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Waiting time statistics for a double quantum dot coupled to an optical cavity
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A double quantum dot coupled to an optical cavity is a prototypical example of a nontrivial open quantum
system. Recent experimental and theoretical studies show that this system is a candidate for single-photon
detection in the microwave domain. This motivates studies that go beyond just the average current, and also take
into account the full counting statistics of photon and electron detections. With this in mind, here we provide a
detailed analysis of the waiting time statistics of this system within the quantum jump unraveling, which allows
us to extract analytical expressions for the success and failure probabilities, as well as for the interdetection times.
Furthermore, by comparing single- and multiphoton scenarios, we infer a hierarchy of occurrence probabilities
for the different events, highlighting the role of photon interference events in the detection probabilities. Our
results therefore provide a direct illustration of how waiting time statistics can be used to optimize a timely and
relevant metrological task.
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I. INTRODUCTION

The use of waiting time statistics formalism extends to
the analysis of diverse stochastic processes, encompassing
realms such as quantum optics [1,2], electronic transport
[3–6], thermodynamic uncertainty relations [7,8], and en-
tropy production estimation [9], as pioneered by Stratonovich
[10]. This powerful tool finds application in quantum master
equations, enabling the study of system dynamics through
quantum jumps [11,12], shifting the focus from explicit so-
lutions of the von Neumann equation to the examination of
waiting time distributions (WTDs) [13–20]. Notably, this ap-
proach proves valuable when describing systems with discrete
phenomena, such as the punctual creation or annihilation of
modes, as is the case with the coupling of a double quantum
dot (DQD) to an optical cavity (OC).

The theoretical framework of the DQD-OC coupling is
intricate, representing a nontrivial fermionic system interact-
ing with a nontrivial bosonic system, allowing for analytical
solutions only under specific considerations [21]. These so-
lutions unveil the statistical nature and constraints of the
system [21–24]. Beyond its theoretical richness, the DQD-
OC system holds direct experimental relevance in diverse
fields, including spectroscopy [25,26], photon observation in
astronomy [27], the implementation of quantum circuits [28],
and emerging THz quantum technologies [29]. Notably, the
system’s distinctive feature lies in its ability to function as
a photodetector with a unique characteristic: the capacity to
capture microwave-scale photons, an energy range four to five
times smaller than the optical regime [30].
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By employing the waiting time statistics formalism, the
analysis of the DQD-OC system enables the explicit deter-
mination of the probabilities associated with the success or
failure of photon detection. Additionally, this approach com-
plements the estimation of quantum efficiency through full
counting statistics [21,22], offering valuable insights into the
performance of this system in photon detection applications.

In this paper we investigate the waiting time statistics of
a DQD-OC setup, unraveled in terms of clicks associated to
both electron detection and photon leaks. We focus on regimes
allowing for analytical solutions, and show that these can shed
light on the potential applications of these devices as single-
photon detectors.

This work is structured as follows: In Sec. II, we provide
a detailed description of the DQD and the OC, along with the
formalism describing their coupling. Section III introduces
the fundamentals of the waiting time statistics formalism,
drawing heavily from Sec. VI A of Ref. [14]. In Sec. IV, we
present our main results, applying the waiting time statistics
formalism to analyze the probabilities of photon leakage or
absorption in the DQD-OC setup. This analysis is conducted
for two distinct initial conditions, with a discussion of their
physical significance and relevance. Section IV B explores
how our findings relate to the quantum efficiency of photode-
tectors based on DQD-OC systems, such as the one studied in
Ref. [30]. Finally, Sec. VI provides a summary of our results
and concluding remarks.

II. SYSTEM AND MODEL

Our focus lies in the investigation of a system comprising
a double quantum dot (DQD) coupled to an optical cavity
(OC) [22,30], as depicted in Fig. 1. The DQD, highlighted in
orange and black in Fig. 1, can be modeled as two connected
potential wells, each capable of confining a single fermion at a
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FIG. 1. Schematic representation of a double quantum dot
(DQD) system coupled to an optical cavity (OC). The DQD consists
of two particle reservoirs (depicted in orange) each coupled to a
potential well (black spheres). An electron in the ground state can
exist in a superposition between the two potential wells. The OC
is represented by two gray plates, which receive a photon pump
(red arrows) and selectively allow photons of a specific frequency to
persist within it. A surviving photon is illustrated by the blue wiggly
line. The top panel depicts the interaction (with coupling intensity
g) between the surviving photon in the OC and the electron in the
DQD’s ground state. In this process, the electron absorbs the photon,
transitions to the excited state, and tunnels into the right particle
reservoir, generating a detectable photocurrent. The excited electron
is represented by the blue arrow. The bottom panel illustrates a failed
photodetection process: The surviving photon does not interact with
the DQD electron and simply passes through the OC, leaking out at
a rate κ .

time. Additionally, each well is coupled to a particle reservoir,
typically metallic leads, which can exchange free electrons by
either donating or receiving them. In the Coulomb blockade
regime, disregarding electron spin and focusing solely on its
presence in the potential wells, the Hamiltonian describing the
DQD is given by

HDQD = ε

2
(|R〉〈R| − |L〉〈L|) + tc(|R〉〈L| + |L〉〈R|), (1)

where |0〉 represents the Fock state denoting the absence of
electrons (Z = 0), the presence of an electron in the right dot
(Z = R), or in the left dot (Z = L). Here, ε signifies the energy
of the dots, and tc represents the coupling energy between
them. Employing a transformation matrix

⎛
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|0〉

⎞
⎠ =

⎛
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− ε
�

2tc
�

0

− 2tc
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�

0

0 0 1

⎞
⎟⎠

⎛
⎝|g〉

|e〉
|0〉

⎞
⎠, � ≡

√
4t2

c + ε2,

(2)

we redefine HDQD in terms of the excited (|e〉) and ground (|g〉)
eigenstates, yielding

HDQD = �

2
(|e〉〈e| − |g〉〈g|) ≡ �

2
σ3. (3)

On the other hand, the OC, represented as the gray plates
in Fig. 1, is a specialized cavity that, when subjected to a
photon pump (illustrated by the red arrows in the figure, such
as a LASER), exhibits geometric and chemical properties that
selectively permit, on average, only photons with a specific
frequency to enter [31]. The total Hamiltonian HOC for this
system is expressed as

HOC = ωra†a + ξ (eiωl t a† + e−iωl t a), (4)

where a is a bosonic mode, ωr denotes the resonance fre-
quency of the cavity, ωl is the pump frequency, and ξ is the
pump strength.

Finally, to the lowest order, the DQD-OC coupling can be
approximated by the Jaynes-Cummings Hamiltonian [30]

HI = g(a†σ− + aσ+), (5)

where σ+ ≡ |e〉〈g| is the raising operator for the DQD and
σ− ≡ σ

†
+.

The unitary dynamics of the DQD-OC system, expressed
by a Hamiltonian H comprising (3)–(5), is given in the rotat-
ing frame at the pump frequency, as [21]

H = �d
σ3

2
+ �ra†a + g(a†σ− + aσ+) + ξ (a† + a), (6)

with �d ≡ � − ωl (�r ≡ ωr − ωl ) representing the differ-
ence between the frequency of the DQD (OC) and the
frequency of the pump.

Given the weak coupling in the DQD-OC system, the
nonunitary dynamics can be modeled using independent
dissipators for the DQD and OC [32,33]. Specifically, focus-
ing on single-photon dissipation, κD[a] becomes the sole
dissipator for the open dynamics of the OC, where κ quantifies
the dissipation rate and D[a]ρ = aρa† − 1

2 {a†a, ρ}. In the
case of the DQD, the ideal photodetector regime [21,30] is
adopted, with interest centered on the input of electrons in the
ground state (i.e., |0〉 → |g〉) and the output of electrons in
the excited state (i.e., |e〉 → |0〉), both occurring at the same
rate 
. This is captured by 
D[s†

g] and 
D[se], respectively,
with s j ≡ |0〉〈 j| ( j = g, e) representing the extraction of
an electron in either the ground or excited states, with its
Hermitian conjugate expressing the injection of electrons into
the corresponding state.

Consequently, the state ρ governing the DQD-OC sys-
tem is assumed to follow the Lindblad equation for its open
dynamics

ρ̇ = −i[H, ρ] + 
D[s†
g]ρ + 
D[se]ρ + κD[a]ρ, (7)

where H is given by Eq. (6).

III. WAITING TIME STATISTICS

Prior to delving into the evaluation of pertinent quantities
for the DQD-OC system, it is instructive to introduce fun-
damental concepts of waiting time formalism [13,14]. The
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Lindblad equation (7) is recast as

ρ̇ = L(ρ), (8)

where L(ρ), given by the right-hand side of (7), stands as the
Liouvilian operator of the model. This formulation enables the
expression of a formal solution

ρ(t ) = eLtρ(0), (9)

which can be expanded in Dyson’s series as

ρ(t ) = eL0tρ(0) +
∑
k∈M

∫ t

0
dt1eL0(t−t1 )LkeL0t1ρ(0)

+
∑

k,q∈M

∫ t

0
dt2

∫ t2

0
dt1eL0(t−t2 )

×LkeL0(t2−t1 )LqeL0t1ρ(0) + · · · , (10)

where

L j (ρ) = LjρL†
j (11)

represents the jumps observable in the system, and

L0 ≡ L−
∑
j∈M
L j (12)

is the no-jump operator. Here, we also introduce the set M
representing the jump operators which we assume can be
monitored.

Each term in the expansion (10) corresponds to the prob-
ability associated with a specific number of jumps in the
system. Notably, the probability of a jump occurring in the
jth channel at any given time is defined as a waiting time
distribution (WTD), expressed as

W ( j, t |ρ) = Tr{L je
L0tρ}. (13)

Marginalizing over t , and assuming that the initial state is such
that a jump must necessarily occur, yields

W ( j|ρ) = Tr

{
L j

(∫ ∞

0
dteL0t

)
ρ

}
= −Tr

{
L jL−1

0 ρ
}
, (14)

which quantifies the likelihood of a jump in channel j, given
that the initial state was ρ. Conversely, marginalizing over j
yields

W (t |ρ) = −Tr{L0eL0tρ}, (15)

which is the probability distribution that the first jump occurs
at time t , irrespective of in which channel it happens.

Similarly, for scenarios involving two jumps—one at time
t1 in channel j1 and another at time t2 in channel j2—the
associated probability distribution is given by

W ( j1, t1, t2, j2|ρ) = Tr{L j2 eL0t2L j1 eL0t1ρ}. (16)

Furthermore, these distributions can be employed to define
an average time for an event to occur in the system:

〈t〉 =
∫ ∞

0
dtW (t |ρ)t = −Tr

{
L−1

0 ρ
}
. (17)

This quantity holds significance as it characterizes the charac-
teristic time of the system’s evolution, playing a pivotal role
in defining quasistatic processes in thermodynamics [34].

IV. WAITING TIME STATISTICS
OF THE DQD-OC SYSTEM

The objective of this study is to formulate the probability
distributions of success and failure in the detection of a pho-
tocurrent, given the presence of a photon within the cavity.
The failure process is associated with photon leakage, while
the success process is correlated with photon absorption by an
electron. To address this problem analytically, we adopt the
ideal photodetector regime (as described in Sec. II) and as-
sume a weak pumping regime, characterized by a low photon
influx into the cavity driven by the pump. The weak pump ap-
proximation is introduced by envisioning the activation of the
pump, followed by a waiting period until the cavity absorbs n
photons. Due to the weak pump, the photon count remains
nearly constant during this interval. Consequently, we can
analyze the system’s dynamics within this time frame, treating
the pump as negligible by setting ξ = 0 and establishing an
initial condition in the density matrix representing the n initial
photons in the cavity. We denote different choices of initial
conditions as the “n photon scenario,” specified by the ini-
tial density matrix

ρ
(n)
0 = |ψn〉〈ψn|, |ψn〉 ≡ |0〉 ⊗ |n〉, (18)

where |n〉 is the Fock state of n photons.
In the first step toward building a waiting time distribution,

we identify the channels we can monitor—specifically, both
the electron detection (se) and photon leakage channels (a).
The channels of interest are the photocurrent channel (right
reservoir in Fig. 1) and the photon leak channel (photon ac-
companied by κ in the same figure). The photocurrent channel
can be represented by

Leρ ≡ 
seρs†
e, (19)

with jumps |e〉 → |0〉 in DQD, occurring at a rate of 
. The
photon leak channel is modeled by

Lγ ρ ≡ κaρa†, (20)

resulting in photon leakage from the cavity to the environment
at a rate of κ .

Utilizing (19) and (20), we define a no-jump Liouvillian,
implicitly determining the channels to which we lack access:

L0 = L− κLγ − 
Le. (21)

This no-jump Liouvillian is employed to evaluate the prob-
abilities of interest in a given scenario.

A. One-photon scenario

We first consider the case n = 1. In this scenario, two
probabilities are of interest: the probability pγ of a sin-
gle photon leaking to the environment and the probability
pe of this photon being absorbed by an electron, result-
ing in a photocurrent. These probabilities are evaluated
using Eq. (14), i.e.,

p j ≡ W ( j|ρ) = −Tr
{
L jL−1

0 ρ
(1)
0

}
. (22)

The assumption that we start with a single photon in the
cavity allows us to truncate the bosonic Hilbert space, and
therefore obtain the following analytical expression for the
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FIG. 2. Dimensionless average time for a one-photon scenario
in terms of C ∈ [0, 10] for different values of α. The color scheme
represents varying degrees of fermionic-bosonic interaction strength:
blue for α = 0.5 < 1, orange for α = 1, and green for α = 1.5 > 1.
Note the distinct behaviors of κ〈t1〉 across different α regimes. When
the fermionic interaction predominates in tandem with the bosonic
interaction (α > 1), the average time diminishes with cooperativity,
indicative of accelerated system dynamics. Conversely, in the pres-
ence of bosonic predominance (α < 1), the system tends towards
greater stability, exhibiting slower dissipation with increasing C,
until reaching a critical threshold (κ〈t1〉 → 1.11 in the figure). Lastly,
when bosonic and fermionic interactions exhibit equal intensities
(α = 1), yielding a constant average time, it implies a propensity for
recurrent dissipation within fixed time intervals.

success probability,

pe = C

C + 1

α2

(α + 1)2
, (23)

where C ≡ 4g2/(
κ ) is the cooperativity [35,36] and
α ≡ 
/κ quantifies the competition between the elec-
tronic and bosonic dissipation rates. The failure probability
is pγ = 1 − pe.

Notably, as C → 0 or α → 0, pe → 0, or equivalently,
pγ → 1. This is expected, as α → 0 implies a more in-
tense interaction of bosonic modes with the environment than
fermionic modes, while C → 0 indicates a weak interaction
between DQD and OC compared to their individual interac-
tions with the environment. In both cases, photon absorption
by an electron is attenuated. Conversely, α,C 	 1 implies
pe ≈ 1, which is reasonable.

Furthermore, we evaluate the (dimensionless) average time
κ〈t1〉 for any of the jumps (e or γ ) to occur in the system,
representing the time until an event takes place [Eq. (17)],
namely

κ〈t1〉 = −κTr
{
L−1

0 ρ
(1)
0

} = (α + 1)2 + C(3α + 1)

(α + 1)2(C + 1)
. (24)

Figure 2 illustrates the behavior of κ〈t1〉 in terms of C
for three distinct values of α. For 0 < α < 1, the average
time to an event increases with C, implying that the system
takes longer to transition, within an upper bound given by
κ〈t〉 < (3α + 1)/(α + 1)2. Interestingly, we see that if α = 1
(equal dissipation rates for the two channels) we get κ〈t1〉= 1,
independent of the cooperativity. Notice that this is not
true for pe, pγ .

B. Two-photon scenario

Next, we consider n = 2. In this scenario, four probabilities
of interest emerge instead of two: (i) the probability pee of
both initial photons being sequentially absorbed, resulting in
a photocurrent; (ii) the probability peγ of the first photon
being absorbed and the second leaking; (iii) the probability
of the first photon leaking, but the second being absorbed;
and (iv) the probability pγ γ of both photons sequentially
leaking. These two-sequential-jump probabilities are defined
as [see Eq. (16)]

pi j ≡ W ( j, i|ρ) = Tr
{
L jL−1

0 LiL−1
0 ρ

(2)
0

}
, (25)

with i, j = e, γ . Explicitly,

pee = C2α5

(1 + C)(1 + α)2(1 + α + Cα)(6 + 5α + α2)
, (26)

peγ = Cα3[C + 2Cα + (1 + α2)]

(1 + C)(1 + α)2(3 + α)(1 + α + Cα)
, (27)

pγ e = Cα2[12 + α(3 + α)(7 + α) + Cα(9 + 5α)]

(1 + C)(1 + α)2(3 + α)(1 + α + Cα)
, (28)

pγ γ = 1 − pee − peγ − pγ e. (29)

We can further identify

pe1 ≡ pee + peγ = Cα3

(2 + α)(3 + α)(1 + α + Cα)
(30)

and

pe2 ≡ pee + pγ e (31)

= Cα2[12 + 3(7 + 3C)α + 5(2 + C)α2 + (1 + C)α3]

(1 + C)(1 + α)2(2 + α)(3 + α)(1 + α + Cα)

(32)

as the probability of a jump occurring in the e channel
(i.e., detection of a photocurrent) in the first and second
measurements, respectively. These quantities, along with pee

[Eq. (26)] and pe [Eq. (23)], are plotted in Fig. 3, where the
hierarchy

pe2 � pe � pe1, ∀ α,C, (33)

is observed. Equation (33) indicates that the probability of
detecting a photocurrent in the first measurement in the two-
photon scenario is lower than in the one-photon scenario,
while the opposite holds for the probability of the second mea-
surement resulting in a photocurrent, as it is always greater
than the others. This result, independent of α and C, provides a
method for verifying the scenario and highlights the nontrivial
interference effects when there are multiple photons inside the
cavity.

The asymptotic limits α → ∞ and C → ∞ yield

lim
α→∞ pee = C2

(1 + C)2
, (34)

and

lim
α→∞ peγ = lim

α→∞ pγ e = lim
α→∞ pe = C

(1 + C)2
, (35)

in which we recalled Eq. (23). This last result indicates that
in the strong fermionic interaction regime, the two-photon
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FIG. 3. Probabilities of photocurrent detection as a function of
cooperativity C ∈ [0, 25], with α = 5, in a two-photon scenario. The
probabilities are color coded: Blue represents pe2, the probability of
the second detection resulting in a photocurrent; green represents
pe1, the probability of the first detection resulting in a photocurrent;
red represents pee, the probability of both detections resulting in
photocurrents. Additionally, in orange, we depict pe, the probability
of a photocurrent detection in a single-photon scenario. It is notable
that a hierarchical relationship pee � pe1 � pe � pe2 is consistently
maintained, with equality observed as C → 0. This observation re-
mains independent of α and provides a reliable means of discerning
the scenario under consideration based on the probability distribution
of our nth measurement. Conversely, an inverse hierarchy is observed
for photon leak probabilities.

scenario reduces to a pair of one-photon scenarios, rendering
them indistinguishable. However, the same is not true for the
large cooperativity regime, where

lim
C→∞

pee = α4

(1 + α)2(6 + 5α + α2)
, (36)

lim
C→∞

peγ = α2(1 + 2α)

(1 + α)2(6 + 5α + α2)
, (37)

and

lim
C→∞

pγ e = α2(9 + 5α)

(1 + α)2(6 + 5α + α2)
. (38)

In this case, a nontrivial dependence on α exists in all cases,
preventing specific conclusions. This observation underscores
α as the parameter characterizing the scenarios. Finally, it is
worth noting that

lim
α→0

pi j = lim
C→0

pi j = δiγ δγ j, (39)

which is expected, as previously discussed in the one-photon
scenario.

V. QUANTUM EFFICIENCY

Our work is inspired by the experiment in Ref. [30]. How-
ever, the setup there consists of a steady external photon pump
and hence a steady current of photoelectrons. This allows the
authors to evaluated the quantum detection efficiency, defined
as [23]

η = photoelectron count

incident photons
, (40)

evaluated in the steady state. Here, we are considering in-
stead the scenario where there is no continuous photon pump,

but just individual photon injections. This approach there-
fore does not apply. To circumvent this issue, we propose
an alternative approach by assuming that the efficiency is
proportional to the probability of an electron being converted
into a photocurrent. This assumption seems reasonable, as it
is intuitive that a higher probability would correspond to a
greater conversion rate. Thus, we suggest

η ∼ pe. (41)

To corroborate our definition, we now show that this is indeed
related to the steady-state efficiency. To do that, we start
with Eq. (31) of Ref. [23], under the assumption that γ1 =
γ2 = 0 (meaning there is no interaction between the electrons
of the DQD and the phonons of the reservoirs). We then
find that

η = 4κg2
ε

�
[
4�2

d + 
2
][(

�r − 4g2�d

4�2
d +
2

)2
+

(
κ
2 + 2g2


4�2
d +
2

)2
] .

(42)

In the resonant case (�d = �r = 0), this reduces to

η = 4ε

�

C

(1 + C)2 = 4ε

�
lim

α→∞ peγ

= 4ε

�
lim

α→∞ pγ e = 4ε

�
lim

α→∞ pe, (43)

in which we used Eq. (35). This provides the suggested con-
nection. Namely, the steady-state quantum efficiency studied
in Ref. [30] is directly proportional to single-photon detection
probability pe. Furthermore, we observe that the quantum ef-
ficiency discussed can be associated with the α → ∞ regime
in the two-photon scenario, providing insight into its potential
connection with the n-photon scenario.

Here, we emphasize that Eq. (43) serves more as a proof
of principle than as a result directly applicable to laboratory
experiments. We demonstrate that the waiting time statis-
tics can be used to evaluate quantum efficiency, offering the
advantage of not requiring the assumption of a steady-state
system to derive analytical expressions. In this work, we
consider specific initial conditions based on certain physical
approximations. Compared with the full counting statistics
approach [21,30], our approach provides an alternative and
complementary method to assess the quality of the DQD-OC
coupling within the context of quantum circuits.

VI. CONCLUDING REMARKS

In conclusion, under the assumption of a weak pump
regime, we have leveraged the formalism of waiting statis-
tics to derive probabilities governing the success and failure
of photocurrent conversion within a DQD-OC system, ex-
amining scenarios involving one and two incident photons.
The main advantage of our approach is that it yields a time-
resolved picture of individual photodetections, which is much
richer than previous approaches that are based only on steady-
state currents under a continuous pump. With our approach,
individual electron detection probabilities become analyti-
cally calculable. And, similarly, we can evaluate the average
response time of the detection, as well as its higher-order
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statistics. While the extension of this approach to scenar-
ios involving n photons is conceptually straightforward, it
is imperative to note that the validity of this approximation
diminishes as n increases, as it fails to account for mixed states
at its core, leading to nonphysical outcomes. Nevertheless,
our methodology adequately captures the interference effects
between photons within the cavity, significantly influencing
the photocurrent detection process.

A logical progression involves incorporating additional
complexities into our model, such as losses through phononic
channels, as outlined in the work by Zenelaj et al. [21]. This
enhancement will contribute to a more realistic representation

of the DQD-OC system, accounting for factors beyond the
weak pump approximation and further refining our under-
standing of the underlying physical processes.

ACKNOWLEDGMENTS

The authors would like to thank Amanda Candido Ferreira
for her kind assistance in creating Fig. 1 of this paper. L.F.S.
acknowledges the financial support of Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior (CAPES) – Brazil,
Finance Code 001.

[1] R. Vyas and S. Singh, Waiting-time distributions in the pho-
todetection of squeezed light, Phys. Rev. A 38, 2423 (1988).

[2] H. J. Carmichael, S. Singh, R. Vyas, and P. R. Rice, Photo-
electron waiting times and atomic state reduction in resonance
fluorescence, Phys. Rev. A 39, 1200 (1989).

[3] G. Haack, M. Albert, and C. Flindt, Distributions of electron
waiting times in quantum-coherent conductors, Phys. Rev. B 90,
205429 (2014).

[4] K. H. Thomas and C. Flindt, Electron waiting times in non-
Markovian quantum transport, Phys. Rev. B 87, 121405(R)
(2013).

[5] D. Dasenbrook, P. P. Hofer, and C. Flindt, Electron waiting
times in coherent conductors are correlated, Phys. Rev. B 91,
195420 (2015).

[6] L. Rajabi, C. Pöltl, and M. Governale, Waiting time distribu-
tions for the transport through a quantum-dot tunnel coupled to
one normal and one superconducting lead, Phys. Rev. Lett. 111,
067002 (2013).

[7] H. Friedman, D. A. Kessler, and E. Barkai, Quantum walks: The
first detected passage time problem, Phys. Rev. E 95, 032141
(2017).

[8] J. P. Garrahan, Simple bounds on fluctuations and uncertainty
relations for first-passage times of counting observables, Phys.
Rev. E 95, 032134 (2017).

[9] D. J. Skinner and J. Dunkel, Estimating entropy production
from waiting time distributions, Phys. Rev. Lett. 127, 198101
(2021).

[10] R. L. Stratonovich, Topics in the Theory of Random Noise
(Gordon and Breach, New York, 1967), Vol. 2.

[11] A. Chia, T. Paterek, and L. C. Kwek, Hitting statistics from
quantum jumps, Quantum 1, 19 (2017).

[12] G. T. Landi, Patterns in the jump-channel statistics of open
quantum systems, arXiv:2305.07957.

[13] T. Brandes, Waiting times and noise in single particle transport,
Ann. Phys. (NY) 520, 477 (2008).

[14] G. T. Landi, M. J. Kewming, M. T. Mitchison, and P. P. Potts,
Current fluctuations in open quantum systems: Bridging the gap
between quantum continuous measurements and full counting
statistics, PRX Quantum 5, 020201 (2024).

[15] M. Albert, C. Flindt, and M. Büttiker, Distributions of waiting
times of dynamic single-electron emitters, Phys. Rev. Lett. 107,
086805 (2011).

[16] M. Albert, G. Haack, C. Flindt, and M. Büttiker, Electron
waiting times in mesoscopic conductors, Phys. Rev. Lett. 108,
186806 (2012).

[17] T. Brandes and C. Emary, Feedback control of waiting times,
Phys. Rev. E 93, 042103 (2016).

[18] D. S. Kosov, “ Distribution of waiting times between superoper-
ator quantum jumps in Lindblad dynamics, arXiv:1605.02170.
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