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Collision models describe the sequential interactions of a system with independent ancillas. Motivated by
recent advances in neutral atom arrays, here we investigate a model where the ancillas are governed by a classical
controller that allows them to queue up while they wait for their turn to interact with the system. The ancillas
can undergo individual open dynamics while they wait, which could cause them to, e.g., decohere. The system,
which plays the role of the server in the queue, can also undergo its own open dynamics whenever it is idle.
We show that this framework greatly generalizes existing approaches for quantum collision models, recovering
the deterministic and stochastic formulations in the appropriate limits. Next, we show how the combination of
queueing dynamics with quantum collisions introduces rich dynamical phenomena, including phase transitions
and a sharp dependence on the queue statistics.
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I. INTRODUCTION

Open quantum systems traditionally describe the interac-
tion with a many-body reservoir, whose properties are not
very controllable. However, advances in quantum-coherent
platforms motivate the design of synthetic open dynamics,
in which the environment is more structured. The canonical
example is cavity QED [1,2], in which the environment is a
stream of atoms that are sent toward a cavity in an orderly
fashion. Other important examples include cascaded quantum
systems [3–5], squeezed baths [6,7], and dispersive resonator
couplings [8–11]. Recent experiments with neutral atom ar-
rays [12–15] have taken this a step further and demonstrated
the efficient use of classical controllers, which can physically
move qubits at will in order to put them in contact so that
they can interact. These results motivate further studies on
engineered open dynamics.

An approach that has enjoyed significant success in this
respect are the so-called quantum collision models (QCMs)
[16–31], in which a central system interacts sequentially with
arriving ancillas, one at a time [Figs. 1(a) and 1(b)]. QCMs
replace the complex system+bath evolution with a simpler
dynamics involving only two bodies, at any given time. QCMs
allow for fine control over energetics and memory effects,
making them interesting for the study of thermodynamics
[17,32–35] and non-Markovianity [24,27,36–39]. For this rea-
son, in the past they have been used in various tasks, such as
metrology or thermometry [22,40–45], modeling of continu-
ous measurements [46–48], renewal processes [49–51], and
quantum battery charging protocols [52–55].

QCMs come in two standard flavors. The first, called
stochastic QCMs [Fig. 1(a)], is motivated by Boltzmann’s
molecular chaos hypothesis. It consists of a system that
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evolves unitarily by itself but is also subject to random colli-
sions by arriving ancillas. The interarrival times of the ancillas
are random, the duration of the collision process is short
and, afterwards, the ancillas leave the process and never in-
teract with the system again. The other flavor correspond to
the so-called deterministic QCMs, in which there is a “con-
veyor belt” of ancillas, usually prepared in identical states
[Fig. 1(b)]. Each ancilla interacts with the system for a fixed
duration, after which they leave and never participate again in
the dynamics. The reduced dynamics of the system is there-
fore stroboscopic. This kind of model fits naturally with cavity
QED [56–58] and also appears in quantum optics, whenever
the electromagnetic field is discretized in time bins [46,59].

Both types of QCMs can be imagined as particular cases
of a more general scenario, in which a classical controller
physically moves the ancillas according to some protocol.
In the stochastic QCM of Fig. 1(a) the controller randomly
fires particles at the system; and in the deterministic QCM
[Fig. 1(b)] the controller aligns them perfectly and ensure
that they all interact with the system for the same duration.
While these are two natural choices, they do not capture
effects such as noise in the ancilla state preparation or dif-
ficulties in tuning the interaction times to be precisely the
same. Motivated by this, one could also consider more general
controllers that introduce new dynamical rules for how the
system interacts with each ancilla, providing a more realistic
description. This will be the basic paradigm we adopt in this
article: the system-ancilla interaction is quantum, but the way
in which the ancillas are moved around is classical, governed
by an external controller. In neutral atom arrays, this paradigm
is the backbone of any quantum computation [12–14]. Our
interest here will be in exploring the different types of dynam-
ical behaviors that emerge from different controller protocols.
There is already a plethora of new effects that emerge from
comparing stochastic and deterministic QCMs. It is therefore
natural to expect that new controller protocols should lead to
rich new physics.
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FIG. 1. Quantum collision models (QCMs), where a system interacts sequentially with arriving ancillas. (a) Stochastic QCM, where ancil-
las arrive according to a random interarrival distribution. (b) Deterministic QCM, where a “conveyor belt” of ancillas interacts stroboscopically
with the system, at regular intervals. (c) The queued QCM introduced in this article. The system interacts with the ancilla via the quantum
channel ESA. If an ancilla arrives and another one is already interacting with the system, it will queue up and wait for its turn. While they wait,
ancillas can undergo a quantum channel EA that depends on the time spent in the queue W q

n . If no ancillas are waiting, the system becomes
idle and goes through a quantum channel ES that depends on the idle period duration In. (d) Circuit diagram describing the main quantities in
a classical queueing dynamics. Circles represent the ancilla’s arrivals, triangles describe the beginning of the system-ancilla interaction and
squares represent the ancilla’s departures. The waiting and idle times W q

n and In are determined from the interarrival and service times Tn and
Sn through the Lindley recursion relations (2) and (3). (e) Schematic depiction of the random queue size over time, displaying busy and idle
periods of the server (system). (f) Schematic depiction of a system observable over time, showing how it responds differently to idle dynamics
and system-ancilla interactions.

To illustrate that, we consider the introduction of just a
simple new ingredient. Namely, the assumption that when an
ancilla arrives, it will queue up and wait for its turn [Fig. 1(c)]
if the system is occupied with another ancilla. As we show,
this leads to an incredibly rich set of possible behaviors, since
it allows one to introduce additional dynamics for whenever
the system is idle (i.e., not interacting with ancilla), as well as
for when the ancilla is waiting in the queue. In fact, through
a simple qubit model, we illustrate how this competition be-
tween interaction and individual waiting or idle dynamics can
lead to effects such as steady-state phase transitions and sharp
dependence on the statistics of the queueing process.

II. QUEUEING THEORY

We consider a classical controller which brings the ancillas
sequentially, and queues them up while they wait for their
turn to interact with the system. The system plays the role
of a server, and the duration of their interaction is called
the service time. After the interaction, the ancillas leave and
do not participate again in the dynamics. The ancillas are
labeled n = 1, 2, 3, . . . , based on the order in which they
arrive. We let Tn denote the interarrival time between ancilla
n and n + 1, with T1 = 0 (i.e., we start counting from the
moment that the first ancilla arrives). And we let Sn denote
the service or interaction time between system and ancilla n
[Fig. 1(d)]. As we describe below, the set {Tn, Sn} completely
specifies the classical queueing structure. And, in principle,
no additional assumptions need to be made about them: they
can be deterministic or stochastic, and they can be statistically
independent or correlated. In the simplest case (known as a
G/G/1 queue) the {Tn, Sn} are taken to form two independent
and identically distributed (i.i.d.) sets, drawn from distribu-
tions pT (t ) and pS (s). Let λ = 1/E (T ) denote the average
interarrival rate, and μ = 1/E (S) the average service rate.
The steady-state properties of the queue are determined by

the ratio

r := λ

μ
. (1)

If r > 1 the queue builds up indefinitely, while if r < 1 the
queue population remains finite.

The unique feature of a queuing system is the interplay
between idle and waiting times. If there are no ancillas in
the queue immediately after a service is complete, the system
becomes idle until the next ancilla arrives. In this case, the new
ancilla does not have to wait and service starts immediately.
On the other hand, if the system is busy, any ancilla that arrives
will have to wait for some time.

The idle and waiting times can be determined from the set
{Tn, Sn}, through Lindley’s recursion relations [60–63]. We
denote by W q

n the time the nth ancilla waits in the queue,1

and by In the idle time of the system after the (n − 1)st ancilla
leaves and before the nth ancilla arrives. From the graphical
representation in Fig. 1(d), one deduces that [60]

W q
n+1 = max

{
0,W q

n + Sn − Tn
}
, (2)

In+1 = max
{
0,−(

W q
n + Sn − Tn

)}
, (3)

where W q
1 ≡ 0 (the first customer always finds the queue

empty) and I1 ≡ 0. One sees that W q
n In = 0, meaning either

there is no waiting for the ancilla or no idleness for the system.
That is, when the nth ancilla arrives to find the system idle,
it does not have to wait (In �= 0 and W q

n = 0). And if the
ancilla n is queued up when the system is done with ancilla
n − 1, the system will have no idle time (In = 0 and W q

n �= 0).
This property is further illustrated in Fig. 1(e), in terms of the
cumulative number of arrivals and departures.

1The superscript “q” is to emphasize that this is the time spent in
the queue, and not the overall time spent in the dynamics (queue +
service) which would be Wn = W q

n + Sn.
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The absolute time at which the nth ancilla arrives in the
queue is tn = ∑n−1

j=1 Tj , and the absolute time when it leaves
is sn = tn + W q

n + Sn—i.e., one adds to tn the time the ancilla
spent waiting and the time it spent interacting with the system.

III. QUEUED QUANTUM COLLISION MODELS

We assume, for simplicity, that all ancillas arrive in the
queue prepared in the same state ρA. A closed-form stochastic
equation can be obtained if we model the system dynamics in
discrete steps after each ancilla leaves the process. The queued
QCM is then fully specified by three quantum channels: (i)
the dynamics of the ancilla while it waits, EA(W q

n )[ρA]; (ii)
the dynamics of the system while it is idle, ES (In)[ρS]; (iii)
and the joint system-ancilla interaction ESA(Sn)[ρS ⊗ ρA]. The
subscripts denote in which Hilbert spaces each channel acts,
and the argument refers to the corresponding time. Denoting
by ρn

S the state of the system immediately after the nth ancilla
left (i.e., after the nth collision), the stochastic map connecting
ρn

S with ρn−1
S reads

ρn
S = TrA

{
ESA(Sn)

[
ES (In)

[
ρn−1

S

] ⊗ EA
(
W q

n

)
[ρA]

]}
, (4)

where TrA{·} denotes the partial trace over the ancilla. This
is the map specifying the stochastic dynamics of the sys-
tem. The ensemble averaged (unconditional) evolution would
be obtained by averaging over different realizations of the
queue. In general, there is no closed deterministic equation for
the unconditional evolution. Even though (4) is time-local, the
unconditional dynamics obtained by averaging over multiple
trajectories is generally non-Markovian [30,64].

Equation (4) encompasses the stochastic and deterministic
QCMs as particular cases:

(1) The deterministic QCM of Fig. 1(b) is recovered when
all Sn are equal (deterministic), Sn ≡ τSA, and we set ES =
EA = I; i.e., system and ancilla are not affected by their idle
or waiting dynamics. Equation (4) then reduces to

ρn
S = TrA

{
ESA(τSA)

[
ρn−1

S ⊗ ρA
]}

, (5)

which is deterministic.
(2) The stochastic QCM of Fig. 1(a) is recovered when

Tn � Sn. The ancillas never have to wait, W q
n = 0 [Eq. (2)],

so EA = I. And the idle time equals the waiting time In � Tn

[see Eq. (3)]. Equation (4) becomes

ρn
S = TrA

{
ESA(Sn)

[
ES (Tn)

[
ρn−1

S

] ⊗ ρA
]}

. (6)

The variables Tn and Sn are statistically independent, so it is
possible to ensemble average the map, yielding

�n
S = TrA

{
ĒSA

[
ĒS

[
�n−1

S

] ⊗ ρA
]}

, (7)

where �n
S = E (ρn

S ) is the ensemble averaged (unconditional)
state, ĒSA = ∫

ds ESA(s)pS (s) is the system-ancilla channel
averaged over the service time distribution pS (s), while ĒS =∫

dt ES (t )pT (t ) is the system idle dynamics, averaged over the
interarrival times.

IV. EXAMPLE: COHERENCE EVOLUTION
UNDER AN XXZ INTERACTION

The main goal in this article is to illustrate how the queue-
ing structure can bring insights about new physics, that is not

(a)

(c)

(b)

(d)

FIG. 2. [(a),(b)] Average of the coherence E (C) in the long-time
limit as a function of r for different values of g�. [(c),(d)] Same,
but as a function of g� for different values of r. Panels (a) and
(c) consider a queueing process where the interarrival times Tn are
exponentially distributed with average 1/λ and the service times
are all constant given by Sn = 1/μ, i.e., an M/D/1 queue. Panels
(b) and (d) consider a queueing process where both interarrival Tn

and service times Sn are exponentially distributed, with averages 1/λ

and 1/μ, respectively, characterizing an M/M/1 queue. For all plots
we considered g = π/12, and γ = 0.05.

present in the stochastic or deterministic QCMs. To do that,
we consider a model in which both system and ancillas are
qubits, interacting according to the XXZ interaction

HSA = g
(
σ S

x σ A
x + σ S

y σ A
y + �σ S

z σ A
z

)
. (8)

All qubits are also subject to environmental dephasing,
described by a quantum master equation with the Lind-
blad dissipator D[σz](ρ) = γ (σzρσz − ρ). The three channels
ES (In), EA(W q

n ) and ESA(Sn) in Eq. (4) are thus specified in
terms of the corresponding Liouvillians (semigroup gener-
ators) Lα as Eα (t ) = eLαt (with α = S, A, SA). The idle or
waiting dynamics are assumed to be given by pure dephasing,
so Lα = D[σα

z ] for α = S, A. For the system-ancilla interac-
tion (α = SA) we have pure dephasing in both system and
ancilla, plus their interactions

LSA(ρSA) = −i[HSA, ρSA] + D
[
σ S

z

]
(ρSA) + D

[
σ A

z

]
(ρSA).

(9)

The ancillas are prepared in ρA = |+〉〈+|, where |+〉 =
(|0〉 + |1〉)/

√
2. We focus on how the coherence in the system,

defined as C = |Tr(σ+ρS )| [65], behaves in the steady state.
That is, we stochastically generate the queued collision model
and average C over many collisions in a single run. If the
ancillas wait for too long in the queue, they will decohere.
And if the system is idle for very long periods, it will de-
cohere as well. However, as we will see, the competition
between the effects can lead to nontrivial, and nonmonotonic
behaviors. We provide more details and further discuss this
competition in the Appendix. Here, we focus on the average
E (C) [Fig. 2]. We compare two queueing systems, the M/D/1
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[Figs. 2(a) and 2(c)] and M/M/1 [Figs. 2(b) and 2(d)]. In
both the interarrival time is given by a exponential distribution
pT (t ) = λe−λt , with arrival rate λ. In the M/D/1 model we
take the service time to be deterministic, Sn = 1/μ. In the
M/M/1 model we take it to also be exponentially distributed,
pS (s) = μe−μs, with service rate μ. Figures 2(a) and 2(b)
show results as a function of r = λ/μ [Eq. (1)], for different
values of g�. And Figs. 2(c) and 2(d) show the results as a
function of g� for different r.

In Figs. 2(a) and 2(b) we see a nonmonotonic behavior of
E (C) with r, which reflects the nontrivial interplay of waiting
and idle times. There is an optimal value r ∈ [0, 1], which de-
pends on the quantum dynamics parameters g and γ , for which
the coherence reaches a maximum. For r = 1 the behavior of
E (C) is nonanalytic. This happens because the queue popu-
lation grows indefinitely for r > 1, and therefore diverges in
the steady state. As a consequence, the waiting times of the
ancillas also diverge, and they completely decohere. In other
words, for r > 1 all ancillas interact with the system in the
maximally mixed state ρA = (1/2)I (in the steady state). In
this case, the system reaches a true steady state. For r < 1,
the dynamics fluctuate for arbitrarily long times [alternating
between idle and busy periods, see Fig. 1(f)] so the system
never reaches a steady state. This effect also becomes visible
by plotting the variance of C in a single run (see Appendix).

The behavior for r < 1 in Figs. 2(a) and 2(b) is quite
different for the M/D/1 and M/M/1 models. To better ap-
preciate this, we analyze the system as a function of g� for
different r. The XXZ interaction (8) acts as a partial SWAP, that
transfer part of the ancilla’s coherence, but with a nontrivial
phase depending on �; the true partial SWAP is recovered only
for � = 1 [66]. In the M/D/1 [Fig. 2(c)] we observe sharp
oscillations of E (C) as a function of g�. And an almost perfect
data collapse between curves for different r. Conversely, for
the M/M/1 [Fig. 2(d)] the behavior is markedly different:
E (C) has a peak at some finite g�, and then saturates. The
value at which it saturates also depends very weakly on r. This
is a consequence of random-phase averaging: in the M/M/1
model each system-ancilla collision lasts for a different time,
and therefore the phase picked up by the system randomly
fluctuates as well.

V. CONCLUSIONS

We have introduced a dynamical model of open quantum
dynamics, in which a system interacts sequentially with an-
cillas, in a way that is governed by a classical controller. The
only assumption is that the system interacts only with one an-
cilla at a time. All other dynamical properties are established
by the choice of interarrival and service times Tn and Sn, as
well as the quantum maps ESA, EA, and ES . This framework
therefore generalizes collision models, containing previously
studied QCMs as particular or limiting cases. Our goal with
this article was to put forward this interesting connection
between queued dynamics and collision models, and also to
illustrate the different type of dynamics that emerges from
such a connection. Our model provides a robust framework for
exploring novel phenomena arising from synthetic open dy-
namics governed by classical controllers. We did this through
a minimal model of coherence transfer between qubits, where

we showed that the interplay between different queue statis-
tics and dynamical parameters lead to nonanalytic behavior
characteristic of phase transitions, as well as to strong de-
pendencies on the quantum model, which are not present in
standard collision models.

There is still much to be explored about the map (4),
including particular cases that might allow for analytical solu-
tions or other types of competing dynamics that could lead to
interesting behaviors. In addition, the basic building blocks
introduced here naturally lead to various other dynamical
models. First, one could allow the ancillas to interact with
each other while in the queue. Second, one can introduce
priority mechanisms, where certain ancillas are flagged as
priorities, and therefore allowed to skip the queue entirely
[67–69]. Third, one could study pairwise queues, where an-
cillas from each queue interact with one another in a pairwise
fashion, a setup normally referred to as “taxicab” queues.
This closely matches the quantum computations with neutral
atom arrays [13]. Fourth, one could introduce mechanisms in
which the quantum dynamics also affect the classical queue.
In Eq. (4) the classical queue dynamics affects the quantum
properties, but not vice versa. One way to change that is, for
example, to have the system-ancilla service time be deter-
mined by the occurrence of a quantum jump in the system
(e.g., a photon is emitted). It is our hope that these future
research directions motivate the study of synthetic open quan-
tum dynamics, described by classical controllers.
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APPENDIX A: COMMENTS ABOUT QUEUES
AND DERIVATION OF LINDLEY’S EQUATION

A queueing process is defined by the interarrival times Tn

and the service times Sn. Although the recursion relations
(2) and (3) effectively provide a way to “solve” the queue
by calculating the idle times In and waiting times W q

n for
every customer (ancilla), they make no mention toward the
distributions of those quantities. Therefore, a natural question
to address is what the distributions of In and W q

n look like. One
aspect that makes this analysis nontrivial and interesting is the
fact that both distributions are a sum of a discrete part and a
continuous smooth part, e.g.,

P
(
W q

n

) = P0δ
(
W q

n

) + f
(
W q

n

)
,

P(In) = I0δ(In) + g(In),

where P0 and I0 account for the nonvanishing probability that
the ancilla has no waiting time (i.e., finds the queue empty
upon arrival) or the system has no idle time, respectively.
Functions f (g) denote some smooth function that depends on
W q

n (In). In what follows, we analyze some of the richness
behind the distributions P(W q

n ) and P(In) in the case where
both Tn and Sn are independent and identically distributed
(i.i.d.) random variables.
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Let us denote the cumulative distribution function (CDF)
of the waiting times as

Fn(x) = P
(
W q

n � x
)
. (A1)

Here it is convenient to introduce Un = Sn − Tn, which is an
i.i.d. random variable distributed according to a probability
density function p(u). It follows that

Fn+1(x) = P
(
W q

n+1 � x
)

= P
(
W q

n+1 = 0
) + P

(
0 < W q

n+1 � x
)

= P
(
W q

n + Un � 0
) + P

(
0 < W q

n + Un � x
)

= P
(
W q

n + Un � x
)

=
∫ x

−∞
P
(
W q

n � x − u
)
p(u)du,

where we conclude, after changing variables to v = x − u,

Fn+1(x) =
∫ ∞

0
Fn(v)p(x − v)dv. (A2)

This result is known as the Lindley equation. It allows us
to specify the CDF of any customer in terms of only the
CDF of the previous customer. Given that Fn(x) are CDFs,
they have the following properties: (i) F1(x) = 1, ∀ x � 0,
which follows from W q

1 ≡ 0; (ii) Fn(x → ∞) = 1; (iii) Fn(0)
is generally not zero, since this represents the probability that
the customer finds the queue empty and does not have to wait.

Following the same procedure, we use the recursion rela-
tions (2) and (3) to derive a result where the idle time statistics
can be calculated from the waiting time probabilities Fn(x).
The starting point is

P(In+1 � x) = P(In+1 = 0) + P(0 < In+1 � x),

applying the recursion relations (2) and (3),

P
(
In+1 � x

) = P
(
W q

n + Un = 0
) + P

(
0 < −(

W q
n + Un � x

)
= P

(
W q

n + Un � 0
) + P

( − x � W q
n + Un < 0

)
= P

( − x � W q
n + Un

)
= P

(
W q

n � −x − Un
)

(x � 0).

Now we use the fact that Un is an i.i.d. random variable with a
PDF given by p(u). It follows that

P(In+1 � x) =
∫ −∞

∞
du p(u)P

(
W q

n � −x − u
)

=
∫ ∞

−∞
du p(u)

[
1 − P

(
W q

n � −x − u
)]

= 1 −
∫ −x

−∞
du p(u)Fn(−x − u),

so the result becomes

Gn+1(x) = P(In+1 � x) = 1 −
∫ ∞

0
dv p(−x − v)Fn(v),

(A3)

with v = −x − u.

APPENDIX B: STEADY-STATE SOLUTION
FOR THE DETERMINISTIC QCM

We further elaborate on the steady-state solution of the
deterministic QCM in Fig. 1(b) from the queued QCM. Here,
we consider Sn � Tn, so ancillas arrive much more quickly
than the system can serve them. As a consequence, the queue
quickly builds up, and the system will never be idle (In = 0),
so ES is the identity. To make a connection with typical de-
terministic QCM dynamics, we also assume that there is no
waiting time dynamics for the ancillas. The dynamics from
Eq. (4) then reduce to

ρn
S = TrA

[
ESA(Sn)

(
ρn−1

S ⊗ ρA
)]

. (B1)

The expectation value of the state after the collision with the
nth ancilla is then given by

E
[
ρn

S

] =
∫

dS1 . . . dSnP(S1) . . . P(Sn)

× TrA
[
ESA(Sn)

(
ρn−1

S ⊗ ρA
)]

=
∫

dSnP(Sn)TrA
[
ESA(Sn)

(
E

[
ρn−1

S

] ⊗ ρA
)]

,

and the steady state follows:

E
[
ρss

S

] =
∫

dsP(s)TrA
[
ESA(s)

(
E

[
ρss

S

] ⊗ ρA
)]

(B2)

= �
[
E

(
ρss

S

)]
. (B3)

Note that the steady-state solution is reached irrespective
of the properties of the service times Sn. However, to re-
cover the standard formulation, we may assume that Sn =
τSA, and that the system-ancilla map is unitary, of the
form ESA ≡ USA(τSA)[•] = e−iHSAτSA • eiHSAτSA , where HSA is
the system-ancilla Hamiltonian. We emphasize, however, that
the steady-state solution does not rely on this last assumption.
In the case that Sn = τSA, the integration (B2) becomes trivial.

APPENDIX C: RECOVERING THE STOCHASTIC QCM
FROM THE QUEUED QCM

While the queued QCM dynamics is highly non-
Markovian, the stroboscopic realization we described in the
main text is Markovian by construction [Eq. (4)], because
there we take into account the discrete times taken when
the service ends. This is known as a Markovian embedding.
Here, we expand on this discussion and show how one recov-
ers the stochastic model in Fig. 1(a) from the queued QCM
(4), considering a “time ensemble.” We consider Tn � Sn,
which implies, following Eq. (3), that W q

n+1 � 0 and In+1 �
Tn, which effectively “decouples” the distributions of Tn and
Sn with regards to their interplay for computing In and W q

n .
The queue is empty most of the time, so ancillas arriving do
not have to wait. The system is evolving, most of the time,
under the idle map ES (Tn−1), which now depends only on the
interarrival times Tn−1. We also assume that ESA(Sn) = ESA is
still nontrivial, even for very small Sn. Under these assump-
tions, Eq. (4) reduces to

ρn
S = TrA

{
ESA

[
ES (Tn−1)

[
ρn−1

S

] ⊗ ρA
]}

. (C1)
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It is clear that in this limit any stochasticity in the model
will reside in the statistics of Tn−1. The usual stochastic QCMs
correspond to the case where the interarrival times Tn are
i.i.d. with distribution pT (t ). A more common representation
of stochastic QCMs is obtained if one switches to a time
ensemble, where we describe the state of the system at a
definite time but allow the number of collisions to vary. This
can be accomplished by defining

�
(n)
S (t ) := E

[
ρn

Sδ(t − sn−1)
]
/E [δ(t − sn−1)], (C2)

where the average is over the joint realization of all interar-
rival times, and sn denotes the absolute time, given by sn :=∑n

j=1(I j + S j ). The state �
(n)
S (t ) now describes the evolution

of the system over some time t , where the number of collisions

n can vary. Explicitly, the expectation values are given by

E [·] =
∫

dT1 · · · dTn−1(·)P(T1) · · · P(Tn−1)

≡
∫

dT1...n−1(·)P(T1...n−1).

It then follows that

�
(n)
S (t ) = 1

E [δ(t − sn−1)]

∫
dT1...n−1P(T1...n−1)δ(t − sn−1)

× TrA
[
ESA

(
ES (Tn−1)

(
ρn−1

S

) ⊗ ρA
)]

,

where the only term that depends on the interarrival time Tn−1

is the idle dynamics channel. On top of that, we can substitute
sn−1 = sn−2 + In−1 + Sn−1 = sn−2 + Tn−2 in the delta inside
the integral, so we get

�
(n)
S (t ) = 1

E [δ(t − sn−1)]

∫
dTn−1P(Tn−1)TrA

{
ESA

[
ES (Tn−1)

(∫
P(T1...n−2)ρn−1

S δ(t − sn−2 − Tn−2)dT1...n−2

)
⊗ ρA

]}
,

= E [δ(t − sn−2)]

E [δ(t − sn−1)]

∫
dTn−1P(Tn−1)TrA

[
ESA

(
ES (Tn−1)

[
ρ

(n−1)
S (t − Tn−1)

] ⊗ ρA
)]

.

By defining �̃
(n)
S (t ) := �

(n)
S (t )E [δ(t − sn−1)] and changing

variables Tn−1 ≡ t ′, we obtain the final result

�̃
(n)
S (t ) =

∫
dt ′ pT

(
t ′)TrA

[
ESA

(
ES (t ′)

[
�̃

(n−1)
S (t − t ′)

] ⊗ ρA
)]

,

(C3)

where P(t ′) ≡ pT (t ′). Equation (C3) describes precisely the
familiar representation used in studies of stochastic QCMs
[21].

APPENDIX D: VARIANCE OF THE COHERENCE
EVOLUTION UNDER AN XXZ INTERACTION

In the main text, we discussed some features that appeared
due to the queueing mechanism in the dynamics by studying
the average coherence of the qubit model under an XXZ
interaction. Here, we extend this discussion by exploring the
variance of the coherence, Var(C) = E (C2) − E (C)2. In Fig. 3
we plot the variance of the coherence as a function of r and
g� for the M/D/1 and M/M/1 queue models.

The behavior for r < 1 in Figs. 3(a) and 3(b) is once again
quite different for the M/D/1 and M/M/1 models. First,
we see that in the M/D/1 case [Fig. 3(a)] the fluctuations
are greater for small but nonzero r as well as for r → 1. In
particular, we observe that, for r = 1, the fluctuations tend
to diverge, which is a typical feature of phase transitions.
In the M/M/1 case, we have different behaviors depending
on the value of g�. For the smallest one (g� = 0.1), the
behavior is similar to the one from the M/D/1 case where
we observe peaks around r → 0 and r → 1. But as we in-
crease the anisotropy, the fluctuations become monotonically
decreasing, and, in particular, all curves match once we reach
g� ≈ 1. In both queueing models, the variance also becomes
nonanalytic at r = 1, irrespective of the g� value.

In Figs. 3(c) and 3(d) we explore how the fluctuations
behave as a function of g�, for different values of r. For
the M/D/1 case [Fig. 3(c)], we observe sharp oscillations,
but with a more irregular pattern in comparison with the
oscillations observed for the average [Fig. 2(c)]. Likewise, the
behavior for the M/M/1 queue [Fig. 3(d)] also follows what

(a)

(c)

(b)

(d)

V
ar

V
ar

V
ar

V
ar

FIG. 3. [(a),(b)] Variance of the coherence E (C) in the long-time
limit as a function of r for different values of g�. [(c),(d)] Same,
but as a function of g� for different values of r. Panels (a) and
(c) consider a queueing process where the interarrival times Tn are
exponentially distributed with average 1/λ and the service times
are all constant given by Sn = 1/μ, i.e., an M/D/1 queue. Panels
(b) and (d) consider a queueing process where both interarrival Tn

and service times Sn are exponentially distributed, with averages 1/λ

and 1/μ, respectively, characterizing an M/M/1 queue. For all plots
we considered g = π/12 and γ = 0.05.

032220-6



QUEUED QUANTUM COLLISION MODELS PHYSICAL REVIEW A 111, 032220 (2025)

we observed before [see Fig. 2(d)], there is a peak at some
finite g� followed by a saturation that depends weakly on the
values of r. This suggests that the random phases that arise as
a consequence of the anisotropy do not play a key role in the
fluctuations.

APPENDIX E: FURTHER EXAMPLES
OF THE QUEUED DYNAMICS

In the main text, we considered a qubit model of coherence
transfer where both the system and the ancillas underwent a
dephasing channel during their idle and waiting dynamics,
respectively. Their interaction was given by a quantum master
equation that involved a partial SWAP as well as a dephasing,
described by the jump operators. The goal was to prepare
ancillas with coherence and observe the coherence transfer to
the system through the noisy partial SWAP interactions as a
function of r [Eq. (1)] and g�. We observed that the queueing
process played an important role in the dynamics, in partic-
ular, we saw that the anisotropy � could severely enhance
or suppress the transfer. However, one feature that deserves
further attention is the competition between the different dy-
namical channels that arise as a consequence of the interplay
of waiting or idle times. This is what we explore here.

To that end, we consider a simpler model where the system
and ancillas are qubits, which exchange excitations via a per-
fect partial SWAP unitary ESA ≡ USA(Sn)[ρS ⊗ ρA] = USn (ρS ⊗
ρA)U †

Sn
, where USn = i cos(gSn) + sin(gSn)Uswap. Here g con-

trols the strength of the interaction and Uswap is the full SWAP

(one can think that this interaction is an approximation where
the dephasing during interactions is negligible). The ancillas
are prepared in ρA = |+〉〈+|, where |+〉 = (|0〉 + |1〉)/

√
2

and |0/1〉 are the eigenstates of the Pauli matrix σz. The
partial SWAP dynamics therefore transfers some of the co-
herence from the ancillas to the system. We consider that
the idle channel and the waiting time channel are both de-
scribed by a dephasing channel E (t )[ρ] = 1

2 [(1 + e−γ t )ρ +
(1 − e−γ t )σzρσz] with t → In for the system and t → W q

n

for the ancillas. The goal now is to observe the competition
that maintains the system in a state with a high amount of
coherence, which we quantify through the average E (C) =
|Tr(σ+ρS )|. In this regard, the regimes where r > 1 or Tn �
Sn are both deleterious. In the former, the ancillas wait too
long and hence lose the coherence before they transfer it to
the system. In the latter, the system is idle too often and
hence loses the coherences it receives from the ancillas. To
illustrate this interplay more concretely, we assume that the
service times are all equal and deterministic, Sn = τSA ≡ 1/μ,
while the interarrival times Tn are i.i.d. and exponentially
distributed, with pT (t ) = λe−λt , where λ determines the rate
of arrivals. That is, we consider here a M/D/1 queueing
process. The queueing properties are then fully determined
by r = λ/μ. The quantum dynamics, on the other hand, is
described by the interplay between the timescales gτSA, γ In,
and γW q

n .
Now, to elucidate the effect of each dynamical quantum

channel separately (and then their competition), we consider
two particular cases. In the first, we consider that there is
dephasing only in the system, so the idle channel is ES (t )[ρ] =
1
2 [(1 + e−γ t )ρ + (1 − e−γ t )σzρσz] with t → In, and the

(a)

(c)(b)

V
ar

FIG. 4. (a) Single-shot coherence C as a function of ancilla
number (evaluated at the times each ancilla leaves the process),
for different values of r, with γ = 0.05 and g = π/12. Here we
consider only idle dephasing dynamics. (b) Average coherence E (C)
and (c) variance of the coherence Var(C) in the long-time limit as
a function of r, for different values of coupling strength g, with
γ = 0.05.

waiting time channel is the identity (EA = I). In the second,
we have a dephasing channel only for the ancillas, so the idle
channel is the identity (ES = I) and the waiting time chan-
nel is EA(t )[ρ] = 1

2 [(1 + e−γ t )ρ + (1 − e−γ t )σzρσz] with
t → W q

n .
Let us begin by discussing the first case, where the de-

phasing channel describes only the idle system dynamics. In
Fig. 4(a) we plot the coherence after each ancilla collision
for different values of r. In this setup, ancillas always have
coherence 1/2 (they are prepared in the state ρA = |+〉〈+|)
whereas the system loses coherence whenever it becomes
idle. This competition gives rise to the oscillations observed
in Fig. 4(a) for r < 1. Since there is no other mechanism in
which the system may obtain coherence, we observe that the
average coherence is monotonically increasing with respect
to r, see Fig. 4(b). This result is intuitive in the sense that if
the arrivals are more frequent, the system is less and less idle,
hence it loses less and less coherence. Once r > 1 is reached,
a transition takes place and the system becomes permanently
busy. The process becomes a homogenization problem, where

lim
n→∞ ρn

S = ρA,

and a true steady state is reached because the fluctuations go
to zero, see Fig. 4(c).

In the second case, we consider that the dephasing channel
describes only the ancilla waiting time dynamics. In Fig. 5(a)
we plot the coherence after each ancilla collision for differ-
ent values of r. Here, ancillas lose coherence depending on
how long they wait in the queue, but the system does not
lose any coherence while it is idle. The coherence transfer,
therefore, becomes a competition between the partially
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(a)

(c)(b)

V
ar

FIG. 5. (a) Single shot coherence C as a function of ancilla
number (evaluated at the times each ancilla leaves the process),
for different values of r, with γ = 0.05 and g = π/12. Here we
consider only waiting time dynamics. (b) Average coherence E (C)
and (c) variance of the coherence Var(C) in the long-time limit as
a function of r, for different values of coupling strength g, with
γ = 0.05.

dephased ancillas and the remaining coherence of the system,
which is acquired through previous partial SWAP interactions.
This kind of competition effect gives rise to a peculiar fea-
ture that is observed in Fig. 5(b): the average coherence is
independent of the interaction strength g. This is an artifact of
the very long time behavior. Since the system does not lose
any coherence when it is idle, what effectively dictates how
much coherence it will have in long times is how strongly
dephased the ancillas are. For smaller values of r, even if
ancillas arrive very rarely, they lose very little coherence, so
the partial SWAPs will eventually lead the system to a high co-
herence state. As the frequency of arrivals increases, the queue
starts to pile up and as a consequence, the coherence in the
long-time limit will be smaller because interactions take place
with very strongly dephased ancillas. Once r > 1 is reached,
a transition takes place and the queue grows indefinitely with
every ancilla being completely dephased. As a consequence,
the system loses all coherence. The model now homoge-
nizes to the completely dephased ancilla state, which is the
identity:

lim
n→∞ ρn

S = EA(t → ∞)[ρA] = 1
2I.

Note that this is a steady state of the dynamics because the
fluctuations vanish, see Fig. 5(c).

After we analyzed the effect that each dynamical channel
has in the long time dynamics of the system, we now turn
our attention to the case where both the waiting time and
the idle dynamics are described by the dephasing channel
with some γ . In Fig. 6(a) we plot the coherence after each
ancilla collision for different values of r. In the first few

(a)

(c)(b)

V
ar

FIG. 6. (a) Single shot coherence C as a function of ancilla
number (evaluated at the times each ancilla leaves the process), for
different values of r, with γ = 0.05 and g = π/12. (b) Average
coherence E (C) and (c) variance of the coherence Var(C) in the
long-time limit as a function of r, for different values of coupling
strength g, with γ = 0.05.

collisions, the coherence grows. For the two smaller r curves,
it oscillates roughly around a constant, while for r > 1 it
drops down to zero. This happens because for r � 1 the
queue quickly becomes unbounded and the ancilla waiting
times start to diverge. A more systematic analysis is shown in
Fig. 6(b), where we study average coherence in the long-time
limit, after very many collisions. The quantity is plotted as
a function of r, showing a clear transition at r = 1, where
E (C) is nonanalytic. More interestingly, the coherence is not
monotonic with r, which reflects the nontrivial interplay of
waiting and idle times and, consequently, the competition
between the idle or waiting time dynamical channel. There
is, therefore, an optimal value r ∈ [0, 1], which depends on
the quantum dynamics parameters g and γ , for which the
coherence reaches a maximum. This feature is due exclusively
to the queueing process. The idle dynamics captures the small
r behavior [left part of Fig. 6(b)] whereas the waiting time
dynamics is the dominant process for r ≈ 1 [right part of
Fig. 6(b)]. The competition between the two channels and
their interplay (which ultimately boils down to the underlying
queueing process) gives rise to the optimal point observed in
Fig. 6(b).

Another important feature of the queueing dynamics is
that, depending on the queue parameter r, the system may
never reach a steady state. The dynamics will cause the system
state to fluctuate for arbitrarily long times. We illustrate this in
Fig. 6(c), where we plot the single variance of the coherence
Var(C), computed in the long-time limit. Following what hap-
pened to the average, the variance of the coherence is also
nonanalytic at r = 1. We see that for r > 1 the fluctuations
tend exactly to zero, which characterizes a true steady state.
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Conversely, for r < 1 the fluctuations are nonzero, even in
the long-time limit. This happens because in this regime the

queue randomly alternates between idle and busy periods, as
depicted in Fig. 1(e).
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