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We investigate a quantum thermometry scheme-based collision model with Gaussian systems. A key open
question of these schemes concerns the scaling of the quantum Fisher information (QFI) with the number of
ancillas. In qubit-based implementations this question is difficult to assess, due to the exponentially growing size
of the Hilbert space. Here we focus on Gaussian collision models, which allow for the scaling of the QFI to be
evaluated for arbitrarily large sizes. This numerical flexibility enables us to explore the thermometric properties
of the model for a wide range of configurations. Despite the infinite Markov order of the stochastic process of the
model, we provide a simple phenomenological analysis for the behavior of the QFI, estimating the asymptotic
Fisher information density and how the transient effects of correlations for an increasing number of ancillas
depend on the physical parameters of the model.
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I. INTRODUCTION

The development of quantum technologies crucially de-
pends on the precise control of quantum systems. The ability
to extract information from them is necessary in order to
perform practical tasks in several modern applications and
quantum technologies [1–4], with information theoretic ap-
proaches and continuous variable platforms being some of
the prime examples [5–8]. In that regard, quantum metrology
emerges as the area of physics which employs and studies
quantum systems as information probes [9,10].

In a typical metrological setup, a quantum system is de-
scribed by some parameter of interest. This parameter might
be, for instance, the temperature of a condensate [11,12],
a phase [13], or an external driving based on the electro-
magnetic field [14]. In this sense, the relevant quantity in
thermometry is the temperature of a bath coupled to a physical
system. Equilibrium thermometry, where ancillas are let to
fully thermalize with the system, is the standard template of
such a scheme. In this design, the maximum achievable pre-
cision for unbiased estimators of the temperature is bounded
below by the thermal Cramér-Rao thermal bound [15].

A natural question which follows is whether it is be possi-
ble to surpass such a limitation. In recent years, many works
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have tackled implementations of nonequilibrium thermome-
try. The protocol known as collisional quantum thermometry
came up as such an application, first appearing in [16], with
further studies following thereafter [17–20]. It was shown
both that (1) the nonequilibrium state of the probes resulted
in enhanced thermal sensitivity, surpassing the thermal CRB,
and that (2) collective measurement of the ancillas could result
in quantum advantages, surpassing the standard quantum limit
(SQL) [13].

Meanwhile, an equally important venue of research is
the nonasymptotic performance of metrological processes.
Just beating the SQL by itself does not provide a complete
picture—or optimization—of an experiment [21,22]. In that
regard, much work has been done on how to efficiently per-
form parameter estimation on quantum systems in the limit
of few measurements [23–25]. This is often closely tied with
both Bayesian statistics [26] and the study stochastic pro-
cesses in more generality [27]. In particular, a recent study
[28] has brought into light a few important aspects of correla-
tions in stochastic processes of finite Markov order and how
they impact estimation protocols.

Our objective in this paper is to further extend the colli-
sional thermometry scheme to a model of Gaussian systems.
However, rather than focusing on optimizing the protocol in
typical settings, we concentrate instead on a few different
aspects more related to how the correlations behave in this
model and the transient aspects of the QFI in the spirit of
Ref. [28]. The reader interested in the former can encounter
enlightening results in a recent work [29]. With that in mind,
we focus on a few scenarios where one introduces beam-
splitter and two-mode squeezing interactions between bosonic
ancillas and a system, investigating a few figures of merit as
these parameters are tuned.

One of our motivations for this choice of toy model lies in
the fact that continuous variables, and oftentimes the subset
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of Gaussian systems and Gaussian operations, are the the
natural description for several different physical platforms
[30–38]. On top of that, the extensive experimental expertise
in the quantum physics community makes them an important
object of study for quantum parameter estimation. Their use
and quantum advantages provided therein have since long
been of interest in many other subfields, such as quantum
optics [39–45], and their use is naturally also very prevalent
in quantum metrology as well [42,46–48]. Similarly, specific
implementations of thermometric protocols using continuous
variables have recently gained traction [29,41,45,49–56], and
familiar results have been extended to these cases. Finally, on
the practical side of things, a Gaussian system with N modes
is fully described by a 2N × 2N covariance matrix and a 2N-
dimensional vector of averages. This is in sharp contrast with
qubit-based systems, where one obtains a exponential scal-
ing with system size. Thus, besides the physical motivation,
Gaussian systems are possibly the simplest choice allowing
feasible calculations even for large system sizes. With this
study we hope to supplement many of those aforementioned
investigations, further expanding the developments of quan-
tum thermometry into the domain of bosonic systems, while
at the same time shedding some light on the more detailed role
of correlations in such processes.

The paper is divided as follows: in Sec. II we provide an
overview of the collisional model using the Gaussian formal-
ism. Section III follows with a recapitulation of two important
results and Gaussian metrology, where, in addition to that, we
provide an efficient way of numerically computing the QFI in
Sec. III C. An analysis of the results is given in Sec. IV, with
Sec. V concluding this paper.

II. COLLISIONAL MODEL

Collisional models consist in a scheme of repeated inter-
actions between a system and identically prepared ancillas.
They initially appeared as a convenient tool to study open
quantum system dynamics and, later, have also been shown
to be useful for many other applications, such as quantum
thermodynamics and quantum information [57–63]. See also
Ref. [64] for a review which provides a recent and pedagogical
introduction to the topic.

In the collisional thermometry scheme, which is a general-
ization of standard probe-based thermometry [15], a system
S is let to interact with an environment E and a trail of
independent and identically prepared (i.i.d.) ancillas An. As
depicted in Fig 1, the system is placed between a thermal bath
at temperature T , the environment, and one of the ancillas
An. The interactions happen as follows: the system S first
undergoes a dissipative evolution through its interaction with
E for a time τSE , acquiring a temperature dependence on its
state. Afterward, the interaction is turned off and the system
interacts solely with the ancilla An for time τSA, in a unitary
fashion. These alternating interactions are then repeated for
the subsequent ancillas. This models a trail of ancillas that
are used to probe the temperature of a thermal bath. We
consider both the ancillas and the intermediate system to be
bosonic modes, similarly as has been done in [61] for the
study of non-Markovianity. In other words, our model can be

E(σ)E(σ)

E

S

Un(σ)

An+1 An An−1

......

FIG. 1. Depiction of the collisional thermometry scheme, based
on bosonic systems. The Gaussian nature of the problem allows
us to describe all the components in the model with a covariance
matrices σ . The interaction between the intermediate system S and
the environment E, and the system and the ancillas An are given by
the dissipative and unitary maps E(σ ) andUn, respectively.

seen as a continuous variable implementation of the original
proposal [16].

We restrict ourselves to the scenario where all of the ancil-
las are prepared in the same state ρ0

A. If ρ0
S is the initial state

of the in-between system, then the density matrix of the full
system is given initially by

ρ0 = ρ0
S ⊗ ρ0

A ⊗ ρ0
A ⊗ · · · ⊗ ρ0

A. (1)

To simplify our analysis, we further constrain our model to
Gaussian states. A Gaussian state of a bosonic system is
completely determined by its first and second moments and
thus has only a few degrees of freedom. These are the vector of
means and the covariance matrix σ . The dynamics considered
in this work are such that the mean is constant, and we thus
set it to 0 at all times without loss of generality. Meanwhile,
the covariance matrix is defined as

σi j := 1
2 〈r̂i, r̂ j〉, (2)

where one defines r̂ := (x̂S, p̂S, x̂A1 , p̂A1 , . . . , x̂AN , p̂AN ) as the
vector of canonical operators. Here the indices S and Ai in-
dicate that the operator acts on the subspace of the system
and the ith ancilla, respectively. Meanwhile the position and
momentum operators are defined in terms of the creation
(annihilation) operator a (a†) as x̂ := (a† + a)/

√
2 and p̂ :=

i(a† − a)/
√

2. The vector r̂ also satisfies the commutation
relation [r̂i, r̂ j] = i�i j , where � = ⊕

i ( 0 1
−1 0) is the sym-

plectic form [34].
For a product state, the covariance matrix is conveniently

expressed as the direct sum of the covariance matrix of each
component mode [65]. The covariance matrix of the initial
state (1) is thus

σ 0 = σ 0
S ⊕ σ 0

A ⊕ σ 0
A ⊕ · · · ⊕ σ 0

A . (3)
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We begin by describing the unitary part of the evolution,
which we denote as the system-ancilla (SA) interaction. The
unitary interaction of the system between the ith ancilla and
the system is given by a combination of a beam-splitter (BS)

Ĥ i
BS = ig(a†bi − ab†

i ) (4)

and a two-mode squeezing (TMS) operation

Ĥ i
T MS = ih(a†b†

i − abi ). (5)

This results in the total Hamiltonian Ĥ i = Ĥ i
BS + Ĥ i

T MS . Here
a and bi denote the annihilation operator for the system mode
and the ith ancilla, respectively.

At the level of the covariance matrix, the map associated
with the interaction above is

σSAi �→ Ui(σSAi ) = SiσSAi S
T
i , (6)

where σSAi denotes the joint CM of the system and the ith
ancilla, Si = e�HiτSA is the symplectic evolution operator, and
Hi is the block matrix [35]

H =
(

0 HSA

HSA 0

)
, (7)

with

HSA =
(

g + h 0
0 g − h

)
. (8)

Meanwhile, the system-environment (SE) interaction is an
open system dynamics, described through a standard quantum
master equation for the reduced density matrix of S,

dρS

dt
= γ (n̄ + 1)Dρ[a] + γ n̄Dρ[a†], (9)

where Dρ[L] := LρL† − 1
2 {ρ, L†L} is the dissipator and γ

is the coupling strength between the system and the bath.
The action of this map alone drives the system to a thermal
state σth := (n̄ + 1/2)1 in the long-time limit. This thermal
evolution maps Gaussian states into Gaussian states and can
be written in terms of the covariance matrix as [30]

σS �→ XσSX T + Y, (10)

where σS is the reduced covariance matrix of the system,

X = exp
(
−γ τSE

2

)
1 (11)

and

Y = (n̄ + 1/2)(1 − e−γ τSE )1. (12)

The map in Eq. (10) provides the evolution associated with
the master equation (9) in terms of the CM [66].

We are interested in the composite application of the uni-
tary and dissipative evolutions. This propels us to define a
stroboscopic map [67]:

�(σ N−1) := σ N = UN [E(σ N−1)], (13)

where σ n denotes the full covariance matrix after N full steps
of the collisional model.

We will perform our analysis based on the steady state σ ∗
S

of the system associated with the map above. To do so, we

first introduce the Gaussian partial trace (over a covariance
matrix). This operation is defined as

GTrA

(
σS σSA

σ T
SA σA

)
:= σS, (14)

given the subsystems A and S and their correlation block σSA

[35]. Now, note that the evolution of the in-between system in
one time step is always given by

σS �→ GTrA
{
S
[(

XσSX T + Y
) ⊕ σ 0

A

]
ST

}
. (15)

This is a consequence of the fact that the system always
interacts with a fresh ancilla from the chain, in the initial state
σ 0

A . The steady state σ ∗
S of the system is obtained as the fixed

point of this matrix evolution equation:

σ ∗
S = GTrA

{
S
[(

Xσ ∗
S X T + Y

) ⊕ σ 0
A

]
ST

}
. (16)

The system is now allowed to evolve with N steps of the
collisional model. After this, the collective state of the system
+ ancilla is given by

σ N = UN ◦ E ◦ · · · ◦U1 ◦ E σ ∗
0 , (17)

with

σ ∗
0 := σ ∗

S ⊕ σ 0
A ⊕ σ 0

A ⊕ · · · ⊕ σ 0
A . (18)

Here we have just replaced the (unimportant) initial state of
the system with its steady state σ ∗

S from Eq. (17). The final
state of the N ancillas, denoted �N , is obtained by performing
the partial trace over the degree of freedom of the system:

�N = GTrS[σ N ]. (19)

This state contains information about the temperature of the
bath. The correlations between ancillas are governed by the
unitary contributions from Eqs. (4) and (5) and the choice of
initial state.

III. METROLOGY FOR GAUSSIAN SYSTEMS

A. Quantum parameter estimation

In this subsection we briefly review the general theory
for quantum parameter estimation. The typical protocol is
illustrated in Fig. 2. To begin, one prepares a probe in an
arbitrary initial state ρ0. The probe is nothing but a physical
system used to encode a parameter of interest θ . Afterwards,
it undergoes a dynamical process, embedding the parameter
into the final state. In our particular case this corresponds to
the open evolution in Eq. (9), which imprints the temperature
dependence into the state of the system. Subsequently, the
probe undergoes a measurement process where the exper-
imental outcomes are obtained. Finally one employs these
measurement results to estimate the parameter of interest.

In the quantum setting there is, in principle, an infi-
nite number of positive operator-valued measures (POVMs)
available. It is thus desirable to choose the best one. When
optimizing over all possible measurements, the maximum
achievable precision associated with the mean-square error
in this setting is given by the quantum Cramér-Rao bound
(QCRB):

var θ̂ � 1

F (θ )
, (20)
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Probe
ρ0

i) Preparation

U(θ),Lθ, ...

ii) Encoding

Probe
ρθ

iii) Measurement

θ̂
1.30
1.44

iv) Estimation

FIG. 2. Diagram depicting the typical steps in quantum parame-
ter estimation.

which is valid for unbiased estimators [68]. We call the quan-
tity θ̂ an estimator. It is an arbitrary function used to used to
estimate θ and depends solely on the experimental outcomes.
The object F is the quantum Fisher information, defined as

F (θ ) := tr{ρθL2
θ }, (21)

and Lθ is the symmetric logarithmic derivative (SLD), an
operator which is implicitly defined as the solution to the
equation ρθLθ + Lθρθ = 2∂θρ.

The QFI is a quantity which depends only on the final
state ρθ and can, in principle, be readily calculated as long
as ρθ is known. Equation (20) is quite useful in the sense
that it makes no explicit reference to the particular choice
of estimator or other postprocessing aspects, so it helps to
establish the ultimate achievable accuracy of a single-shot
measurement with respect to the encoding state. Another im-
portant detail is that, although the QFI depends only on the
encoded state at the end of the process, if the dynamics in step
ii from the diagram is fixed, different choices of initial state
yield different parametrizations. Thus, it is often a point of
interest to also investigate how the protocol depends on the
initial state. For instance, in Sec. IV A we will discuss the
role of ancillas initialized in a squeezed state, as illustrated
by step i from the diagram. Meanwhile, in Sec. IV B we fix
the initial state ρ0 and focus instead on how to optimize over
the parameter dictating the dynamics, per step ii.

As can be seen from Eq. (21), the QFI and the SLD depend
on the parameter itself. This often means that the accuracy
of the estimation and the optimal basis will depend on the
very value of what we are trying to estimate. This leads
to two different perspectives or approaches, known as local
and global metrology. The latter normally makes use of the
Bayesian framework, which was kick-started in [26] for ther-
mometry and has been carefully investigated in other recent
works [19,20,69–72].

B. Gaussian metrology

While the framework above is quite general, and Eq. (20)
allows us to calculate the QFI associated with any state and

parameter, the calculations can quickly become burdensome
in larger dimensional systems. Considering that we are inter-
ested in Gaussian systems, it would be more useful to employ
a formula which which can be written in terms of the CM and
the momenta instead, properly making use of the Gaussian
nature of the problem.

A simple formula for the QFI of Gaussian systems has been
derived in a previous work [73]. There it was shown that the
QFI can be promptly calculated from the covariance matrix
of a state and from the vector of first moments. In particular,
whenever the first moments are zero, which was assumed in
our case, the QFI associated with a Gaussian state σθ is given
by the following expression:

F (θ ) = 1
2 〈∂σθ |D(σθ )−1|∂σθ 〉. (22)

Here we defined the operator

D(C) := (C ⊗ C + � ⊗ �). (23)

A numerical maneuver which typically simplifies the compu-
tation is to rewrite the equation above as

F (θ ) = 1
2 〈∂σθ |Lθ 〉, (24)

where we define |Lθ 〉 as the solution to the linear system

D(σθ )|Lθ 〉 = |∂σθ 〉. (25)

This last step transforms the challenge of inverting the opera-
torD(σθ ), into the problem solving a linear system for |∂σθ 〉.
In this scenario, numerical methods are readily available and
very efficient with most standard libraries. This will therefore
be faster than naively performing a matrix inversion directly.

The expression in Eq. (22) is thoroughly equivalent to
Eq. (21). Therefore, most of the computational work goes into
the calculation of the inverse matrix above or the solution of
the corresponding linear system. Nevertheless, it is clear that
as one increases the number of ancillas, the dimensions in
Eq. (22) increases quadratically in N due to the tensor product
structure in the equation. In short, these alternative expres-
sions avoid the hassle of dealing with infinite dimensional
states by exploring the symplectic structure of the Gaussian
systems.

C. Efficient computation of the QFI for Gaussian systems

Here we introduce a trick which we will use to calculate
Eq. (22), showing that, by making use of Williamson’s the-
orem [74], we arrive at an equivalent expression which is
even less expensive computationally. Although the dimension
of the CM increases linearly with the number of ancillas,
calculating the QFI through Eqs. (22) or (24) might still be
a time-consuming task for arbitrary Gaussian states despite
the massive speedup over equivalent expressions based on
the full density matrix. As mentioned in the previous para-
graph, this is due to the fact that the dimensionality of the
objects in Eq. (22) scales with N2. Our strategy here is to first
perform a symplectic diagonalization on the CM and all the
other complicated operations in the original symplectic space
of dimension 2N . Once that is done, we can then reexpress
Eq. (22) in terms of the symplectic eigenvalues. This will re-
sult in a very sparse matrix of fixed bandwidth, which virtually
eliminates the drawback of working in this larger tensor
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FIG. 3. Illustration of the typical structure of the operator (23) for
the full CM σ in this problem (left) and for the diagonal matrix of
symplectic eigenvalues W (right). Note how the operator on the right
has a band structure. More importantly, this matrix is actually very
sparse, since the number of elements in the band is always the same
regardless of system size. The blue rectangle highlights the only two
nonzero elements within the same row. Upon reordering of the matrix
elements one can notice that this operator can actually be rewritten
in terms of a diagonal composed of blocks of 2 × 2 matrices.

product space associated with the complicated operator from
Eq. (23).

We can begin by rewritingD(σθ ) as

D(σθ ) = 1
2 (S ⊗ S)D(W )(ST ⊗ ST ). (26)

Here we made use of the fact that the symplectic matrix obeys
S�ST = � and that the CM can be decomposed under a
symplectic transformation S as σ = SW ST . The quantity W
is called the matrix of symplectic eigenvalues, and it corre-
sponds to the matrix obtained by the resulting diagonalization
of the object i�σ , that is,

W = diag(ω1, . . . , ω2N ), (27)

given the eigenvalues {ωi} of the matrix i�σ . We can now
rewrite Eq. (22) in terms of W and the operator (26):

F (θ ) = 1
2 〈∂σθ |(S ⊗ S)−TD(W )−1(S ⊗ S)−1|∂σθ 〉, (28)

and then use the fact that S−1 = −�ST � to redefine a
new vector |∂σθ 〉 ≡ (M ⊗ M )|∂σθ 〉, where M ≡ �ST �. This
means that Eq. (22) can be recast in the simpler form

F (θ ) = 1
2 〈∂σθ |Lθ 〉. (29)

In analogy to Eq. (25), we define |Lθ 〉 as the solution to the
linear system

D(W )|Lθ 〉 = |∂σθ 〉. (30)

Finally, we explain the most important point about this
trick, which makes our modification of Eq. (22) into Eq. (29)
provide a significant speedup for generic states. The former
expression requires us to invert a very dense matrix of dimen-
sions 4N2 × 4N2. Since the typical algorithms for obtaining
the inverse of matrices of size m × m are of complexity
O(m3), this would translate into complexity O(N6) for an
N-ancilla state. Meanwhile, the operator D(W ) appearing in
the modified expression is very sparse (since W is diagonal)
and has a band structure because of the term � ⊗ �. This is
illustrated in Fig. 3(b). Thus, although we work with the same
dimensionality in both equations, the latter is much easier to
invert due to its simple structure (cf. Refs. [75–78]). How-
ever, this basic argument by itself is incomplete. Even more
importantly, one last observation reveals that each row will

always have a fixed number of nonzero elements regardless
of the dimension of the matrix. This can be directly verified
by constructing the matrix D(W ). Upon close inspection we
can see that by reordering this operator it is actually in block-
diagonal form, composed of 2 × 2 blocks whose size does not
scale with N . This is shown in the Fig. 3(c). Since we have
2N2 of these blocks, the number of operations for performing
a LU decomposition and/or solving the linear system (25) is
only of order O(N2).

The whole point of this approach is, in other words, that
instead of undergoing the numerical endeavor of inverting the
generally dense matrix of dimensionality 4N2 appearing in
Eq. (22), we can focus on obtaining the symplectic eigenval-
ues of the CM σθ . Although this is not a trivial process and
there is indeed an overhead, we are nevertheless performing
all the heavy lifting in a space whose dimensionality is much
smaller, since σθ has dimensions of 2N × 2N and there is no
tensor product structure at this point, in contrast to Eq. (23).
This approach should be valid for any parameter of interest θ

and not just the temperature.

IV. ANALYSIS

We are now equipped to discuss the numerical results of
our simulations. We start by pointing that, differently from the
qubit model where a partial-SWAP interaction alone provides
superlinear scaling due to correlations between the ancillas
[16], here we need some further ingredients for vacuum ini-
tialized probes. More generally, the output of a beam-splitter
field depends on the nonclassicality of the input field [79,80].
In Sec. IV A we show how this can be achieved through
single-mode squeezed states. Meanwhile, in Sec. IV B we
show how two-mode squeezing can achieve similar results.
Note that in the latter case one should carefully discuss the
stability and existence of the steady state in Eq. (16) [61].
We provide a brief discussion on this point in the Appendix.
In the simulations hereafter we shall always choose a set of
parameters which result in a proper steady state.

A. Squeezed ancilla thermometry

We start our analysis by considering the setup where the
initial state of each ancilla is a squeezed vacuum state [65]:

σ 0
A (r, ϕ) = 1

2
cosh(2r)1 − 1

2
sinh(2r)

(
cos ϕ sin ϕ

sin ϕ − cos ϕ

)
.

(31)

For simplicity, we assume that ϕ = 0 so that σ 0
A (r, ϕ) =

σ 0
A (r) := diag (e2r, e−2r ), since the phase rotations here can

be disregarded [29]. To further simplify our analysis, in this
section we also assume that no TMS is present, so we may
take h = 0 in Eq. (8), dispelling Eq. (5) from the dynamics.
We analyze the role of the TMS in Sec. IV B. Additionally, we
keep the coupling strength γ τSE of the open evolution fixed
for all simulations throughout the rest of this section.

The choices above mean that the tunable parameters in this
first setting are (1) the squeezing parameter r of the initial
state of the ancillas, (2) the strength gτSA of the BS interac-
tion, and (3) the temperature T . The full-swap configuration
with gτSA = π/2 actually reduces to the partial thermalization
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process which has been investigated in Ref. [29]. The authors
included a discussion about a (purposefully) more restrictive
scenario, due to its great experimental relevance and tractabil-
ity, where one is limited to Gaussian measurements only. They
found that both single- and two-mode squeezing improve
the accuracy of the thermometric scheme in the appropriate
regimes. In our case what we do in this paper is to investigate
how the QFI behaves as we vary these system parameters,
giving a particular focus to how exactly it scales with N for
different system configurations.

For that, we now describe the steps we follow in order to
obtain the QFI for this model, summarizing the formalism
from Secs. II and III C. First, once all the parameters are
chosen, we first obtain the steady state of the system, given by
Eq. (16). After that we can apply the stroboscopic map (13) to
this steady state, per Eq. (17), obtaining the collective state of
the sytem + ancillas. Thus, after all the appropriate maps are
applied, we can compute the collective CM of N-ancillas by
simply tracing out the system, per Eq. (19). This will be the
state of interest for the simulations. The reason is that we can
now compute the symplectic eigenvalues of the corresponding
CM in Eq. (19), leading us to the diagonal matrix W in
Eq. (27). Once that is done, it is then trivial to compute the
QFI for the N-ancilla state using Eq. (29).

Now we define the quantum Fisher information density
(omitting the temperature dependence) as fN := FN (T )/N ,
where FN (T ) refers to the QFI of the collective state of N-
ancillas (19), as described in the previous paragraph. Focusing
on the QFI density will make some quantities and behaviors
visually more apparent in upcoming figures and equations.
Furthermore, our approach here was inspired by the recent
work from Ref. [28], where the authors were able to obtain
a decomposition for the classical Fisher information for a
stochastic process of Markov order M. They showed that
for a process of Markov order M, we can know everything
about its metrological prowess for any longer sequence just
by computing the FI up to M+ 1 outcomes. Additionally,
one of the points of investigation in their paper is that in
such stochastic processes, one may observe a transient regime
where the FI may be either superadditive or subadditive,
whereas the scaling eventually becomes linear once again for
a large number of outcomes. This was verified both for certain
classical Gaussian processes and for a Ising spin chain.

In analogy to the (classical) quantity of the same name in
the aforementioned reference, we define here what we call the
QFI rate:

f∞ := lim
N→∞

fN . (32)

This quantity is nothing but the value to which the QFI
(asymptotically) converges. For processes of finite Markov
order this value is reached exactly after M+ 1 outcomes.
Unfortunately, in our case, there is no notion of a finite
Markov order, so a decomposition such as the one presented
in Ref. [28] is not available, and Eq. (32) is the only quantity
which can be defined unambiguously; that is, there is no
simple way to compute FN in terms of the QFI for a smaller
number of ancillas. On top of that, the authors in Ref. [28]
also did not have the opportunity to investigate in detail how
this dependence with N in more general system with infinite

Markov order, regardless whether classical or quantum. One
of our objectives here is, among other things, to fill this gap
with further numerical evidence and some supplemental anal-
ysis, finding out what is exactly the role of the correlations in
this model at the level of the QFI density.

We can see a preliminary plot in Fig. 4(a), where we show
the QFI and the QFI density (32) (inset) as a function of N for
different values of the squeezing parameter in the initial state.
This is the basic illustration which will allow us to visualize
the transient behavior of the QFI. A first glance shows us two
things: first, how the QFI quickly increases for the first few
ancillas in a superlinear fashion, and, second, how it eventu-
ally linearizes in an asymptotic manner. The inset makes this
point even clearer through the QFI density. For large N the
fN eventually saturates to an asymptotic value corresponding
to the QFI rate from Eq. (32), which we highlight with the
dashed lines in the figure.

Unfortunately, due to the complexity of these states, ob-
taining an analytical form for the QFI is out of reach even
for a small number of ancillas. With that in mind, we opt for
a more heuristic approach. In Fig. 5(b) we once again plot
the QFI density as a function of N , but this time we fix the
squeezing parameter and vary the strength of the BS coupling.
One can see that in either Fig. 4(a) or 4(b), fN follows a
sigmoid-like behavior. For that reason, we propose a family
single-parameter functions to fit this model, of the form

fN+1 = f1 + ( f∞ − f1)
N√

α2 + N2
. (33)

Here N is simply the number of ancillas, f∞ is the QFI rate,
and f1 = F1 is the single shot QFI. The fittable parameter is α.
To approximate f∞ we simply compute fN for N large. This
type of fit from Eq. (33) reproduces almost exactly the behav-
ior we will observe in our simulations. Note that when N = 1
we recover the single shot QFI, and that when N → ∞ we
recover the QFI rate. The factor N√

α2+N2 is simply an algebraic
expression for a sigmoid function. Other common alternatives
can also be used, such as a hyperbolic tangent of the form
tanh(αN ). Those provide qualitatively similar results, but we
have found that our current choice provided the best fit for the
range of parameters considered here.

To illustrate, we show this function as a solid line in
Fig. 4(b) and the corresponding values of α. Similarly, in
Figs. 4(c) and 4(d) we plot the two relevant quantities ap-
pearing in Eq. (33). In Fig. 4(c) we plot the QFI rate as a
function of the temperature and the parameter r. As usual, we
observe an exponentially vanishing value for the QFI as the
temperature approaches zero. More interestingly, in Fig. 4(d)
we plot α as a function of T and r. We obtained α by fitting
Eq. (33) for 200 ancillas, which was enough in this setup to
approach convergence. This figure shows the usefulness of
our heuristic expression in Eq. (33): expressing the transient
dynamics of the QFI ratio in terms of this single parameter α

allows us to do so in a very condensed manner, with contour
plots such as the one in Fig. 4(d), which summarizes the
transient behavior of the curves such as the ones in Figs. 4(a)
and 4(b).

Finally, we provide one last argument as to why we chose
this approach. From the figures, the reader might notice that α
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FIG. 4. (a) QFI FN for the state σA1 ...AN as a function of N . Each curve corresponds to a different choice of squeezing parameter r. In the
inset we plot the QFI density fN = FN/n. (b) Fisher information density as function of N for different BS couplings. The fitting parameter α for
each different curve is shown in the plot. In panels (a) and (b) we fix T/� = 0.1. (c) Estimated QFI rate as function of the system parameters,
for a fixed gτSA = π/3. (d) Analog plot where we show the fit parameter α as a function of the temperature and squeezing parameter. The fit
is obtained by computing fN up to n = 200. In all these figures we fix γ τSE = 1.

provides a qualitative figure of merit describing how quickly
the QFI density reaches its asymptotic value, i.e., the memory
effects for these states. This gives an operational meaning to
the parameter α: a larger value means that one should keep
track of a larger number of ancillas in order to accurately
describe FN (or fN ). Unfortunately, properly defining a no-
tion of an approximated Markov order is highly nontrivial
[81,82], therefore we focus on a more naive characterization.
Nevertheless, to make our statement more precise, there is one
last thing we can do. Assume that Eq. (33) correctly describes
the behavior of the QFI density. Now let us also suppose that
we would like to obtain a QFI density of (1 − ε) f∞, where ε

roughly provides a notion of accuracy for an approximation of
the QFI rate f∞. How many ancillas N∗ would be necessary
for that? We simply solve the Eq. (33) for fN+1 = (1 − ε),
which will give us N∗. Through very simple algebra we obtain

N∗ = (α − 1)
f1 + (1 − ε) f∞√

f∞ε[2 f1 + (2 − ε) f∞]
. (34)

By assuming that ε  1, we get

N∗ ≈ α√
ε

√
f∞

f∞ − f1
. (35)

In particular, whenever f∞ � f1, we can see that N∗ scales
with N∗ ∼ αε−1/2. This means that, all other parameters fixed,
the number of ancillas necessary to compute the QFI rate with
precision ε is directly proportional to the fitting parameter
α. Also note how the limit α → 0 properly predict what we
would expect, with Markov order zero. This corresponds to
the case where no correlations are present, so Eq. (33) is
independent of N and we have fN+1 = f1; that is, the QFI FN

simply scales linearly.
Thus, our choice in Eq. (33) gives a rough picture of how

many ancillas one needs to consider when trying to compute
the QFI for large N . Although the model has infinite Markov
order strictly speaking, this type of picture provides an ad hoc
method of truncating the computation at a certain number N∗
of ancillas, after which the scaling can be assumed to be once
again linear. This matches the intuition we can obtain from
these pictures: even though the Markov order is infinite, we
can still assume an approximately linear scaling after a certain
number of ancillas is reached, approximately saturating fN to
f∞. What this figure shows us is that how quickly this happens
depends on the precise choice of parameters for the model.
This is expressed, in our phenomenological analysis, through
the parameter α in Eq. (33).
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FIG. 5. (a) QFI density as a function of N for gτSA = π/3, for different TMS couplings. We can observe that h > 0 introduces a transiently
superlinear scaling for the QFI. (b) QFI density for different values of temperature. Note how the plot span across different scales in the vertical
axis, showing how the fit provides a good approximation in all these cases. (c) Analogous to panel (a). Here we show the QFI for different
values of BS coupling, fixing hτSA = 0.1. (d) Contour plot showing the fit parameter as function of the BS and TMS coupling. Note the log
scale on the density map. Other details are chosen as in Fig. 4.

We also make a brief comment regarding the goodness
of this fit. One can see that the fit might get slightly worse
depending on the choice of parameters, but it is unclear to us if
or when this fit breaks down. We could not find a combination
of parameters where this happens, so this is an open question
left to more detailed investigations. More specifically, one
could start by exploring different values of γ τSE , which was
kept fixed in our simulations. Also, the fit might be a bit
unstable numerically whenever fN is approximately constant,
since certain numerical routines might be unable to distin-
guish whether f∞ ≈ f1 or if α → 0.

B. Two-mode squeezing thermometry

TMS is a very well understood resource [83,84] which has
found a ubiquitous role in quantum information processing
and quantum metrology [85–92]. For instance, Ref. [29] has
showed that the TMS is able to improve the thermometric pre-
cision under certain situations. This motivates us to conclude
our investigations by moving on to a second scenario, where
we introduce TMS into the model. We follow all the steps

in analogy with Sec. IV A, but this time turning on the TMS
interaction appearing in Eqs. (7) and (8) from Sec. II.

In this setup we initialize all the ancillas in the vacuum state
σ0 = 1

21 for simplicity, since the addition of TMS will now
allow us to generate entanglement [85]. The tunable parame-
ters become (1) the BS interaction and (2) the temperature,
as before, but this time we also have control over (3) the
TMS interaction through the coupling strength hτSA. All other
technicalities and assumptions are the same as in the previous
section, unless clearly stated otherwise. Our objective is now
to repeat the same investigations but with a different set of
parameters. The relevant plots are shown in Fig. 5.

We start by fixing the BS coupling if Fig. 5(a), where we
plot the QFI density as a function of N for different values of
hτSA. We obtain a very similar behavior to the one observed
in Fig. 4, where we can see that the effects are even more
pronounced. The solid line shows the numerical fit and the
markers correspond to the numerical values. For the hτSA = 1
(red downward markers) we obtain a large value for the fitting
parameter, at α ≈ 212. Note how this is an order of magnitude
larger than what we get for most of the other configurations
and how this is very clear visually. We can see how the number
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of ancillas necessary to saturate to its asymptotic value is
also much larger, around the order of 103, while this happens
around 10 or 102 for the other curves. Also note how we can
easily perform these simulations even for N or the order of
103, showcasing the usefulness of the Gaussian formalism and
the compact expression from Eq. (29). Obtaining similar plots
for the qubit-based model would be out of reach in generic
scenarios. For instance, in Ref. [16] the authors investigate
the scaling up to 12 qubits.

Finally, we do the same in Figs. 5(b) and 5(c), but varying
the temperature and the strength, respectively. Note how the
logistic-like behavior for these curves given in Eq. (33) seem
to the hold in all of these regimes. Meanwhile, the use of this
fitting parameter once again allow us to summarize the infor-
mation from Figs. 5(a) and 5(b) in a very condensed manner.
In Fig. 5(d) we plot α as a function of gτSA and hτSA. Inter-
estingly, this plot shows us that α → 0 as we approach the
full-swap configuration gτSA → π/2, as it should be, since the
correlations eventually vanish in this case. Additionally, also
note that due to the presence of the TMS we lose the periodic
behavior expected from the BS (or, analogously, the partial-
swap interaction) [16]. Similarly, we can also see that there
is local maximum for α in terms gτSA (within this regime)
at each value of hτSA, showcasing the very rich behavior of
this model. What this panel is showing us is precisely a phe-
nomenological picture of the model, where we can clearly see
how different parameters strength of weaken these memory
effects. By analyzing Fig. 5(d) we can see, for instance, that as
we increase the strength of the TMS or approach intermediate
values for the BS interaction, the parameter α also increases.
Such a type of data basically provides a rule of thumb of how
physically relevant the correlations present in the state (19) are
at the level of the quantum Fisher information. Or, similarly,
how large should we take these collective ancillas states in
order to accurately capture all the relevant information still
with a good approximation. Taking N∗ ∼ 10 for hτSA = 0.02
is already very representative. We can then assume that the
scaling is linear after that. Meanwhile, this would be disas-
trous for hτSA = 1, where one would need to go to N∗ ∼ 103

as mentioned earlier.

V. DISCUSSION AND CONCLUSIONS

We have extended the original collisional thermometry
proposal from Ref. [16] to an analog based on Gaussian
systems, which works as a minimal model where we have
included single-mode squeezed ancillas, beam-splitter inter-
actions, and two-mode squeezing. Inspired by recent advances
in the study of correlated stochastic process and quantum
metrology, we have used this model as a platform for focusing
on the transient aspects and large-ancilla limit of the quantum
Fisher information, rather than investigating features for opti-
mal thermometry in the conventional sense. We expect to have
shed some light in some aspects which had not been so much
explored previously, especially in the context of quantum ther-
mometry. In most situations one cannot or should not expect
an endless superlinear scaling, but rather, an intermediate
behavior which eventually linearizes, as seen in Ref. [28]. It
is then useful to figure out in more detail the rate at which
a collective probe accumulates its metrological prowess due

to memory effects. More concretely, our main objective here
was to give a very clear picture of how exactly the QFI scales
with the number of ancillas in this model. Our toy model was
useful for that purpose, allowing us to operate with a wide
range of parameters. Additionally, the alternative expression
we presented here for the QFI of Gaussian states made these
calculations feasible even for very large systems. However, it
is not clear to us how universal this type of behavior is, and
that lays the path for some further venues of investigation.
One could, for instance, try to move on to more sophisticated
bosonic (or fermionic) models used in condensed matter or
quantum optics, checking whether an analogous behavior can
still be observed there.

Finally, as stressed before, we have not touched upon other
very important aspects in this type of problem, such as optimal
preparation of probes and the effect of typically deleterious
phenomena, such as decoherence, which can quickly compro-
mise any naive protocol. However, much progress has been
made in this sense, and one can try to extend our observa-
tions and any adjacent investigations into these other domains.
See, for example, Ref. [93] and the works mentioned therein.
Similarly, it would be interesting to investigate whether the
type of behavior and setup considered here has any type of
implication for quantum many-body systems, since this type
of collective state has become the object of interest [94].
Using this Gaussian state formalism may be particularly use-
ful in this context, since one is naturally interested in large
system sizes. This is strengthened by the fact that the QFI
is actually an object of interest even beyond metrology. For
instance, it may also serve as signature or diagnostic of other
quantum effects and phenomena, such as quantum scars [95]
and quantum chaos [96].
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APPENDIX: STABILITY OF THE STEADY STATE

An analysis on the stability of fixed point of map (13)
for the TMS and the BS unitaries can be found in Ref. [61].
Here we extend this analysis to the case where both the TMS
and BS are applied simultaneously. To do so, we first write
Eq. (13) explicitly using block matrices. The symplectic ma-
trix S that employs the unitary evolution of the system, and
one ancilla might be written

S =
(

A B
C D

)
, (A1)
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where each submatrix is of dimension 2 × 2. Plugging this
into Eq. (13), we obtain

σ n
S = X

(
Aσ n−1

S AT + BσABT
)
X T + Y, (A2)

where σA is the state of the N th ancilla. Note again that the
ancillas are identically prepared.

Equation (A2) can be solved for its steady state. First, for
two any matrices A and B, let us define the linear superopera-
tor A ⊗̃ B by (A ⊗ B)C = ACBT , where C is any other matrix.
Then Eq. (A2) is, in this language, given by

σ n
S = (X ⊗̃ X )(A ⊗̃ A)σ n−1

S + (X ⊗̃ X )(B ⊗̃ B)σA + Y.

(A3)

We might recast this evolution equation in a vector form

σ n
S = φ

(
σ n−1

S

) = Gσ n−1
S + H, (A4)

where G and H can be read off from the previous equation,

G = (X ⊗̃ X )(A ⊗̃ A), H = (X ⊗̃ X )(B ⊗̃ B)σA + Y.

(A5)
Iterating this map we obtain an explicit expression for σ n

S
in terms of the initial state σ 0

S ,

σ n
S = Gnσ 0

S +
(

n∑
k=0

Gk

)
H. (A6)

This evolution converges to the steady state σSS = φ(σSS ) for
every initial condition iff the eigenvalues of G all have an
absolute value smaller than 1. For the case in hand, this simply
implies that the eigenvalues of AX have to be smaller than 1
in absolute value. The steady state might then be computed as

σSS = (1 − G)−1H. (A7)

In particular, it does not depend on the choice of σ 0
S .
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