,
the transport and the spread of correlations have been studied

FIG. 3. Density evolution—piecewise function γ −
x : (a) Illustra-

tion of the domain-wall setting. At t = 0, the system is entirely
filled on the LHS and empty on RHS; the fermionic density is
ρ(x) = �(−x) and the dissipative process is modulated by the jump
frequency (38). At t > 0 the domain wall melts inside the light cone
region |x| � t and the system develops a nonhomogeneous density
profile given by Eq. (37). (b) Number of particles in [0,∞] for
x0 = l/2 = 10. The dashed black line and the colored spots refer
to the microscopic dynamics (10) and the quasiparticle ansatz (39),
respectively. In the inset, the coefficient (40) for l = 20.

under unitary dynamics [34,39,48]. In Fig. 3(a), we assume
an open dynamics with single-particle loss process (γ +

x = 0).
Equation (33) reduces to

∂t n(x, p, t ) = −vp∂xn(x, p, t ) − γ −
x n(x, p, t ). (37)

We consider the annihilation rate

γ −
x = γ −(�(x0 + l/2 − x) − �(x0 − l/2 − x)), (38)

where l is the length of the subsystem with nonzero rate γ −
x

and x0 = l/2. After the initial preparation, the particles start
flowing toward the empty sites on the RHS of the chain.
The physical picture is very simple: any particle in [0, l] is
destroyed with rate γ −. The larger the annihilation rate γ −,
the higher the probability to destroy classical excitations in the
phase space. We can use Eq. (34) to compute Np([0,∞], t ),
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the number of particles in [0,∞] at time t or, equivalently,
the total number of excitations in [0,∞] with positive group

velocity and survived up to time t . After some algebraic
manipulations, we find

Np([0,∞], t ) =�(l − t )
1

πγ − (1 − e−γ −t ) + �(t − l )
1

πγ −

×
[

1 − e−γ −t

(
1 −

√
1 −

(
l

t

)2)
−

∫ π/2

arcsin(l/t )
d p (sin(p) + lγ −)e− γ− l

sin(p) + γ −t
∫ π/2

arcsin(l/t )
d p sin(p)e− γ− l

sin(p)

]
.

(39)

This is shown in Fig. 3(b). For large times (t/l � 1), the
number of particles Np([0,∞], t ) grows linearly in time, with
proportionality constant

m(γ −l ) = 1

π

∫ π/2

0
d p sin(p)e− γ− l

sin(p) . (40)

If γ −l 
 1, then exp − γ −l
sin(p) � 1 for p ∈ (0, π/2). In such a

case, m � 1/π . In the opposite limit γ −l � 1, exp − γ −l
sin(p) �

0 and m � 0. The inset of Fig. 3(b) shows the coefficient of
the linear growth for l = 20, going quickly to zero for large
γ −. Observe that, for unitary evolution, m(0) = 1/π .

C. Transport phenomena

To connect the previous analysis with transport features,
we will consider one single localized particle with Wigner
function n(x, p, 0) = δ(x). After quenching the state, we eval-

uate the average displacement d (t ) =
√

〈x2〉 − 〈x〉2, which
measures the deviation of the particle position with respect
to the origin over time. As is well-known, for closed systems
the ballistic regime dominates the dynamics and d (t ) ∝ t .
Here we would like to explore the transport for open systems,
where the linear jump operators affect the particle-number
conservation. In the following, the dynamics verifies Eq. (37)
with vp = sin(p) and γ +

x = 0 to avoid particle injection. We
also consider symmetric jump rates γ −

x with respect to x = 0,
so 〈x〉 = 0 and

d (t ) =
[ ∫ +∞

−∞
dx x2ρ(x, t )

]1/2

. (41)

Solving the dynamics,

ρ(x, t ) = 1

πt

e−t
∫ 1

0 ds γ −(x−xs)√
1 − (x/t )2

(�(t − x) − �(−t − x)). (42)

Suppose γ −
x is given by Eq. (38), with x0 = 0. In such a case,

d (t ) = t√
2

e−γ −t/2�

(
l

2
− t

)
+

√
2

π
t

[ ∫ 1

l
2t

dy
y2√

1 − y2
e−γ −l/2y + 1

2
e−γ −t

(
arcsin

(
l

2t

)
− l

2t

√
1 −

(
l

2t

)2)]1/2

�

(
t − l

2

)
.

(43)

Observe that d (t ) = t/
√

2 for γ −
x = 0, as expected. In the

long-time limit (t/l � 1), d (t ) � m̃(γ −l )t , with

m̃(γ −l ) =
√

2

π

[ ∫ 1

0
dy

y2√
1 − y2

e−γ −l/2y

]1/2

. (44)

In the quasiparticle picture, the transport is still ballistic but
the average displacement cannot be linear in time anymore,
since the dissipator may destroy the excitation in the interval
(−l/2, l/2). As expected, there is a crossover at t = l/2,
coinciding with the distance covered by the particle with
maximum velocity after the quench. In the long-time limit,
the average displacement is linear again. As before, we distin-
guish two asymptotic cases. For γ −l 
 1, exp −γ −l/2y � 1
and m̃ � 1/

√
2; for γ −l � 1, exp −γ −l/2y � 0 and m̃ � 0.

V. WIGNER DYNAMICS WITH DEPHASING

In this section, we include a constant dephasing in
the Wigner function dynamics, characterizing continuous

measurement processes, where the system undergoes in-
finitely weak and frequent interactions with ancillas [70].

Even if the pure dephasing dynamics has been abun-
dantly explored, it is much less explicit how the combination
of dephasing and gain (loss) processes affects the Wigner
evolution.

A. Homogeneous dephasing and losses in real space

For instance, we can imagine a one-dimensional system of
hopping fermions [group velocity vp = sin(p)], under homo-
geneous dephasing and real-space losses only (λx = λ, γ +

x =
0, ω+

p = ω−
p = ζp = 0). In particular, we assume a single-

particle loss frequency γ −
x given by Eq. (38), with x0 = N/2.

Under these hypothesis, the Wigner function satisfies

∂t n(x, p, t ) = − vp∂xn(x, p, t ) − (λ + γ −
x )n(x, p, t )

+ λρ(x, t ). (45)
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FIG. 4. Density time evolution—dephasing and loss processes:
200-site chain of hopping fermions under homogeneous monitoring
and local loss processes (38), x0 = 100, l = 40, γ − = 0.1. We pre-
pare the system in the Wigner function (46) at time t = 0. Here we
show the density time evolution for different values of parameter
λ. The red spots and the black dashed lines refer to the numerical
solution of the matrix differential equation (8) and the hydrodynamic
equation (45), respectively.

We prepare the system in the Wigner function

n(x, p, 0) =
{

1 |x − N/2| < l/2 ∧ |p| < π/2

0 |x − N/2| � l/2 ∨ |p| � π/2
(46)

and we study its time evolution.
In Figs. 4 and 5, we show the density and the full Wigner

function dynamics for several values of λ. An animation of the
same process can be found in the Supplemental Material [71].
In the large λ limit, the Zeno regime freezes the dynamics and
the system exponentially converges to the vacuum state. As
the crossover time λ−1 between the ballistic and the diffusive
regime increases, more and more particles may escape from
the chain region with γ −

x �= 0. In the limit λ → 0, the motion
is purely ballistic and the number of destroyed particles is
minimum.

In Fig. 6, we also show the current J (x, t ) =∫ π

−π

d p
2π

vpn(x, p, t ) at fixed time t and measurement rate
λ. It satisfies

∂tρ(x, t ) + ∂xJ (x, t ) + γ −
x ρ(x, t ) = 0. (47)

As expected, the loss processes break the continuity equa-
tion. Integrating Eq. (47) with the boundary condition

J (N, t )
N→∞−−−→ 0, we find

J (x, t ) = ∂t Np([x, N], t ) +
∫ ∞

x
dy γ −

y ρ(y, t ), (48)

FIG. 5. Wigner function time evolution—dephasing and loss
processes: 200-site chain of hopping fermions under homogeneous
monitoring and local loss processes (38), x0 = 100, l = 40, γ − =
0.1. We prepare the system in the Wigner function (46) at time t = 0.
In this figure, we show the full Wigner function time evolution for
different values of parameter λ.

where Np([x, N], t ) is the particle number in [x, N] at time t .
In Fig. 7(a), we plot the total number of particles Np(t ; γ −, λ)
for different values of the parameter λ. Np(t ; γ −, λ) is a mono-
tonically decreasing function of λ for fixed values of (t, γ −).
In the absence of dephasing (λ = 0),

Np(t ; γ −, 0)

= �(l − t )

[
N0

p e−γ −t − t

π
e−γ −t + 1

πγ − (1 − e−γ −t )

]

+ �(t − l )
1

πγ −

[
1 + lγ − arcsin

(
l

t

)
e−γ −t

− e−γ −t (1 + γ −t )

(
1 −

√
1 −

(
l

t

)2)

−
∫ π/2

arcsin(l/t )
d p sin(p)e− γ− l

sin(p)

]
, (49)

where N0
p = l/2 is the initial number of particles, according

to the half-filling condition (46). If t → ∞, the number of
residual particles goes to m(γ −l )/γ −, approaching 1/πγ −
for γ −l 
 1. In Fig. 7(b), we show |xp − N/2| as a function of
time, where xp corresponds to the peak positions of the wave
front of the density. As for the average displacement, we nu-
merically find the initial linear regime and the t1/2 behavior for
λt � 1. Observe that the position of the peaks (colored spots)
in Fig. 7(b) is obtained by the microscopic dynamics. The
higher order terms, which have been neglected after truncating
Eq. (24), are the reason behind the not complete monotonicity
of the function |xp − N/2|. Indeed, this behavior cannot be
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FIG. 6. Current time evolution—dephasing and loss processes:
200-site chain of hopping fermions under homogeneous monitoring
and local loss processes (38), x0 = 100, l = 40, γ − = 0.1. We pre-
pare the system in the Wigner function (46) at time t = 0. Here we
show the current time evolution for different values of the parameter
λ. The blue spots represent the particle current from the numerical
solution of the matrix differential equation (8). The black dashed
lines refer to the hydrodynamic approach.

captured by Eq. (45). The purpose of Fig. 7(b) was to show
a general tendency of the peaks to slow down for increasing
dephasing constants, approaching the diffusive regime (27) in
the long-time limit.

FIG. 7. Total number of particle and peak motions—dephasing
and loss processes: 200-site chain of hopping fermions under homo-
geneous monitoring and local loss processes (38), x0 = 100, l = 40,
γ − = 0.1. We prepare the system in the Wigner function (46) at time
t = 0. (a) Total number of particles as function of time for different
values of the parameter λ. The spots represent the data collected by
solving Eq. (8). The black dashed line refer to the hydrodynamic
prediction (49). (b) Displacement of the density peaks as function of
time. We extrapolate the linear growth and the square root behavior.

FIG. 8. Density time evolution—dephasing and loss processes:
200-site chain of hopping fermions under homogeneous monitoring
and local loss processes (50), l = 40, ω− = 0.1. We prepare the
system in the Wigner function (46) at time t = 0. Here we show
the density time evolution for different values of the parameter ζ .
The colored spots and the black dashed lines refer to the numerical
solution of the matrix differential equation (8) and the hydrodynamic
approach (51), respectively.

B. Homogeneous dephasing and losses in momentum space

In Fig. 8, we consider a chain of hopping fermions [group
velocity vp = sin(p)], under homogeneous dephasing and
momentum-space losses only (ζp = ζ , ω+

p = 0, γ −
x = γ +

x =
λx = 0). The particle exchange is modulated by the jump
frequency

ω−
p = ω−

(
�

(
π

2
− p

)
− �

(
− π

2
− p

))
, (50)

which selects the channels for the particle emission. Fur-
thermore, the system is coupled to a monitoring apparatus
which continuously and homogeneously measures the particle
momentum. In this scenario, the Cauchy problem we want to
solve is

∂t n(x, p, t ) = − vp∂xn(x, p, t ) − (ζ + ω−
p )n(x, p, t )

+ ζ ρ̃(p, t ), (51)

with the initial Wigner function (46). In Fig. 8, we show the
particle density evolution for different values of the mon-
itoring rate ζ . As the dynamics preserves the momentum
conservation, the system exponentially converges to the vac-
uum state for any measurement rate. However, the larger
parameter ζ , the greater the number of delocalized particles
per unit of time.
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VI. DISCUSSION AND CONCLUSION

In this paper, we derived the hydrodynamics of quantum
gas of noninteracting particles coupled to external environ-
ments, including both linear and quadratic Lindblad operators.
In particular, we found the partial differential equation for the
Wigner function evolution under inhomogeneous jump rates.
We described the dynamics in terms of classical quasiparticle
motion: The gain and loss processes make the quasiparti-
cles time of flight finite while the homogeneous dephasing
affects the transport features, with a crossover from the
ballistic to diffusive regime. Through several examples, we
showed how the Wigner dynamics perfectly captures all fea-
tures of the full Lyapunov equation. Moreover, in several
particular cases we have been able to provide analytical
solutions, giving unique insights into the dynamics. Those
results are clearly significant for transport phenomena in open

systems, i.e., boundary-driven quantum chains [21], offering
interesting perspectives to the understanding of the full count-
ing statistics [72–74] and the waiting time distributions [21].
Finally, we studied the combined effects of constant dephas-
ing and particle loss process. In this context, a natural working
direction for the future would be to analyze the effects of a
inhomogeneous monitoring rate, as for real experimental lay-
outs, where more interesting transport features may emerge.
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