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Dephasing enhanced transport in boundary-driven quasiperiodic chains

Artur M. Lacerda ,1,2 John Goold,2 and Gabriel T. Landi 1

1Instituto de Física, Universidade de São Paulo, CEP 05314-970, São Paulo, São Paulo, Brazil
2Department of Physics, Trinity College Dublin, Dublin 2, Ireland

(Received 28 June 2021; revised 27 September 2021; accepted 27 October 2021; published 3 November 2021)

We study dephasing enhanced transport in boundary-driven quasiperiodic systems. Specifically, we consider
dephasing modeled by current-preserving Lindblad dissipators acting on the noninteracting Aubry-André-Harper
and Fibonacci bulk systems. The former is known to undergo a critical localization transition with a suppression
of ballistic transport above a critical value of the potential. At the critical point, the presence of nonergodic
extended states yields anomalous subdiffusion. The Fibonacci model, on the other hand, yields anomalous
transport with a continuously varying exponent depending on the potential strength. By computing the covariance
matrix in the nonequilibrium steady state, we show that sufficiently strong dephasing always renders the transport
diffusive. The interplay between dephasing and quasiperiodicity gives rise to a maximum of the diffusion
coefficient for finite dephasing, which suggests that the combination of quasiperiodic geometries and dephasing
can be used to control noise enhanced transport.
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I. INTRODUCTION

Nonequilibrium systems are characterized by the existence
of macroscopic currents of energy or matter [1]. Understand-
ing these transport properties has, for more than a century,
been a major field of research in physics. One of the funda-
mental issues is to ascertain the necessary ingredients in a
model to induce a certain transport regime. Low-dimensional
systems, in particular, have received significant attention both
in the classical [2,3] and quantum regimes [4]. For instance,
chains of harmonic oscillators present ballistic transport [5],
which is fundamentally different from the diffusive behavior
obtained in Fourier’s law of heat conduction [6]. However,
not all anharmonicities lead to diffusivity [7,8]. In addition
to being fundamental, being able to understand and control
transport offers opportunities for potential device applica-
tions. Transport in low-dimensional devices, for instance, can
be manipulated for steady-state thermal machines [9] and
nanoscale heat engineering [10–13].

For low-dimensional quantum many-body systems, the
technique of boundary driving has been used widely to ex-
tract high-temperature transport properties in nonequilibrium
steady states (NESSs) [14–22]. Boundary driving is an open-
systems technique where local Lindblad dissipators at the
edges of the chain induce a gradient in spin and/or energy.
Transport coefficients can then be extracted from finite-size
scaling of the currents [4,23]. Although the technique is lim-
ited to high-temperature physics, it has a distinct advantage in
so much as it can be extended to models with integrability-
breaking perturbations [24,25] by means of tensor networks.
This technique has been instrumental in shedding light on the
transport properties of the ergodic phase of interacting disor-
dered models [26–29] and systems with magnetic impurities
[24,25].

Another class of models where boundary driving has
been applied successfully is quasiperiodic chains [30–32].
A paradigmatic example is the Aubry-André-Harper (AAH)
model [33,34], which is known to undergo a localization
transition when the potential strength is increased. The model
is readily simulated in ultracold atomic physics experiments,
using bichromatic optical lattices, and on photonic lattices
[35,36]. It has also been used to explore the many-body lo-
calized phase [37]. In the AAH, at fixed tunneling rate and
below a critical value of the potential strength, all the energy
eigenstates are delocalized, while above this value the entire
spectrum is localized. This transition is clearly reflected in the
nonequilibrium transport properties, with particle transport
going from ballistic to exponentially suppressed. At criticality,
the eigenstates are neither delocalized nor localized, and the
transport is subdiffusive [30,38]. Generalizations of the AAH
model exhibiting mobility edges have also been analyzed in
the transport scenario [39]. A closely related model is the
Fibonacci model [40–43]. This model has a critical spectrum
which has been studied in detail [40,42–44]. This unique spec-
trum gives rise to highly anomalous transport in the absence
of interactions where the transport exponent varies continu-
ously with the potential strength. In fact, the transport in the
Fibonacci model can be tuned continuously, from ballistic
to subdiffusive. While the quantum transport properties of
quasiperiodic systems are well studied, recently studies have
highlighted that they can be exploited for thermal engineering
[45,46].

In this paper we are interested in how the anomalous trans-
port typically observed in quasiperiodic systems is affected by
dephasing noise from an environment. One phenomenological
approach to model dephasing is by means of self-consistent
baths [47], also known as Büttiker probes [48]. Another ap-
proach, which we will exploit here, is via current-preserving
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Lindblad dissipators. For any nonzero dephasing strengths,
free tight-binding models typically become diffusive in the
thermodynamic limit [16,49]. Motivated by these results, we
study the effects of dephasing in quasiperiodic systems. We
numerically compute the covariance matrix in the NESS and
study the finite-size scaling of the particle current. Both the
AAH model and the Fibonacci model become diffusive in the
presence of dephasing noise. Interestingly, though, in certain
regimes this introduces a competition, where the dephasing
leads to noise enhanced transport. The paper is divided as
follows. The model is described in Sec. II, and the analysis
of the transport properties of both models, with and without
dephasing, is discussed in Sec. III. Our main results are pre-
sented in Sec. IV, where we analyze the interplay between
quasiperiodicity and dephasing. Conclusions are summarized
in Sec. V.

II. THE MODEL

A. Boundary-driven XX chain

Consider a one-dimensional spin-1/2 (or free fermion)
system with L sites, described by the XX (tight-binding)
Hamiltonians

H = −
L−1∑
i=1

(σ+
i σ−

i+1 + σ−
i σ+

i+1) + λ

2

L∑
i

Viσ
z
i (1)

= −
L−1∑
i=1

(c†
i ci+1 + c†

i+1ci ) + λ

L∑
i

Vic
†
i ci, (2)

which are equivalent via a Jordan-Wigner transformation ci =∏i−1
j=1(−σ z

i )σ−
i . We consider two models, defined by two

different choices of the on-site potential Vi, with strength
λ [Fig. 1(a)]. The first is the Aubry-André-Harper (AAH)
model, in which the on-site potential is given by [33,34]

Vi = 2 cos(2πgi + θ ), (3)

where g = (1 + √
5)/2 is the golden ratio. This model un-

dergoes a localization transition at λc = 1. When λ < 1, all
energy eigenstates are delocalized, and when λ > 1, they are
all localized. Similar results also follow when g is any other
Diophantine number [50]. The second system is the Fibonacci
model, with a potential defined by [40–43]

Vi =
[

i + 1

g2

]
−

[
i

g2

]
, (4)

where [x] is the integer part of x. This represents the ith ele-
ment of a binary sequence called a Fibonacci word, which can
be constructed by the recursive rule Sn = Sn−2 + Sn−1, with
S0 = 0, S1 = 01 and “+” taken as concatenation. Successive
application of this rule generates the words

0 → 01 → 010 → 01001 → 01001010 → · · · .

Notice that each Fibonacci word is an extension of the previ-
ous one; Vi is then the ith digit of any word with size greater
than or equal to i. Additionally, the length of each word is a
Fibonacci number, by construction [31,40–43].

We consider both of these systems, driven out of equi-
librium by boundary reservoirs and every site subject to
dephasing noise. The time evolution of the density matrix

(a) (b)

(c) (d)

FIG. 1. (a) Schematic representation of the boundary-driven
quasiperiodic chains studied in this paper [Eq. (1)]. (b) and (c) Sum-
mary of transport properties of the AAH and Fibonacci models, in the
absence of dephasing (� = 0). The solid lines indicate the scaling
laws obtained by linear regression, using all the data points in the
localized case and the last five points elsewhere. (b) J vs L for the
AAH model for different values of λ. (c) Same, but for the Fibonacci
model. (d) Transport exponent ν [Eq. (20)] as a function of λ for the
Fibonacci model.

is described via the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation [51,52],

dρ

dt
= −i[H, ρ] + D1(ρ) + DL(ρ) +

L∑
i=1

Ddeph
i (ρ). (5)

The dissipators Di describe the action of the two driving baths
at the boundaries [23] and are given by [53]

Di(ρ) = γ (1 − fi )D[ci] + γ fiD[c†
i ], i = 1, L, (6)

where γ is the coupling strength, fi is the Fermi-Dirac distri-
bution of the bath, and D is a Lindblad operator of the form

D[L] = LρL† − 1
2 {L†L, ρ}. (7)

Similarly, Ddeph
i in Eq. (5) describes the dephasing on site i

and is given by

Ddeph
i (ρ) = �D[c†

i ci], (8)

where � is the dephasing strength.
If the sites were uncoupled, a bath of the form (6) would

lead to the equilibrium state ρeq = f |0〉〈0| + (1 − f )|1〉〈1|,
where 〈σ z〉 = 2 f − 1 and 〈c†c〉 = f . Hence the difference

 f = fL − f1 can be interpreted as either a magnetization or
a population imbalance in the chain. As long as 
 f �= 0, the
system will converge to nonequilibrium steady state (NESS)
with a nonzero magnetization (particle) current, given by

Ji = i〈c†
i+1ci − c†

i ci+1〉. (9)
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For the internal sites, i = 2, . . . , L − 1, these currents satisfy
a continuity equation

d

dt
〈c†

i ci〉 = Ji−1 − Ji, i = 2, . . . , L − 1, (10)

which is obtained directly from Eq. (5). The sites at the bound-
aries are subject to additional currents J0 = tr{c†

1c1D1(ρ)}
and JL = tr{c†

LcLDL(ρ)}. Crucially, note that the dephasing
dissipators do not affect the continuity equation (10). There
is, therefore, no particle exchange with them.

In the NESS, d〈c†
i ci〉/dt = 0. Hence, by Eq. (10), the cur-

rent becomes homogeneous throughout the chain:

J1 = J2 = · · · = JL−1 ≡ J. (11)

We can thus unambiguously refer to the particle current sim-
ply as J . In the spin chain formulation, the particle current
naturally translates to a magnetization current,

Ji = 2i
〈
σ x

i σ
y
i+1 − σ

y
i σ x

i+1

〉
. (12)

This definition can also be obtained by writing an explicit
expression for d〈σ z

i 〉/dt and interpreting it as a continuity
equation, similarly to Eq. (10).

B. Steady-state equation for the covariance matrix

The free-fermion nature of this model allows us to focus
only on the system’s covariance matrix, defined as

Ci j = 〈c†
j ci〉, (13)

and from this the particle current can be extracted as J =
2 ImCi,i+1. The time evolution of C can be obtained directly
from Eq. (5) (see Refs. [16,49,54] for details) and reads

dC

dt
= −(WC + CW †) − �
(C) + F, (14)

where

Wi j = −(δi+1, j + δi, j+1) + λViδi j − γ

2
(δi,1δ j,1 + δi,Lδ j,L ),

(15)

F = diag(γ f1, 0, . . . , 0, γ fL ), (16)

and 
(·) is an operation that removes the diagonal of a matrix:


(C) = C − diag(C11,C22, . . . ,CLL ). (17)

In the NESS, dC/dt = 0, which leads to the matrix equation

WC + CW † + �
(C) = F. (18)

When � = 0, this reduces to a Lyapunov equation

WC + CW † = F, (19)

which can be efficiently solved numerically using the eigen-
decomposition method described in Ref. [30]. We have found
that, at least in the parameter region explored, this method
outperforms the standard solvers for Lyapunov equations.
We solved Eq. (19) for sizes up to L = 1597. When � �= 0,
Eq. (18) is still linear in C, but not in Lyapunov form. In
this case we solve Eq. (18) using a standard solver for sparse
linear systems. Since this system does not exhibit any special
structure, besides its sparsity, the largest system size we were

able to simulate is L = 987, which is considerably smaller
when compared with the � = 0 case.

C. Classification of the transport regime

In general, the current follows a power-law scaling with the
system size:

J ∼ 1

Lν
, (20)

where ν � 0 is a transport coefficient. The transport is
classified as ballistic if ν = 0, diffusive if ν = 1, and anoma-
lous otherwise. Anomalous transport is further classified as
superdiffusive if 0 < ν < 1 or subdiffusive if ν > 1. The
absence of transport can be seen as an extreme case of subdif-
fusion, where ν → ∞. For noninteracting models the current
is always proportional to the driving bias 
 f = fL − f1 [49],
so we may in fact write J ∼ 
 f /Lν . Moreover, it depends
only on the difference 
 f , and not on the values f1 and fL

themselves. For this reason, we henceforth fix f1 = 1 and
fL = 0. We also henceforth set γ = 1 in Eq. (6).

The coefficients ν are obtained by computing the current
for increasing values of L and performing a linear regression
of the form log J = −ν log L + C. The exact value of the
coefficient ν may depend on the number-theoretic properties
of the chosen family of sizes. The quasiperiodicity usually
makes the L dependence somewhat noisy. To smooth this, we
perform the regression using Fibonacci numbers for L [30].
Alternatively, we may also classify the transport properties
through the system’s finite-size conductivity κ (L), which is
defined from

J = κ (L)

 f

L
. (21)

Comparing this with Eq. (20), we see that the conductivity
must scale as κ (L) ∼ L1−ν . It is therefore independent of
L only in the diffusive case. For ballistic or superdiffusive
transport, it diverges when L → ∞, whereas for subdiffusive
transport it vanishes in this limit.

III. TRANSPORT PROPERTIES

A. Zero dephasing

Figure 1 provides a summary of the transport properties
without dephasing (� = 0). Figure 1(b) focuses on the AAH
model, for different disorder strengths λ. All results are al-
ready averaged over 100 values of the phase θ [Eq. (3)] to
reduce fluctuations. The localization transition at λ = 1 is
clearly reflected: For λ < 1 the transport is ballistic, while
for λ > 1 it decays exponentially (insulating). At λ = 1 the
transport is subdiffusive, with ν = 1.26. This is close to the
value of 1.27 reported in Ref. [30]. This discrepancy is likely
due to the fact that in Ref. [30] the authors computed the
current up to larger system size and averaged the results over
a larger number of samples with different phases.

Figure 1(c) shows the scaling for the Fibonacci model. As
λ increases, the slope of the curves become gradually more
negative, causing the system to change continuously from bal-
listic (when λ = 0) to localized (when λ → ∞). This is more
clearly seen in Fig. 1(d), which summarizes the dependence of
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FIG. 2. J vs L for the AAH model with different dephasing
strengths �. (a) λ = 0.1, (b) λ = 0.9, (c) λ = 1.0, and (d) λ = 1.1.
The dashed line is a visual guide for the diffusive behavior, J ∝ L−1.
All results are averaged for 100 values of θ , evenly spaced in between
0 and π . The sizes L are chosen as Fibonacci numbers, to reduce
fluctuations. Other parameters: γ = 1, f1 = 1, and fL = 0.

ν on λ, showing that the transport can be tuned to any regime.
The diffusive point (ν = 1) occurs around λ ≈ 3.

B. Nonzero dephasing

Next we examine the effects of the addition of bulk de-
phasing. The properties of the AAH model are summarized
in Fig. 2, and those of the Fibonacci model are summarized
in Fig. 3. In both cases, dephasing always leads to diffusion
for sufficiently large L, even for small values of �. This
agrees with results from Ref. [55], which studied disordered
tight-binding chains. Figures 2(c) and 3(d), in particular, il-
lustrate scenarios where the bare transport (� = 0) would be
subdiffusive, but dephasing forces it to become diffusive. This
indicates that dephasing may be used to generate enhanced
transport, which will be discussed further in Sec. IV. For
any finite �, the dephasing will always render the transport
diffusive for sufficiently large L. However, the typical value of
L at which this takes place varies significantly in one regime
or another [compare, e.g., Figs. 2(a) and 2(d)]. Reference [27]
introduced a characteristic length L� for the dephasing effect
to become important, which reads

L� ∼ �−1/(1+ν). (22)

This can indeed qualitatively describe some of the behavior in
Figs. 2 and 3. In Fig. 2(a), for instance, where ν ≈ 0, L� is
large for small �. In contrast, in Fig. 2(d), where ν � 1, the
diffusive scaling sets in even for the smallest length scales.

FIG. 3. Similar to Fig. 2, but for the Fibonacci model. (a) λ =
0.5, (b) λ = 1.0, (c) λ = 2.0, and (d) λ = 4.0.

IV. DEPHASING ENHANCED TRANSPORT

After these preliminaries, we finally turn to the main result
of this paper. Namely, that the combination of quasiperiodicity
and dephasing can lead to the phenomenon of noise enhanced
transport. As discussed in Sec. III B, the addition of dephasing
in both models always leads to diffusion, for any � > 0. How-
ever, when � and λ are both small, the original Hamiltonian
should still play an important role when L < L� [Eq. (22)]. A
particularly convenient quantity for describing this interplay
is the conductivity κ , defined in Eq. (21). Following Ref. [27],
one expects that the existence of L� should cause κ to present
a piecewise behavior with L:

κ (�, L) =
{

L1−ν, L � L�

κdeph(�), L > L�.
(23)

Below L� , it will in general depend on L, with coefficient
ν dictated by the original transport properties of the system.
However, above L� , the dephasing induced diffusion will start
to take place, so the conductivity must become a constant
κdeph(�), independent of L (as is characteristic of diffusive be-
havior). The expression for κdeph can be obtained by imposing
continuity on L = L� , which results in

κdeph(�) ∼ L1−ν
� ∼ �(ν−1)/(ν+1). (24)

These results, we emphasize, hold only for small �.
Conversely, when � is much larger than the on-site po-

tential λ, the effects of dephasing should be dramatic. The
conductivity in this case can be obtained by simply setting
λ = 0 in Eq. (18), which leads to

κdeph(�) ∼ 1

�
. (25)

Notice that for ballistic transport (ν = 0) the scalings in (24)
and (25) coincide.
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FIG. 4. κ vs � for the AAH model, for different values of λ, with
fixed L = 987. Other parameters are as in Fig. 2.

In Figs. 4 and 5 we show the scaling of the conductivity
in the AAH and Fibonacci models, for different values of
λ. For sufficiently large �, all curves collapse towards the
scaling (25), regardless of the value of λ. In contrast, when �

is small, different scalings are observed. A particularly clear
illustration of the change in scalings is the diffusive case of
the Fibonacci model (Fig. 5), which occurs for λ ≈ 3; the
conductivity remains virtually constant when � → 0, thus
recovering the original conductivity of the model without
dephasing.

Now we explore the effect of dephasing in the regimes
where both models are seen to display subdiffusion; in Fig. 4
this corresponds to λ > 1, and in Fig. 5(a) this corresponds to
λ = 4.0 and 5.0. The latter are also highlighted separately in
Fig. 5(b), for better visibility. These curves represent instances
of noise enhanced transport, that is, where the presence of
dephasing actually improves the conductivity. As can be seen,

FIG. 5. (a) κ vs � for the Fibonacci model, with L = 987. Other
details are as in Fig. 3. (b) Same, but focusing on the curves for λ = 4
and λ = 5, for improved visibility.

FIG. 6. Coefficient β computed by fitting a curve of the form κ ∼
�β in the small-� region. The dashed line shows the value predicted
by Eq. (24), using the values of ν shown in Fig. 1(d).

this reflects the competition between the scalings (24) and
(25), for small and large �, respectively.

The small-� behavior predicted by Eq. (24) is analyzed in
Fig. 6 for the Fibonacci model. To build this, we focus on the
small-� section of all curves in Fig. 5, and fit a power law
of the form κ ∼ �β , for some exponent β. This is contrasted
with the predictions from Eq. (24), with ν determined from
Fig. 1(d).

We notice that the particular size L = 987 used in the sim-
ulation, which is the larger Fibonacci number we were able
to simulate with dephasing, was chosen only for consistency
with Sec. III. The curves in Figs. 4 and 5 are not sensitive to
this size being a Fibonacci number.

V. DISCUSSION

We have undertaken an analysis of the interplay between
dephasing and quasiperiodicity in free-fermion models. Our
focus was on boundary-driven quantum master equations,
which drive the system towards a NESS. As we have shown,
depending on the model, one may obtain a rich variety of
transport coefficients which is seen from finite-size scaling.
The AAH model presents clear separations between phases
with different behavior; conversely, in the Fibonacci model
the transport is anomalous and can be tuned continuously by
varying the disorder strength. In both cases, when dephasing
is present, diffusion emerges. Depending on the strength of
the quasiperiodic potential, this may give rise to noise induced
transport, where the dephasing increases the system’s conduc-
tivity. Our results also show that when the dephasing strength
is sufficiently low, the conductivity behaves in a piecewise
fashion as a function of the system size L. The use of master
equations greatly simplifies the analysis and is not expected to
interfere with the transport coefficients.

Natural extensions of this analysis include interacting ver-
sions of the models [32,56,57], as well as geometries beyond
one dimension and finite temperatures [58,59] and how a
combination of these extensions can give rise to further
possibilities to exploit dephasing enhanced transport for ap-
plications in thermal devices [9].
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[16] M. Žnidarič, J. Stat. Mech.: Theory Exp. (2010) L05002.
[17] T. Prosen, Phys. Rev. Lett. 107, 137201 (2011).
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