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Gillespie algorithm for quantum jump trajectories
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The jump unraveling of a quantum master equation decomposes the dynamics of an open quantum system
into abrupt jumps, interspersed by periods of coherent dynamics when no jumps occur. Such open quantum
systems are ubiquitous in quantum optics and mesoscopic physics, hence the need for efficient techniques for
their stochastic simulation. Numerical simulation techniques fall into two main categories. The first splits the
evolution into small time steps and determines stochastically for each step if a jump occurs or not. The second,
known as Monte Carlo wave-function simulation, is based on the reduction of the norm of an initially pure
state in the conditional no-jump evolution. It exploits the fact that the purity of the state is preserved by the
finest unraveling of the master equation. In this paper, we present an alternative method for the simulation of
the quantum jump unraveling, inspired by the classical Gillespie algorithm. The method is particularly well
suited for situations in which a large number of trajectories is required for relatively small systems. It allows
for non-purity-preserving dynamics, such as the ones generated by partial monitoring and channel merging. We
describe the algorithm in detail and discuss relevant limiting cases. To illustrate it, we include four example
applications of increasing physical complexity and discuss the performance of the algorithm across regimes of
interest for open quantum systems simulation. Publicly available implementations of our code are provided in
JULIA and MATHEMATICA.
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I. INTRODUCTION

Quantum master equations have become an absolutely
essential methodology for most areas of quantum physics.
They are used to describe experiments in a wide variety of
platforms, from quantum optics to mesoscopic electronics.
The quintessential Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation has the form [1–4]

dρ

dt
= Lρ = −i[H, ρ] +

r∑
k=1

D[Lk]ρ, (1)

where L is the Liouvillian, ρ the state of the system, H
the Hamiltonian, and D[L]• = L • L† − 1

2 {L†L, •} a Lindblad
dissipator.

While the master equation describes the ensemble-
averaged evolution of the system’s density matrix ρ(t ), one
can also unravel it in terms of specific quantum trajectories
[5–10]. The quantum jump unraveling (QJU), in particular,
separates the dynamics into a stochastic process consisting
of abrupt jumps occurring at random times, with a unitary
no-jump evolution in between. The jumps are associated with
the terms LkρL†

k , each representing a possible “jump channel.”
The QJU method has been extensively employed in various
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contexts, for many decades. Its main motivation lies in the fact
that, in many experimentally relevant systems, the quantum
jumps are directly associated with clicks in specific detectors,
as is the case, for instance, for photon detection in optical
systems. Here, the stochastic dynamics can be used to study
the emission spectrum [11], or to obtain the full counting
statistics of photodetection [12]. A beautiful recent example is
the experiment reported in Ref. [13], which used photodetec-
tion stochastic trajectories to build up the statistics necessary
to demonstrate a driven-dissipative phase transition. Similarly,
in mesoscopic physics, the QJU can be used to model coher-
ent electron tunneling from quantum dots to metallic leads
[4,14,15]. In this case, the jump channels correspond to the
injection or extraction of an electron into or from the quantum
dot. Finally, the QJU can also be used as a method to simulate
the solution eLtρ(0) of Eq. (1).

Such a stochastic simulation is formally equivalent to what
is often referred to as Monte Carlo wave-function (MCW)
simulation [16–19]. It exploits the reduction of the norm of
the initial (pure) state under conditional no-jump dynamics
as a means to effectively sample the waiting time distribution
(WTD) between jumps. The power of MCW simulation lies
in the fact that it allows one to work with pure states which
are numerically much easier to handle than mixed states in
systems with high-dimensional Hilbert spaces due to corre-
spondingly lower memory requirements [20]. In particular,
the finest unraveling of a master equation preserves purity;
if the initial state is mixed, it is sufficient to consider its de-
composition as a convex mixture of pure states and to evolve
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each component separately. Due to the linearity of quantum
evolution, every property of the mixed state can be obtained
as the same convex combination of the properties of each pure
state value.

There are, however, situations where working with pure
states is not an option. An important case is that of systems
subject to partial monitoring, i.e., when only a subset of the
jump channels is monitored, as well as cases where emissions
in some of the channels cannot be distinguished from each
other (we will refer to this as channel merging in the follow-
ing). In these scenarios, purity is, in fact, not preserved along
the evolution, and one can choose between two main methods.

Here, one could use the full-monitoring master equation to
generate trajectories via the MCW method. Such trajecto-
ries could then be postprocessed to obtain partial monitoring
or channel merging. However, in order to faithfully sample
the reduced dynamics, one would need a number of fully
monitored trajectories that scales exponentially with time (for
partial monitoring) or number of jumps (for channel merging).

Alternatively, we can directly evolve the density matrix of
the system with the partial monitoring GKSL equation. While
the evolution of the entire density matrix is more computa-
tionally expensive than the evolution of the state vector alone,
this is compensated by the reduction in the number of required
trajectories. A common method to evolve the density matrix
is outlined in Sec. II, and is based on the random selection, at
each time step, of whether an emission should or should not
occur in that time step. Given its stepwise nature, we refer to
this method as step-by-step QJU (SS-QJU) in the following.

The main shortcoming of the SS-QJU method is that it
may require very small time steps for the integration of the
stochastic master equation to converge. This happens for the
following reason. In quantum coherent systems, the dynamics
are always a mixture of the unitary dynamics, which cause
no jumps, and dissipative terms responsible for jumps. The
difficulty is when the unitary dynamics occur at a much
shorter timescale, forcing one to use very small time steps,
even though the jumps occur on a much longer timescale.

A similar problem is also found in classical master equa-
tions evolving under different timescales. In that field, the
Gillespie algorithm [21,22] stands out as an extremely effi-
cient alternative method for simulating the behavior of such
dissipative dynamics. The algorithm is based on the WTD
W (t ), which describes the time it takes until the next jump
occurs [23,24]. Instead of integrating an equation over small
time steps, the Gillespie algorithm samples a random time T
from W (t ). This represents the time the next jump will occur.
Next, it randomly selects one of the possible jump channels.
In this fashion, the system is directly propagated forward in
time, to the configuration after the jump. In classical master
equations W (t ) is always exponentially distributed, making it
very easy to sample the random times T . In addition, classical
master equations belong to the class of renewal processes:
after the jump the state of the system is completely reset,
losing any possible memory of previous configurations. As
a consequence, W (t ) only depends on the time elapsed since
the most recent jump of the system, and not on the system’s
previous history.

In quantum systems, these two features are generally ab-
sent: the unitary part of the dynamics is responsible for WTDs

which are not exponentially distributed, and jumps do not
fully reset the state of the system in general. Nonetheless,
as we show in this paper, a quantum version of the Gille-
spie algorithm can be derived and implemented, and indeed
results in an efficient simulation method. In particular, the
quantum Gillespie algorithm we implement has a moderate
computational overhead in terms of the quantities that must be
precomputed (at the cost of memory requirement). Once this
is done, the simulation of the quantum trajectories becomes
comparatively fast. And, more importantly, the algorithm does
not require small time-step discretization to ensure conver-
gence. Thus, the algorithm is particularly suited for simulating
long-time trajectories. In general, a performance compari-
son between the Gillespie algorithm and other methods for
stochastic open quantum system simulation depends on the
specific system at hand. As will be detailed in the Discussion
section, the Gillespie algorithm is particularly well suited for
a very large number of trajectories on relatively small quan-
tum systems. In contrast, it necessitates comparatively large
computational resources for large, many-body simulations.

This paper is structured as follows. After a brief overview
of the SS-QJU method in Sec. II, we detail our algorithm
in Sec. III, and then compare it to alternative approaches in
Sec. V. Finally, illustrative examples are provided in Sec. IV.
For the latter, we illustrate our method in comparison with the
standard QJU solvers from QUTIP. An implementation of our
algorithm in MATHEMATICA is publicly available in the MELT

library [25], and an implementation in JULIA is available in
Ref. [26].

II. STEP-BY-STEP QUANTUM JUMP UNRAVELING

In this section, we briefly review and motivate the step-by-
step method for the simulation of the QJU. For an infinitesimal
time dt , the evolution of Eq. (1) can be decomposed as

ρ(t + dt ) = eLdtρ(t ) =
r∑

k=0

MkρM†
k , (2)

where Mk are Kraus operators: for k = 1, . . . , r they read
Mk = √

dtLk , while for k = 0 we have M0 = 1 − idtHe,
where

He =H − i

2
J, with (3)

J :=
∑

k

L†
k Lk, (4)

is a non-Hermitian Hamiltonian. The Kraus operators satisfy
M†

0 M0 + ∑r
k=1 M†

k Mk = I + O(dt )2.
The decomposition in (2) motivates the interpretation in

terms of quantum jumps. For each time step, one Mk is chosen
with probability pk = tr(MkρM†

k ), and the system is updated
to

ρ → MkρM†
k

tr(MkρM†
k )

. (5)

If k = 1, . . . , r, we say a jump occurred in “channel” k.
Otherwise, if k = 0, no jump occurred. The latter is much
more likely since p0 ∼ O(1) while pk ∼ O(dt ). This yields
a quantum trajectory, i.e., a stochastic evolution of the system
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consisting of a few abrupt jumps, connected by a no-jump
(smooth) evolution described by M0 [9,27,28].

The quantum trajectory is described by a set of outcomes
(k1, k2, . . .), corresponding to the randomly chosen operators
Mk at each time step. One can attribute the outcomes with
k = 1, . . . , r to a “click” in a detector, while k = 0 represents
no click. The solution of Eq. (1), ρ(t ) = eLtρ(0), is called
the unconditional evolution, while the stochastic trajectory
generated by the update rule (5) is said to be conditional, since
it is conditioned on the specific set of outcomes (k1, k2, . . .).
The unconditional evolution is recovered by averaging the
conditional evolution over multiple trajectories.

III. GILLESPIE ALGORITHM

A typical quantum trajectory, obtained for instance with the
SS-QJU method outlined in the previous section, will have the
form

000000001000000000200000000100000001 . . . ,

consisting of many zeros, interspersed by rare jumps (in this
case in channels labeled as 1 and 2). Clearly, it is simpler
to just label the trajectories by the random times between
jumps Ti, and the channel ki that each jump went into. That
is, the quantum trajectory can instead be described by the set
of outcomes

(T1, k1), (T2, k2), (T3, k3), . . . . (6)

The Gillespie algorithm [21,22] avoids integrating the up-
date rule [Eq. (5)] over infinitesimal time steps, by instead
sampling the pairs (Tn, kn) with correct probabilities. This is
done using the WTD which can be built as follows. If no
jump occurs for a time T , at which point a jump into channel
k happens, then the state of the system is updated, up to a
normalization, to

ρ → Lke−iHeT ρeiH†
e T L†

k . (7)

Note here that the term e−iHeT results from the sequential
application of the no-jump Kraus operator, in the infinitesimal
limit:

lim
n→∞(I − iHet/n)n = e−iHet . (8)

The normalization factor for the right-hand side of Eq. (7)
yields precisely the WTD [23,24]:

W (t, k|ρ) = tr{L†
k Lke−iHetρeiH†

e t }. (9)

If we can sample over the WTD, then we may evolve the
system directly from one jump to the next, rather than having
to integrate the dynamics step by step. In some rare cases, it
may be possible to obtain an analytic expression for the WTD.
It is then possible to sample from it by using the efficient
inversion method [3]. More frequently, however, an analytic
expression for the WTD is not known, and the method of
choice is the MCW [17–19] when the conservation of purity
is guaranteed on a trajectory, or the SS-QJU when this is not
the case (e.g., for systems undergoing partial monitoring).
The Gillespie method that we present here is an efficient
alternative to the latter, the speedup of which is mostly due to

the possibility of precomputing some of the most numerically
expensive quantities.

In order to arrive at a sampling procedure for Eq. (9)
we first decompose it into two parts as W (t, k|ρ) =
P(k|t, ρ)W (t |ρ), where

W (t |ρ) =
∑

k

W (t, k|ρ)

= tr
{
Je−iHetρeiH†

e t
}
, (10)

with J = ∑
k L†

k Lk , as in Eq. (4). Here it is assumed that
∫ ∞

0
dt W (t |ρ) = 1, ∀ρ. (11)

Physically, this is the case when a jump to some channel has to
eventually occur for any initial state, i.e., dark subspaces are
not allowed. We discuss below the situations when this might
not be the case. Letting ρ̃ = e−iHetρeiH†

e t , the remaining factor
is given by

P(k|t, ρ) = tr{L†
k Lk ρ̃}

tr{Jρ̃} . (12)

The sampling is thus split in two: first, we sample a time T
using Eq. (10), evolving the system from ρ → ρ̃. Next, we
choose which channel the system will jump to by sampling
over Eq. (12). This last part is comparatively straightforward,
as there are only r options. The most challenging technical
issue is how to sample from Eq. (10).

To overcome this challenge, we write

W (t |ρ) =tr{Q(t )ρ}, with (13)

Q(t ) =eiH†
e t Je−iHet . (14)

We can precompute Q(t ) for a set of times ts. This set should
be sufficiently fine grained to resolve the fine structure in
W (t |ρ), and should go up to a sufficiently large time to ensure
that all possible jump times are taken into account. However,
as will become clear from the examples below, the time step
does not have to be infinitesimally small. Even comparably
large time steps will yield a valid probability distribution
and hence a nondiverging evolution; in effect, it represents a
coarse graining of the waiting times. For each state ρ, we then
compute a list W (t |ρ) = tr{Q(t )ρ} for t ∈ ts, and sample one
element T ∈ ts from it. A pseudocode implementation of our
algorithm is provided at the end, labeled Algorithm 1.

A. Pure states

Initial pure states remain pure throughout the evolution
along any trajectory, provided that all the existing jump chan-
nels are monitored. This results in a significant advantage in
memory requirements, and in speed. All relevant formulas
above continue to hold provided we replace ρ with |ψ〉〈ψ |:

W (t |ψ ) = 〈ψ |Q(t )|ψ〉, (15)

P(k|t, ψ ) = 〈ψ̃ |L†
k Lk|ψ̃〉

〈ψ̃ |J|ψ̃〉 , (16)

|ψ〉 → Lke−iHeT |ψ〉, (17)
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ALGORITHM 1. Gillespie evolution for mixed states and/or partial monitoring.

where |ψ̃〉 = e−iHeT |ψ〉. An implementation of the Gillespie
algorithm for the simpler case of pure states is available in
JULIA [26]. We also note that any mixed state can be written
as an ensemble of pure states (e.g., in the eigenstate decom-
position). If all the jump channels are monitored one can
then compute the evolution of mixed states using the pure
state evolution of their decomposition; this is possible because
trajectories remain pure under full, fine-grained monitoring.
More generally, allowing for imperfect monitoring, a full-
fledged mixed-state implementation of the Gillespie algorithm
is unavoidable.

B. Renewal processes

For this important subclass we have [23]

LkρL†
k

tr(LkρL†
k )

= σk, (18)

for states σk which are independent of ρ. Hence, the state after
the jump is always fully reset to a specific σk , depending only

on the jump channel. In this case, there are only a finite num-
ber of WTDs W (t |σk ). They can therefore all be precomputed,
greatly speeding up the entire process. Simulating renewal
processes is therefore extremely efficient with the proposed
method.

C. Sampling in between jumps

The Gillespie algorithm yields the state of the system at
random times after each jump, according to the update rule
(7). For many applications, this suffices. In other cases, how-
ever, one also requires the state at arbitrary times in between
jumps. Only a slight additional step is required to obtain such
intermediate states. Consider the update map (7), for a certain
time T between jumps. The state at any intermediate time
t < T before the next jump is then simply

e−iHetρeiH†
e t

tr{e−iHetρeiH†
e t } , t < T . (19)

Computing this Hamiltonian evolution does not require in-
finitesimal time steps. Instead, one can proceed as in the
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ALGORITHM 2. Finding the state at fixed times along a
trajectory.

usual Trotter decomposition for unitary dynamics [29,30].
Suppose one wishes to obtain the state at steps �t , which
does not have to be small. Define V = e−iHe�t , then simply it-
erate ρ → V ρV †. A pseudocode implementation is presented
asAlgorithm 2 below.

D. Partial monitoring

We can generalize the above to the case where only a subset
M of the jump operators L1, . . . , Lr is monitored. Define the
jump superoperators

Jkρ = LkρL†
k , k ∈ M, (20)

as well as the no-jump superoperator L0 = L − ∑
k∈M Jk [if

all channels are monitored then L0ρ = −i(Heρ − ρH†
e ), with

He defined in Eq. (3)]. Equation (10) is then replaced by

W (t |ρ) =tr{JeL0t (ρ)}, with (21)

J =
∑
k∈M

L†
k Lk . (22)

Similarly, Eq. (12) becomes

P(k|t, ρ) = tr{L†
k Lk ρ̃}∑

q tr{L†
qLqρ̃} , with (23)

ρ̃ =eL0tρ. (24)

In this case, one must precompute Q(t ) = eL
†
0t (J ), with L†

0 the
adjoint superoperator of L0.

E. Classical master equation

The original Gillespie algorithm [21,22] was developed for
classical (Pauli) rate equations. This is actually a particular
case of the present quantum version, corresponding to Eq. (1)
with H = 0 and jump operators Li j = √

Wi j |i〉〈 j|, describing
jumps between (orthonormal) basis states |i〉, and | j 
= i〉, with
transition rate Wi j . For this case, Eq. (4) reduces to He = − i

2 J ,
with

J =
∑
i 
= j

L†
i jLi j =

∑
i 
= j

Wi j | j〉〈 j|

=
∑

j

R j | j〉〈 j|, (25)

where Rj = ∑
i 
= j Wi j is the escape rate for the system to leave

state | j〉. As [He, J] = 0, now Eq. (10) simplifies to

W (t |ρ) = tr{Je−Jtρ}
=

∑
j

R je
−Rjt 〈 j|ρ| j〉. (26)

The process is renewal [Eq. (18) is satisfied]. The state at the
previous jump will be ρ = |i〉〈i|, for some state |i〉. Hence, the
WTD becomes

W (t |i) = Rie
−Rit , (27)

which is an exponential distribution with rate Ri. Sampling
it is thus trivial [31], which is the reason why the Gillespie
algorithm is so efficient in the classical context.

F. Dark subspaces

Throughout, we assumed that L0 is invertible, which en-
sures that a jump must always happen. In some systems this
might not be the case. The most direct way to check this
is to see if L0 has any zero eigenvalues (i.e., a nonempty
nullspace). Alternatively, one can also compute the no-jump
probability:

Pno(t |ρ) = tr{eL0tρ}. (28)

If Pno(∞|ρ) = limt→∞ Pno(t |ρ) = 0, then a jump must al-
ways occur. This can sometimes be the case even if L0 is not
invertible, depending on the initial state ρ [32]. One may ver-
ify that since L0 = L − J and since L is traceless, it follows
that Pno is related to W (t |ρ) in Eq. (21) according to

W (t |ρ) = −dPno(t |ρ)

dt
. (29)

Thus, the normalization condition becomes
∫ ∞

0 dtW (t |ρ) =
1 − Pno(∞|ρ).

G. Choice of time parameters

We observe that, by construction, our algorithm will al-
ways retrieve properly normalized states. If the time step dt
is chosen too large, however, the simulation may not be able
to capture the short-time details of the Hamiltonian evolution.
Nonetheless, dt does not have to be infinitesimal, as in the
SS-QJU method, since the convergence of a differential equa-
tion is not at stake here. Instead, it suffices that it is small
enough to ensure the WTD is smooth. The final sampling time
t f must be chosen large enough to guarantee that waiting times
larger than t f happen with negligible probability.

IV. EXAMPLE APPLICATIONS

To better illustrate the advantages and shortcomings of the
Gillespie algorithm, in this section we present a range of
applications for various systems of physical interest. In all
simulations below, we used the JULIA implementation of the
Gillespie algorithm, available in Ref. [26]. The results will be
compared with SS-QJU simulations performed using QUTIP.
The first examples showcase our approach for simple physical
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FIG. 1. Single-qubit resonant fluorescence: simulated waiting
time distribution with 250 trajectories, with SS-QJU, and with the
Gillespie algorithm. Parameters: � = 0, � = γ = 0.5, initial state
|0〉. For the SS-QJU, dt = 0.01; for the Gillespie algorithm ts has
intervals of 0.01 and is limited to a final time of 100.

systems. The last one applies the Gillespie algorithm to the
case of partial monitoring, where its advantage is the most
significant.

A. Single-qubit resonant fluorescence

We considered first a very well-studied quantum optics
problem, one-qubit resonant fluorescence [9,33]. A single
qubit evolves with Hamiltonian (h̄ = 1)

H = �σ z + �σ x, (30)

where � represents a detuning term and � is the Rabi fre-
quency due to coupling with an external electromagnetic field.
Given a leak rate γ for the qubit, its time evolution is de-
scribed by the Lindbladian superoperator

Lρ = − i[H, ρ] + γ

2
(2σ−ρσ+ − {σ+σ−, ρ}), (31)

where σ± = σ x ± iσ y. The process is renewal, and the form
of the waiting time distribution is analytically known [33] and
reads, in the case � = 0,

W (t ) = 16γ�2e− γ t
2 sinh2

(
1
4 t

√
γ 2 − 16�2

)
γ 2 − 16�2

, (32)

where the initial state ρ = |↓〉〈↓| is the state after the previous
jump.

The results of the simulation, with both the Gillespie al-
gorithm and SS-QJU, are shown in Fig. 1. We also plot the
analytical results on top. The agreement with the analytics and
with the SS-QJU simulations provides a good sanity check for
the correctness of the method.

B. Double-qubit nonrenewal process

In order to discuss the behavior of the Gillespie algo-
rithm when relaxing the renewal hypothesis, we considered
a slightly more complex physical system. Two qubits are

FIG. 2. Double-qubit system: simulated waiting time distribution
with SS-QJU and the Gillespie algorithm. Parameters: � = 3, γ =
0.1, g = 0.3, initial state |0〉 ⊗ |0〉. In SS-QJU, dt = 0.01; for the
Gillespie algorithm ts has intervals of 0.01 and is limited to a final
time of 1000.

coupled with an exchange interaction (coupling intensity g);
one of them is driven by an external electromagnetic field
(Rabi frequency �), while the other can decay with rate γ .
The Hamiltonian and the Lindbladian are

H = �σ x
1 + g(σ+

1 σ−
2 + σ−

1 σ+
2 ), (33)

Lρ =−i[H, ρ] + γ

2
(2σ−

2 ρσ+
2 − {σ+

2 σ−
2 , ρ}). (34)

The waiting time distributions are shown in Fig. 2, again for
both methods. In both this and the previous example, we have
found the Gillespie algorithm to be highly efficient, owing to
the low dimensionality of the Hilbert space (which implies a
low memory overhead).

C. Mesoscopic charge qubit under continuous
quantum measurement

As a further application, we considered the model of the
mesoscopic charge qubit presented in Refs. [9,14,34]. The
system is given by two coupled quantum dots, with Hamil-
tonian

H =
2∑

j=1

ω jσ
+
j σ−

j + �(σ+
1 σ−

2 + σ−
1 σ+

2 ), (35)

where ω1 and ω2 represent the electron annihilation and cre-
ation energy for the respective dot, and � sets the coupling
strength. The Lindbladian is given by

Lρ = −i[H, ρ] + D[T + χn1]ρ, (36)

where T and χ represent the tunneling amplitudes between
the two dots.

We reproduced the stochastic trajectory for the expecta-
tion value of the population-difference operator Zc (Fig. 2 in
Ref. [34]) using the Gillespie algorithm in Fig. 3, together
with the stochastic sequence of jump times. This simulation
shows the possibility to interpolate the states between the
jump times computed using the Gillespie algorithm.
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FIG. 3. Single-trajectory simulated expectation value of the pop-
ulation difference for the mesoscopic charge model, computed both
with SS-QJU (dotted blue line) and with the Gillespie algorithm
(solid orange line). For the latter, the expectation value of the ob-
servable Zc on the state right after the jump is represented with a
solid circle. In the lower panels, the corresponding jump times are
shown, as computed by the two methods. Parameters: ω1 = ω2 =
� = T = χ = 1, initial state |1〉 ⊗ |0〉. For SS-QJU, dt = 0.001; for
the Gillespie algorithm ts has intervals of 0.001 and is limited to a
final time of 10.

Note that the Gillespie algorithm does not give a rele-
vant advantage when only a small number of trajectories is
considered. In some cases, due to the precomputation stage,
it can actually take longer than time-discretization-based al-
gorithms. Instead, the power of the Gillespie algorithm we
propose comes to bear when a large number of trajectories
is taken into account. For this specific model, this can be
quite advantageous because quite often one has T 
 χ in
Eq. (36). This means that many jumps will occur, but most
of these will be uninformative. It therefore becomes relevant
to acquire the statistics over a very large number of jumps,
which is where the Gillespie method becomes particularly
powerful.

D. Kerr model

Finally, we consider the application of the Gillespie
method to the simulation of the Kerr model [35] described
by the Hamiltonian

H = �a†a + U

2
a†a†aa + F ∗a† + Fa, (37)

where a represents a bosonic annihilation operator, � is a
detuning parameter, U represents the intensity of the nonlinear
coupling, and F is the driving strength of an external laser.
The system undergoes a jumplike evolution, described by the
Lindbladian superoperator

Lρ = −i[H, ρ] + γ

2
(2aρa† − a†aρ − ρa†a), (38)

where γ is the decay rate. Quantum trajectories for this
model have recently been obtained experimentally in [13],
and our approach can be used to directly compare with that
experiment. In particular, we simulated the behavior of the
expectation value of the number operator a†a as a function

FIG. 4. Single-trajectory simulated expectation value of the
number operator for the Kerr model presented in the paper, computed
with both SS-QJU (dotted blue line) and the Gillespie algorithm
(solid orange circles). The expectation value of N on the steady state
is represented by the red dashed line. The lower panels show the jump
times obtained for the trajectories at the top, corresponding to each
method, respectively. Note how, for long times, SS-QJU does not
converge due to the error accumulation effect detailed in the paper,
while the Gillespie algorithm does. Parameters: � = 1.5, U = 0.05,
F = 3.27, γ = 1. For SS-QJU we used dt = 0.0001, while for the
Gillespie algorithm ts has intervals of 0.01 and is limited to a final
time of 50. The Hilbert-space size is cut at 30 Fock states, and the
initial state is the steady state of the system.

of time, both with SS-QJU and our Gillespie algorithm. The
results for a single trajectory are shown in Fig. 4. Contrary
to the previous example, in this case we did not fill the gaps
between the jumps in the case of the Gillespie algorithm: the
expectation value of the number operator is then known only
for the state right after the jump. This is compensated by a
significant gain in performances on the side of the Gillespie
algorithm: due to precomputation of the heaviest parts of the
simulation, obtaining data for a large number of trajectories
can be much faster than with other methods.

E. Three-level maser

To illustrate the application of the Gillespie algorithm in
the case of partial monitoring, we consider the three-level
maser model [36–38]. The maser, represented in Fig. 5(a),
consists of three energy levels, |0〉, |1〉, and |2〉, evolving
according to the Hamiltonian

H = ω0σ00 + ω1σ11 + ω2σ22 + ε
(
ei(�+ω1−ω0 )tσ01 + H.c.

)
,

(39)

where ω j represents the energy of the level | j〉, σi j = | j〉〈i|, �
is the detuning parameter, and ε is the driving intensity. The
system is coupled to two thermal baths at different tempera-
tures TH and TC , with respective coupling strengths γH and γC .
In an appropriate rotating frame [37], the Hamiltonian can be
rewritten as

H (rf) = −�σ11 + ε(σ01 + σ10), (40)
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FIG. 5. (a) Schematic of the three-level maser model. The jumps represented by solid lines are monitored; the channels represented by
dotted lines are unmonitored. The wavy line denotes the Hamiltonian evolution. (b) Relevant waiting time distributions for all possible
combinations of the two monitored jumps in the three-level model. Parameters: γH = 0.1, γC = 2, � = 0, � = 0.8, nH = 5, nC = 0.025,
dt = 0.01, final evolution time 100, 2 × 104 trajectories.

and the interactions with the baths take the form of four jump
operators:

LH,out =
√

γH (nH + 1)σ20,

LH,in = √
γH nHσ02,

(41)
LC,out =

√
γC (nC + 1)σ21,

LC,in = √
γCnCσ12,

where nH and nC are the bosonic average occupation numbers
of the hot and the cold bath, respectively.

To showcase the use of the Gillespie algorithm, we
consider the three-level maser system undergoing partial mon-
itoring. As represented in Fig. 5(a), we assume that the
experimenter is only able to access signals corresponding to
emissions from the system, but not the opposite. That is, the
monitored jump channels are Hout and Cout.

In particular, we compute all the four possible waiting time
distributions, represented in Fig. 5(b). Since purity is not con-
served in systems undergoing partial monitoring, if one was
to obtain the same plot using the MCW method, this would
require exponentially (with time) many more trajectories. It
is in the cases of partial monitoring and channel merging,
indeed, that the power of density-matrix-based methods is
unleashed.

V. DISCUSSION

As outlined above, two categories of simulation techniques
for quantum jump trajectories are commonly in use; on one
hand, SS-QJU splits the evolution into small time steps, and
for each of them determines whether an emission will prob-
abilistically take place. MCW, in contrast, exploits the norm
reduction of the conditional no-jump evolved state to sample
the survival probability. MCW requires purity-preserving evo-
lutions; this is the case for the finest unravelings of a GKSL

equation, but does not hold for coarser unravelings, corre-
sponding to, e.g., partial monitoring and channel merging.

In this section, we critically discuss the Gillespie al-
gorithm, highlighting its strengths and shortcomings. The
natural point of comparison is SS-QJU, as MCW is not di-
rectly applicable for coarser unravelings.

As common in physics simulations, we note a tradeoff
between memory footprint and computational time. The Gille-
spie algorithm saves calculation time by precomputing most
quantities of interest [in particular the vector Q(t )], which
are trajectory independent, before the actual simulation. This
works very well when the dimension of the considered Hilbert
space is relatively small (e.g., on the order of N ≈ 100 or
less). In contrast, for high-dimensional systems, the memory
required to store all the precomputed quantities may pose a
challenge. Similarly, our algorithm requires, in Eq. (7), the
exponentiation of the effective Hamiltonian; this passage can
be computationally costly for large systems.

Once the relevant quantities have been precomputed, the
simulation of each individual trajectory with the Gillespie
algorithm is very fast. In fact, computation is required only
in correspondence with jumps; no further precalculation is
required for the evolution between jumps. Considering the in-
terplay between precomputation and proper simulation time,
the Gillespie algorithm has a low marginal computational
cost per trajectory and thus works well for simulating large
numbers of trajectories. Thereby, the initial disadvantage due
to precomputation is offset by the advantage in each indi-
vidual trajectory simulation. An interesting step in achieving
even better performance would be the parallelization of the
trajectory evolution, such that each thread separately samples
a subset of the required trajectories. Analogously the precom-
putation step can also easily be parallelized. Parallelization
would further improve the execution time, but not reduce the
memory footprint.

In many cases, the Hamiltonian dynamics happens on a dif-
ferent (usually faster) timescale than the jumps. A simulation
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method that follows the evolution stepwise therefore has to
employ a very small time step to follow the fast Hamiltonian
oscillations; however, during most simulation steps no jumps
will occur, resulting in wasted computation time compared to
the “fast-forward” simulation logic underlying the Gillespie
algorithm. The algorithm therefore performs well when in the
regime of rare jumps.

The Gillespie algorithm does not natively compute the
system state at all times, but only at those immediately after
a jump. In this, it mimics the information available to an
experimenter, who has no access to the full state history,
but only to the measurement record in terms of jumps and
channels. While it is possible to fill the gaps between two
jumps (see Algorithm 2) to recover the state from a Gillespie
algorithm-based simulation, this partially undoes some of the
algorithm’s advantage. Hence, the algorithm is particularly
suited when the measurement record rather than full knowl-
edge of the state at arbitrary times is required.

The Gillespie algorithm is based on the initial precom-
putation of the function Q(t ). Under time-dependent driving
this precomputed function would not represent the actual
dynamics. Without further generalization, e.g., to periodic
driving, the Gillespie algorithm is thus not suitable for the
simulation of systems undergoing explicitly time-dependent
driving.

Algorithms that have to follow the Hamiltonian evolution
stepwise tend to be very sensitive to the simulation time step
dt , which has to be small enough to follow the oscillations
of the coherent dynamics. If dt is chosen too large, the sim-
ulation will lose convergence after some time. The Gillespie
algorithm does not need to follow the entire Hamiltonian evo-
lution, therefore avoiding this convergence issue. It therefore
exhibits good numerical stability. An example of this behavior
is shown in Fig. 4.

VI. CONCLUSIONS

In this paper, we have presented an algorithm to efficiently
simulate quantum jump trajectories: the Gillespie algorithm,
named after the classical algorithm that inspired it. It follows
a different logic from other algorithms for the same purpose in
that it allows leaping directly from one quantum jump to the
next, without having to go through many steps during which
no jumps take place. In contrast to MCW simulation, which
follows a similar logic—coherent evolution interspersed by
jumps according to the delay or waiting time distribution
[16–19]—, the Gillespie method can be used when the purity
of individual trajectories is not preserved, e.g., due to partial
monitoring or channel merging. The algorithm is therefore
particularly suitable for those cases in which there is a signif-
icant difference in timescales between very fast Hamiltonian
dynamics and much slower jump dynamics, and where only
partial information is gained during the jumps. We presented
examples of applications of the Gillespie algorithm to differ-
ent systems of interest, highlighting its advantageous points
with respect to alternative simulation techniques, such as
those based on time discretization or MCW methods. Adding
to these two approaches to the stochastic simulation of open
quantum systems, the quantum Gillespie algorithm thus adds
an additional simulation paradigm to the open quantum sys-
tems toolkit.
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