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Waiting time statistics in boundary-driven free fermion chains
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We study the waiting time distributions of quantum chains coupled to two Lindblad baths at each end. Our
focus is on free fermion chains, where we derive closed-form expressions in terms of single-particle matrices,
allowing one to study arbitrarily large chain sizes. In doing so, we also derive formulas for 2-point correlation
functions involving non-Hermitian propagators.
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I. INTRODUCTION

Transport in quantum chains constitutes a major research
direction in nonequilibrium physics. The interplay between
quantum coherent interactions and dissipative elements is
known to produce a wide variety of physical phenomena. The
basic example is the tuning of the ensuing transport regimes
(e.g., ballistic, diffusive, etc.), which can be accomplished,
e.g., by modifying the internal system interaction [1–6]. Fur-
ther tuning the dissipation can also lead to noise-enhanced
transport [7–12]. These developments open the prospect for
numerous potential applications, such as quantum thermo-
electricity [13–17] and thermal rectifiers [18–30].

As far as transport is concerned, most studies in quantum
chains focus on either one of two scenarios [1]. The first
is unitary time evolution, where the system is prepared in a
localized wave packet and is then allowed to evolve unitarily.
And the second is the steady state that is obtained when the
system is placed in contact with two baths at different tem-
peratures and/or chemical potentials. This is further divided
into systems described in terms of coherent transport, e.g., the
Landauer-Büttiker formalism [13,31], or systems described
in terms of a quantum master equation, often referred to as
boundary-driven systems [32].

In the case of steady states, even though the density matrix
is no longer changing in time, the underlying process is still
stochastic: At any given time, an excitation may enter from
one of the baths and then travel through the system (possibly
interacting with other excitations) until it eventually leaves
to either bath. The quantum nature of the system makes this
description much richer, as interference effects abound. But if
one only looks at the steady-state density matrix, these effects
are completely ignored.

The problem can be viewed pictorially as a detector with
four colors, representing an excitation entering/leaving the
left/right baths (Fig. 1). Each time an event occurs, a certain
color clicks. The complete statistics of the detection events,
including the times between clicks, as well as the colors of
the clicks, is captured by the theory of full counting statistics
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(FCS) [33–36]. The toolbox of FCS is extremely powerful, but
usually difficult to apply, especially on many-body systems.
For this reason, most practical studies on FCS have focused
on the long-time statistics, i.e., on the accumulated number of
clicks after a very long time, which satisfies a large-deviation
principle [37,38].

A particularly interesting aspect of FCS concerns
the waiting time distribution (WTD) between successive
clicks [39,40]. There has been significant work on the study
of WTDs in coherent conductors [36,41–52], such as double
quantum dots or point contacts. However, WTDs are also
useful in many other problems, where they have not yet
been thoroughly explored. This paper will be concerned with
boundary-driven systems, composed of a one-dimensional
quantum chain coupled to two baths at each end, as described
by a Lindblad master equation. The theory of WTDs in this
case was laid down in [36], and subsequently applied to dou-
ble quantum dot systems [41,49], Cooper pair splitters [53],
and synchronized charge oscillations [54].

Here we develop formulas for the waiting time distribution
of free fermion chains. As with most noninteracting problems,
this allows the WTD to be written in terms of matrix elements
and determinants of L × L matrices (where L is the number
of sites in the chain), hence allowing one to study chains of
arbitrary size. Despite being a noninteracting problem, the
analysis turns out to be nontrivial since the time evolution
between quantum jumps is non-Hermitian [55]. For this rea-
son, we proceed by first casting the WTDs in terms of 2-point
correlation functions involving non-Hermitian unitary evolu-
tion operators. We then develop general formulas for such
propagators, which could find use beyond the present context.
As an application, we study a simple tight-binding chain.

II. FORMAL FRAMEWORK

We consider a one-dimensional fermionic chain with L
sites, each represented by an annihilation operator ci. The
system Hamiltonian is assumed to be quadratic, of the form

H =
∑
i, j

hi jc
†
i c j, (1)
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FIG. 1. Top: A quantum chain of length L, with four possible
dissipation channels, associated with the injection/extraction of an
excitation at the first/last sites, with coupling strengths γ1(L). Bottom:
The interest in this work is on the waiting time distribution between
clicks in each channel (here represented by buttons of a video game
controller).

with a coefficient matrix h. The WTDs of free fermion chains
were studied in [46], but only in the case of unitary dynamics.
Instead, here we assume the system evolves connected to two
local baths, coupled at sites 1 and L, and kept at Fermi-Dirac
distributions f1 and fL. The dynamics is thus assumed to be
governed by the local master equation

dρ

dt
= L(ρ) = −i[H, ρ] +

∑
i=1,L

{γ −
i D[ci] + γ +

i D[c†
i ]}, (2)

where γ −
i = γi(1 − fi ) and γ +

i = γi fi, with γi being the cou-
pling strengths to each bath. Here D[A] = AρA† − 1

2 {A†A, ρ}
is a Lindblad dissipator with arbitrary operator A.

The WTD in this case is defined in the context of full
counting statistics. We split the Liouvillian in Eq. (2) as

L = L0 +
∑

k

Jk, (3)

where Jk represent the four possible jump channels (“four
colors in the detector”), which we label as 1−, 1+, L−, L+:

J1− (ρ) = γ −
1 c1ρc†

1, J1+ (ρ) = γ +
1 c†

1ρc1,

JL− (ρ) = γ −
L cLρc†

L, JL+ (ρ) = γ +
L c†

LρcL. (4)

For instance, channel L− means an excitation was absorbed
by the right bath (at site L), and so on.

Starting from an arbitrary state ρ, the WTD between a
jump in channel q at time 0 and a jump in channel k at time t
is then given by [36]

P(t, k|q) = trJkeL0tJq(ρ)

trJq(ρ)
, (5)

which is normalized as
∑

k

∫ ∞

0
P(t, k|q)dt = 1, ∀q. (6)

Equation (5) is a (conditional) joint distribution representing
both the time between clicks and the channel of the click (note
that clicks from different channels are usually statistically
correlated [48]).

The marginal probability that jump q is followed by jump
k, irrespective of when it occurs, is

p(k|q) =
∫ ∞

0
P(t, k|q) dt . (7)

We can also filter the WTD to consider only the statistics
conditioned on the sequence of jumps being q → k. From
Bayes’s rule one has

P(t |k, q) = P(t, k|q)/p(k|q). (8)

This is now a properly normalized WTD, and so is more
suitable for computing expectation values. We denote by T
the random waiting time between any two events. The average
E (T |k, q), conditioned on the sequence of channels q → k, is

E (T |k, q) =
∫ ∞

0
t P(t |k, q) dt . (9)

Similarly, the variance of the waiting time reads

var(T |k, q) = E (T 2|k, q) − E (T |k, q)2, (10)

where E (T 2|k, q) is defined similarly to E (T |k, q).
We call attention to the fact that the WTDs defined above

assume that all four channels are constantly being monitored
(called “exclusive” WTDs in [53]). One could also study a
situation where only channel k is being monitored (“inclusive”
WTD). Unfortunately, this is not related to (5) in a simple way,
since the inclusive distribution must account for all possible
jumps to the other channels before a click in k is detected.

The WTD (5) refers to specific channels q → k. One may
also be interested in what shall be referred to as the net activity
time distribution (NATD), which is the WTD between any two
events, irrespective of the channel. In the steady state, it can
be defined as

P(t ) =
∑
k,q

P(t, k|q)p(q), (11)

where p(q) is the relative frequency of occurrence for a jump
of type q (in the steady state) and is given, up to a normal-
ization, by p(q) = trJqρ. Expectation values for NATDs may
be defined similarly to, e.g., Eqs. (9) and (10), and will be
denoted by E (T ), var(T ), etc.

Computing the waiting time distribution is generally hard,
as it involves studying the evolution under the map L0, which
is generally not completely positive and trace preserving. In
fact, L0 can be decomposed as L0 = −i(Heρ − ρH†

e ), where

He = H − i

2
[γ1(1 − f1)c†

1c1 + γ1 f1c1c†
1

+ γL(1 − fL )c†
LcL + γL fLcLc†

L]. (12)

Hence, the action of L0 is tantamount to a non-Hermitian
Hamiltonian evolution. Given the four possible channels in
Eq. (4), there can be in total 16 WTDs (5). They can be more
compactly written as

P(t, i−| j+) = γ −
i

〈c jc
†
j 〉

tr{c†
i cie

−iHet c†
jρc je

iH†
e t }, (13)

P(t, i+| j+) = γ +
i

〈c jc
†
j 〉

tr{cic
†
i e−iHet c†

jρc je
iH†

e t }, (14)

P(t, i−| j−) = γ −
i

〈c†
j c j〉

tr{c†
i cie

−iHet c jρc†
j e

iH†
e t }, (15)

P(t, i+| j−) = γ +
i

〈c†
j c j〉

tr{cic
†
i e−iHet c jρc†

j e
iH†

e t }, (16)

with i, j = 1, L.
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III. TRACE-DET FORMULAS FOR NON-HERMITIAN
FERMIONIC FORMS

The traces in the WTDs (13)–(16) resemble 2-time cor-
relation functions. However, the biggest difference is that
the time propagator is He, which is non-Hermitian. This
makes the direct computation of the WTDs more difficult
than they may seem at first. For instance, one cannot use
the usual Baker-Campbell-Hausdorff formulas [56], since the
quantities in question here are of the form e−iHetOeiH†

e t , in-
stead of e−iHetOeiHet . Instead, to compute these traces, we
first develop a series of formulas which hold even for non-
Hermitian operators. They are all based on variations of the
so-called Blankenbecler-Scalapino-Sugar (BSS) “trace-det”
relations [57,58], which are widely used in quantum Monte
Carlo. Below, we only provide an overview of the main re-
sults. The actual derivations are given in the Appendix.

Let X = ∑
i j Xi jc

†
i c j , Y = ∑

i j Yi jc
†
i c j , Z = ∑

i j Zi jc
†
i c j

be quadratic forms in fermionic operators, with arbitrary coef-
ficient matrices X , Y , and Z . The BSS trace-det formula states
that [57,58]

tr{eXeYeZ} = det(1 + eX eY eZ ). (17)

Here and henceforth we will not distinguish between the
number 1 and the identity matrix 1. Equation (17) extends
identically to more than three operators, but for our purposes 3
will suffice. This formula provides a huge simplification since
the right-hand side is a determinant on the space of L × L
matrices, X , Y , Z . This is to be contrasted with the left-hand
side, which is a trace of a 2L × 2L dimensional operator.

Using Eq. (17), we show in the Appendix that

tr{c†
i ci′ eXeYeZ} = DTi′i, (18)

where

D = det(1 + eX eY eZ ), (19)

and

T = (e−Ze−Y e−X + 1)−1 = eX eY eZ (1 + eX eY eZ )−1. (20)

Equation (18) again holds for more than 3 exponentials, pro-
vided the order of the exponentials is preserved.

Similarly, using both (17) and (18), we show in the Ap-
pendix that

tr{c†
i ci′e

Xc†
j c j′e

YeZ} = D[(e−XT eX ) j′ jTi′i

+ (T e−Z e−Y )i′ j (e
−XT ) j′i]. (21)

Compared with, e.g., Eq. (13), the main difference is that here
there is a term c†

j c j′eY while in (13) it reads c†
j e
Yc j′ . Using the

fact that eYcie−Y = ∑
j (e

Y )i jc j , together with the fermionic
algebra, one finds that

tr{c†
i ci′e

Xc†
j e
Yc j′e

Z} = D[(e−Y e−XT eX ) j′ jTi′i

+ (T e−Z e−Y )i′ j (e
−Y e−XT ) j′i].

(22)

This is of the same form as the trace appearing in Eq. (13),
provided we take i′ = i and j′ = j. Proceeding similarly,
we can also compute expressions for the other 3 traces in

Eqs. (14)–(16):

tr{cic
†
i′e
Xc†

j e
Yc j′e

Z}
= D[(e−Y e−XT eX ) j′ j (δii′ − Tii′ )

− (T e−Ze−Y )i j (e
−Y e−XT ) j′i′ ], (23)

tr{c†
i ci′e

Xc†
j e
Yc j′e

Z} = D{[(eY ) j j′ − (e−XT eX eY ) j′ j]Ti′i

− (T e−Z )i′ j′ (e
−XT ) ji}, (24)

tr{c†
i ci′e

Xc je
Yc†

j′e
Z}

= D{[(eY ) j j′ − (e−XT eX eY ) j j′ ](δii′ − Tii′ )

+ (T e−Z )i j′ (e
−XT ) ji′ }. (25)

All formulas hold for arbitrary matrices X,Y, Z . But before
we can apply them to the WTDs, some adaptations are still
required.

IV. COMPUTATION OF THE WTDs

Since He in Eq. (12) is a quadratic form, we can use
Eqs. (22)–(25) to compute the WTDs (13)–(16) provided the
initial state ρ is Gaussian. We will focus on two main choices
of initial states: the steady state ρss of the master equation (2)
and the vacuum state ρvac = |0〉〈0|. We can consider both
together, by taking a generic Gaussian initial state of the form

ρ = 1

Z
e
− ∑

i j
Mi, j c

†
i c j

, (26)

with some L × L matrix M. The partition function Z is, in
light of Eq. (17),

Z = det(1 + e−M ). (27)

Alternatively, one can also characterize the Gaussian state by
the covariance matrix Ci j = 〈c†

j ci〉. The relation between C
and M reads

eM = 1 − C

C
, C = 1

eM + 1
. (28)

The quadratic nature of the master equation (2) implies that
the standard time evolution of C will be given by a Lyapunov
equation

dC

dt
= −(WC + CW †) + F, (29)

where

W = ih + 1

2
diag(γ1, 0, . . . , 0, γL ), (30)

F = diag(γ1 f1, 0, . . . , 0, γL fL ). (31)

The steady state is thus the long-time solution of Eq. (29), viz.,

WCss + CssW
† = F. (32)

Similarly, the vacuum state is simply Cvac = 0. In practice,
it may be more convenient to set Cvac to be proportional to
the identity, with some small constant that is ultimately taken
to zero. This approach will actually be used below, around
Eq. (41). One should also bear in mind that the conditional
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evolution which appears in the WTDs is not Gaussian be-
cause, e.g., cqρc†

q is not a Gaussian state. Notwithstanding,
as we will show, it is still possible (and convenient) to express
most results in terms of the matrices C (or M), W, F .

The operator He in Eq. (12) is not yet in a canonical
quadratic form due to the terms c1c†

1 and cLc†
L. In fact, writing

ckc†
k = 1 − c†

kck turns out to yield a nontrivial constant. The
resulting Hamiltonian can be conveniently written as

He = −i
∑
i, j

Qi jc
†
i c j − i

2
� ≡ H̃e − i

2
�, (33)

where � = γ1 f1 + γL fL is a constant and

Q = W − F. (34)

A trace such as that in Eq. (13) can thus finally be written as

tr{c†
i cie

−iHet c†
jρc je

iH†
e t }

= e−�t

Z
tr{c†

i cie
−iH̃et c†

j e
− ∑

k� Mk�c†
k c�c je

iH̃†
e t }, (35)

which is now in the form (22), provided we identify

X = −Qt, Y = −M, Z = −Q†t . (36)

The final expression for all WTDs therefore reads

P(t, i−| j+) = γ −
i

1 − Cj j

e−�t

Z
D[(eMeQtT e−Qt ) j jTii

+ (T eQ†t eM )i j (e
MeQtT ) ji], (37)

P(t, i+| j+) = γ +
i

1 − Cj j

e−�t

Z
D[(eMeQtT e−Qt ) j j (1 − Tii )

− (T eQ†t eM )i j (e
MeQtT ) ji], (38)

P(t, i−| j−) = γ −
i

Cj j

e−�t

Z
D{[(e−M ) j j − (eQtT e−Qt e−M ) j j]Tii

− (T eQ†t )i j (e
QtT ) ji}, (39)

P(t, i+| j−) = γ +
i

Cj j

e−�t

Z
D{[(e−M ) j j

− (eQtT e−Qt e−M ) j j](1 − Tii )

+ (T eQ†t )i j (e
QtT ) ji}, (40)

where

D = det(1 + e−Qt e−Me−Q†t ), T = (eQ†t eMeQt + 1)−1.

(41)
In view of the fact that eM = (1 − C)/C, we therefore see
that everything is expressed in terms of the quantities C,W, F
associated with the Lyapunov equation (29), which is nice.

Next we specialize these formulas to the case where the
initial state is the vacuum, Cvac = 0. It is prudent to first
assume C is proportional to the identity, C = λ, and then take
λ → 0. In light of Eq. (28), we have that eM = (1 − λ)/λ,
so that in the limit λ → 0 we get Z = D = 1, and Cj j = 0.
Moreover, T = λ

1−λ
e−Qt e−Q†t . Terms containing products of

FIG. 2. Waiting time distributions (a) Pvac(t, L−|1+) and
(b) Pvac(t, 1+|1+), starting in the vacuum. Each curve is for
a different system size L = 5, 10, 50. Parameters: V = J = 1,
γ1 = γL = 0.1J , f1 = 1, fL = 0.

eM and T will thus be of order 1, while terms containing only
T will vanish. Equations (37) and (38) thus reduce to

P(t, i−| j+) = γ −
i e−�t (e−Qt )i j (e

−Q†t ) ji, (42)

P(t, i+| j+) = γ +
i e−�t [(e−Q†t e−Qt ) j j − (e−Qt )i j (e

−Q†t ) ji].

(43)

The other two WTDs, Eqs. (39) and (40), vanish in this case
because c j |0〉〈0|c†

j ≡ 0.

V. EXAMPLE: TIGHT-BINDING MODEL

As an application, we consider a tight-binding model with
Hamiltonian

H = −
L∑

i=1

V c†
i ci − J

L−1∑
i=1

(c†
i ci+1 + c†

i+1ci ). (44)

This is a prototypical example of ballistic transport [59–61].
We henceforth fix V = J = 1, γ1 = γL, f1 = 1, and fL = 0.
This means that excitations can only be injected in site 1 or
collected on site L. This reduces the problem to four WTDs,
P(t, L−|1+), P(t, 1+|1+), P(t, 1+|L−), P(t, L−|L−). Due to
the symmetry γ1 = γL, the first two equal the last two. Hence,
we have to focus only on P(t, L−|1+) and P(t, 1+|1+). It is
also important to distinguish the fundamental physical differ-
ence between these two distributions. Namely, P(t, 1+|1+) is
a local quantity, associated with clicks on the same site, while
P(t, L−|1+) is nonlocal, describing events at spatially distant
points.

In analyzing these WTDs, we start by considering the case
where the system is initially in the vacuum. The reason is
that this more closely resembles standard unitary transport
protocols, where a wave packet is inserted in an empty chain,
and one watches how it propagates (cf. Ref. [46]). The cor-
responding WTDs are shown in Fig. 2. The most familiar
scenario is that of Fig. 2(a): an excitation is created on the left
and then propagates with time. As can be seen, the resulting
WTD is initially zero since it takes a finite amount of time
for the excitation to travel from one site to the other. It then
presents a series of peaks, characteristic of quantum coherent
processes. The first peak is the primary absorption, where the
excitation leaves the chain (and hence a click is detected). The
other peaks are secondary processes, related to the wavelike
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FIG. 3. Similar to Fig. 2, but for the system starting in the steady
state. The inset is a log-scale plot of Pss(t, L−|1+) (black dashed) and
Pss(t, 1+|1+) (orange) for L = 50.

nature of the particle’s propagation in the chain, and the fact
that, for finite sizes, the wave packets may move back and
forth multiple times within the chain, until they are eventually
removed. As L increases the position of the peaks tends to be
pushed to longer times, which was found from numerics to
scale as tpeak ∝ L, exactly as expected for ballistic transport.
Moreover, the relative magnitudes of the peaks also diminish
[the curve for L = 50 in Fig. 2(a) is only barely visible, around
Jt ∼ 27]. The reason why this happens is simply due to the
way WTDs are normalized, as will be discussed further in
Fig. 4.

Conversely, P(t, 1+|1+), shown in Fig. 2(b), is not asso-
ciated with transport. Instead, it describes the waiting times
between consecutive firings of the same channel. It is thus
zero when t = 0, but then rapidly increases. The peak, which
occurs at t ∼ 2, represents the most likely waiting time
between two consecutive jumps. When L is small, the dis-
tribution presents a series of oscillations, associated with the
confinement of the ejected excitation in a finite-size chain.
But as L gets large, the distribution—and hence the spacing
between firing times—quickly becomes independent of L. In
fact, for large sizes P(t, 1+|1+) essentially follows an expo-
nential distribution, with a characteristic time 1/γ , dictated
precisely by the Lindblad coupling strength.

Still concerning P(t, 1+|1+), Fig. 2(b), it is possible to
draw an analogy with queuing theory—i.e., the description of
customers arriving in a queue. At any given time, the environ-
ment is sending multiple excitations to the system. Precisely

FIG. 4. Detection probabilities for the right bath p(L−|1+), as a
function of the system size L. (a) Vacuum, (b) steady state. Each
curve is for a different value of γ . Other parameters are the same as
in Fig. 2.

how it does that is not information that is present in the
master equation, only in the microscopic model of the system-
environment interactions. As far as the master equation is
concerned, however, all that matters is how many of those
excitations actually enter the system. In queuing theory, this
would be associated with the phenomenon of balking, which
is when a customer arrives at the line, but decides not to enter
it [62]. The excitations that enter the system are those that
did not balk. Except for finite-size effects, one expects that
balking should be associated mostly with the environment,
as well as the system-environment boundary (i.e., site 1). A
related but different concept is reneging, which is when a
customer enters a line but decides to leave after some time.
This would be associated with the WTD P(t, 1−|1+), which
will in general depend on the whole chain. In this example,
however, this effect is zero since we set f1 = 1.

In Fig. 3 we show similar results, but now for the sys-
tem starting in the steady state. Interestingly, in this case
P(t, 1+|1+) is practically unaltered. This again corroborates
the idea that P(t, 1+|1+) is ultimately a property of site 1 and
the environment. Conversely, the behavior of P(t, 1+|1+) in
Fig. 3(a) is entirely different. First, it is maximal at t = 0. This
occurs because, unlike the vacuum case of Fig. 2, the system
now already has plenty of other excitations, so that a click on
the left bath is not a requirement for observing a click on the
right one. In fact, one can see in Fig. 3(a) the same peaks of
Fig. 2(a), except that they are enveloped by a monotonically
decaying distribution. When the size of the chain increases,
the latter are rapidly suppressed, and P(t, L−|1+) tends to a
simple exponential decay (using larger values of γ also have
the tendency to suppress the oscillations). In fact, the inset
in Fig. 3(b) shows a log-scale plot of both distributions for
L = 50. This makes it evident that, except for small deviations
at early times, the distributions are essentially given by a
single exponential P ∼ e−t/τ , with τ = 1/γ .

The relative frequency with which the jump 1+ → L− oc-
curs is given by p(L−|1+), Eq. (7). This is presented in Fig. 4,
as a function of L, for both steady state and vacuum. When the
system starts in the vacuum [Fig. 4(a)] p(L−|1+) is exponen-
tially suppressed with increasing L, for all values of γ . This
happens because, when the chain is large, it takes a long time
for an excitation to be transported to the other side. In contrast,
1+ → 1+ refers to two events at the same site, and is thus
independent of L. This explains why the curves in Fig. 2(a)
are suppressed with increasing L. Conversely, if the system
starts in the steady state [Fig. 4(b)], the probabilities tend to a
finite value when L → ∞. This means that the frequencies
with which L−|1+ and 1+|1+ occur remain comparable in
magnitude, even in the thermodynamic limit.

Finally, we turn to the net activity time distribution (NATD)
P(t ) in Eq. (11), which describes the waiting time between
any two events. The results are shown in Fig. 5. Due to the
symmetry P(L−|L−) = P(1+|1+) and P(1+|L−) = P(L−|1+)
of the present choice of parameters, it reduces in this case
to P(t ) = P(t, L−|1+) + P(t, 1+|L−). Thus, P(t ) behaves as a
mixture of the two distributions in Fig. 3, serving as a good
summary of the typical activities happening in the system.
In the inset we show the mean and standard deviation as a
function of L. Quite remarkably, even though the distributions
themselves depend sensibly on L (main plot), the mean E (T )
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FIG. 5. Activity time distribution, Eq. (11), as a function of time
for the same values of L (and other parameters) as in Fig. 2. The inset
shows the mean E (T ) and standard deviation SD(T ) = √

var(T ) as
a function of the system size L.

is absolutely flat. The standard deviation, on other hand, de-
pends weakly on L and is also very close to the mean.

To shed further light on the NATD, we look at the case
L = 2, where it can actually be computed analytically. The
result is

P(t ) = γ

2(γ 2− 4J2)
e−γ t [γ 2− 8J2+ 4J2 cos(t

√
4J2 − γ 2)].

(45)
The average time between clicks is thus

E (T ) = 1

γ
+ γ

4J2
. (46)

The first contribution is associated solely with the stochastic
nature of the baths, which generates a typical exponential
distribution with rate γ ; it is therefore consistent with the
approximate exponential behavior shown in the inset of Fig. 3.
The second term, on the other hand, is associated with the
coherent hopping J . Hence, it yields a correction to the av-
erage waiting time due to the presence of the system. Since
E (T ) is found to be independent of L, we therefore conclude
that the contributions from the hopping persist even in the
thermodynamic limit.

VI. SIGNIFICANCE AND APPLICATIONS

The goal of this paper was to provide closed expressions
for the waiting time distribution in free fermion chains, writ-
ten solely in terms of the L × L matrices characterizing the
problem. We believe this is of value for three reasons. First,
WTDs represent a somewhat unexplored aspect of full count-
ing statistics, with rich physics. For example, in the simple
tight-binding model studied in this paper we have shown
how WTDs can clearly capture dynamical aspects of transport
through boundary-driven chains. This includes, in particular,
insights on how the chain size L influences the time be-
tween absorption/emission events, the relative probabilities,
and the overall dynamical activities within the chain. Second,
WTDs are usually difficult to compute, especially for many-
body systems. Being able to study them for arbitrary chain
sizes is thus extremely valuable. For instance, they can be
used to benchmark simulations for interacting systems using,
e.g., tensor networks [63–68]. The third reason why these
results should be of value is that, although free fermions are

sometimes regarded as not so interesting (e.g., when com-
pared to interacting models), there has recently been a surge
of interest in exotic fermionic chains, such as those exhibiting
quasiperiodic behavior. In fact, as illustrated in Refs. [69–75],
quasiperiodic noninteracting chains can exhibit any kind of
transport, not only ballistic [70,72,76,77]. A study of WTDs
for these models will be the subject of future work.

As for other future extensions, it would be interesting to
extend this to Gaussian bosonic states, as they may have
applications in, e.g., optomechanical systems [78,79]. An-
other extension is to include WTDs in which not all channels
are monitored. In this case it is not possible to decompose
the free evolution as L0 = −i(Heρ − ρH†

e ). Notwithstand-
ing, the resulting Liouvillian is still quadratic, so it should
be possible to derive the WTD using, e.g., third quantiza-
tion [80], or a similar vectorization method [32].
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APPENDIX: PROOF OF EQUATIONS (18) AND (21)

1. Proof of Equation (18)

We will prove Eqs. (18) and (21) using Eq. (17). For sim-
plicity, it will be assumed that i′ = i and j′ = j, but the proof
when they are different is quite similar. Due to the fermionic
algebra, it holds that for any constant α [81],

eαc†
i ci = 1 + (eα − 1)c†

i ci, c†
i ci = eαc†

i c j − 1

eα − 1
. (A1)

With this, we can write

tr{c†
i cie

X} = 1

eα − 1
[tr(eαc†

i ci eX) − tr(eXeY )]. (A2)

Equation (17) is now applicable to each term individually.
Here I have assumed only a single exponential eX. But since
Eq. (17) holds for an arbitrary number of quadratic forms, the
results can be readily extended. Of course, the result must be
independent of α, so this constant must eventually factor out.
In the first term of (A2), the quantity eαc†

i ci is a quadratic form,
with a matrix Rii = |i〉〈i|, i.e., with all elements being zero ex-
cept the entry (i, i). Here we also introduced for convenience
the notation |i〉 to represent single-particle kets (from a basis
of L elements). Thus we can write

tr{c†
i cie

X} = 1

eα − 1
[det(1 + eαRii eX ) − det(1 + eX )]. (A3)

However, we also have that eαRii = 1 + (eα − 1)|i〉〈i|, so the
first term is written as

det(1 + eαZii eX ) = det[1 + eX + (eα − 1)|i〉〈i|eX ]. (A4)

Next we use the Sylvester determinant identity, which states
that

det(A + |ψ〉〈φ|) = det(A)(1 + 〈φ|A−1|ψ〉). (A5)
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This yields

det(1 + eαZii eX ) = det(1 + eX )[1 + (eα − 1)〈i|eX (1 + eX )−1|i〉]. (A6)

Plugging this in Eq. (A2) finally leads to a cancellation of the factor eα − 1, as expected. The only thing left is

tr{c†
i cie

X} = det(1 + eX )〈i|eX (1 + eX )−1|i〉. (A7)

This is almost Eq. (18). To finish, we extend it to multiple matrices, X,Y, Z , leading to

tr{c†
i cie

XeYeZ} = det(1 + eX eY eZ )〈i|eX eY eZ (1 + eX eY eZ )−1|i〉. (A8)

The form shown in Eq. (18) is finally obtained by writing, e.g., eX (1 + eX )−1 = (e−X + 1)−1.

2. Proof of Equation (21)

Next, we turn to Eq. (21), which is harder. We again use the factorization in (A1) to write

tr{c†
i cie

Xc†
j c je

YeZ} = 1

eα − 1
{tr[c†

i cie
Xeαc†

j c j eYeZ] − tr[c†
i cie

XeYeZ]}. (A9)

Both terms can now be computed from Eq. (18). The last is in fact exactly Eq. (18). For simplicity, we are going to define

D = det(1 + eX eY eZ ), T = (e−Ze−Y e−X + 1)−1 = eX eY eZ (1 + eX eY eZ )−1. (A10)

Then the last term in (A9) becomes

tr[c†
i cie

XeYeZ] = DTii. (A11)

Conversely, the first term reads

tr[c†
i cie

Xeαc†
j c j eYeZ] = det(1 + eX eαRj j eY eZ ) [e−Z e−Y e−αRj j e−X + 1]−1

ii . (A12)

This formula still requires some working. We again write eαRj j = 1 + (eα − 1)| j〉〈 j|. Using Sylvester’s identity (A5), the part
associated with the determinant can be written as

det(1 + eX eαRj j eY eZ ) = det[1 + eX eY eZ + (eα − 1)eX | j〉〈 j|eY eZ ]

= det(1 + eX eY eZ ){1 + (eα − 1)〈 j|eY eZ (1 + eX eY eZ )−1eX | j〉}
= D[1 + (eα − 1)(e−XT eX ) j j], (A13)

where Eq. (A10) was used in the last line.
To treat the second term in Eq. (A12), we first write it as

[e−Z e−Y e−αRj j e−X + 1]−1 = [1 + e−Z e−Y e−X + (e−α − 1)e−Z e−Y | j〉〈 j|e−X ]−1, (A14)

and then use the Sherman-Morrison formula, which states that

(A + |ψ〉〈φ|)−1 = A−1 − A−1|ψ〉〈φ|A−1

1 + 〈φ|A−1|ψ〉 . (A15)

In our case A = e−Z e−Y e−X + 1 so A−1 ≡ T Eq. (A10). As a result, we get that the i, i element of this will be

[e−Z e−Y e−αRj j e−X + 1]−1
ii = Tii − (e−α − 1)

(T e−Z e−Y )i j (e−XT ) ji

1 + (e−α − 1)(e−XT e−Z e−Y ) j j
. (A16)

Inserting Eqs. (A13) and (A16) into Eq. (A12) leads to

tr[c†
i cie

Xeαc†
j c j eYeZ] = D[1 + (eα − 1)(e−XT eX ) j j]

[
Tii − (e−α − 1)

(T e−Ze−Y )i j (e−XT ) ji

1 + (e−α − 1)(e−XT e−Z e−Y ) j j

]

= D

[
Tii + (eα − 1)(e−XT eX ) j jTii − (e−α − 1)

(T e−Z e−Y )i j (e−XT ) ji

1 + (e−α − 1)(e−XT e−Z e−Y ) j j

− (eα − 1)(e−α − 1)
(e−XT eX ) j j (T e−Ze−Y )i j (e−XT ) ji

1 + (e−α − 1)[e−XT e−Z e−Y ] j j

]
.

Finally, we insert this in Eq. (A9). In light of Eq. (A11), this simply means we cancel out the term DTii. Hence, we are only left
with

tr{c†
i cie

Xc†
j c je

YeZ} = Dg

{
(e−XT eX ) j jTii + (T e−Ze−Y )i j (e

−XT ) ji
(eα − 1)(e−XT eX ) j j + 1

eα[1 − (e−XT e−Z e−Y ) j j] + (e−XT e−Z e−Y ) j j

}
.
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Using the structure of T in Eq. (A10), one may verify that the matrix appearing in the denominator is actually related to the
matrix e−XT eX according to

e−XT e−Z e−Y = 1 − e−XT eX . (A17)

This allows for the expression to be simplified, finally leading to a cancellation of the factor of eα (as it must, since α is arbitrary).
As a result, we are left only with

tr{c†
i cie

Xc†
j c je

YeZ} = D{(e−XT eX ) j jTii + (T e−Ze−Y )i j (e
−XT ) ji}. (A18)

The formula in the case when i′ �= i and j′ �= j is similar, and reads

tr{c†
i ci′e

Xc†
j c j′e

YeZ} = D{(e−XT eX ) j′ jTi′i + (T e−Ze−Y )i′ j (e
−XT ) j′i}. (A19)
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