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Thermodynamic currents, such as energy, heat, and entropy production, can fluctuate significantly at the
nanoscale. However, some fluctuate less than others. Hyperaccurate currents are defined as those which fluctuate
the least, in the sense that they maximize the signal-to-noise ratio (precision). In this Letter we analytically
determine what are the hyperaccurate currents in quantum thermoelectrics, modeled by coherent transport in
the Landauer-Büttiker formalism. Our results yield a tight and general bound on precision, which replace the
classical thermodynamic uncertainty relations, that can be violated in quantum thermoelectrics. They also allow
us to address the question of how close to hyperaccurate is a given current. We illustrate our findings for smooth
boxcar functions, and for a double quantum dot operating as a thermal machine. In the latter, we use our results to
establish the parameter ranges for which the output power of an autonomous engine can become hyperaccurate
arbitrarily far from equilibrium.
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I. INTRODUCTION

Fluctuations of the power grid can potentially fry our elec-
tronics, a fact which is widely taken into account in chip
manufacturing. Such fluctuations become even more relevant
at the nanoscale, the endpoint of the miniaturization march.
Consequently, strategies for curbing them demand increas-
ing attention. For thermodynamic currents, such as energy,
charge, heat, or work, the precision is determined by their
signal-to-noise ratio (SNR)

SJ = J2/�2
J , (1)

where J denotes the average current and �2
J its corresponding

variance. Different currents can clearly be more or less sen-
sitive to fluctuations. For instance, in a thermoelectric engine
the fluctuations of the output power can behave very differ-
ently from that of the heat fluxes. In recent years there has
been a boom of interest in determining, and achieving, upper
bounds for any SNR, as they allow one to quantify its ultimate
reliability.

A central result in this context was provided by the so-
called Thermodynamic Uncertainty Relations (TURs) [1–4],
which, in classical Markov processes, bounds the SNR in
terms of the average entropy production rate σ , according to

SJ � σ/2. (2)

This result implies that to improve precision, one must pay
a price in dissipation [5–9]. The bound (2) can generally be
quite loose, however, even for classical machines. To quan-
titatively address this fact, Busiello and Pigolotti recently
introduced the concept of a hyperaccurate current [10] as
the one which possesses the maximum SNR Shyp among all
currents, i.e.,

SJ � Shyp. (3)

Taken together, Eqs. (2) and (3) imply the following sequence
of bounds SJ � Shyp � σ/2. Unlike the TUR, however, the
bound (3) is always saturable. This is therefore of value even
if the hyperaccurate current itself is not easily accessible,
for it allows one to determine how close a given physical
current is from being hyperaccurate. For instance, the entropy
production rate only becomes hyperaccurate (i.e., Sσ ≡ Shyp)
when the Fluctuation Dissipation Relation (FDR), �2

σ = 2σ ,
is satisfied, which also implies that Sσ = σ/2, i.e., TUR is
saturated [11].

In the presence of quantum effects, however, coherent
transport, as opposed to incoherent transitions, make viola-
tions of Eq. (2) possible [12–22]; i.e., SJ � σ/2. This means
one can improve precision without necessarily increasing the
dissipation. One is therefore naturally led to ask whether a
quantum version of the hyperaccurate current can be found.
By definition, this would then replace the TUR and, at the
same time, provide a fundamental and saturable upper bound
on the SNR of any current, i.e., Sσ ≡ Shyp. It can also help to
shed light on the mechanisms which make a certain current
more or less accurate. In this Letter we answer this ques-
tion for quantum thermoelectric systems undergoing coherent
transport, as described by the Landauer-Büttiker formalism.
In particular, we prove two main results. First, we obtain a
closed formula for the hyperaccurate current in the Landauer-
Büttiker context, which is straightforward to evaluate and
provides the ultimate cap on precision. However, as we show,
this current is a nonlinear functional of energy and therefore
the bound is never strictly saturated by a thermodynamic
current, such as heat and output power. To address this, we
derive a second upper bound, called thermal-hyperaccurate,
Sthyp, which optimizes only over the subset of thermodynamic
currents. To illustrate the significance of our findings, we
study smoothed boxcar transmission functions, and a double
quantum dot operating as a thermal machine.
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TABLE I. List of physical currents: [Eq. (4)] and their corre-
sponding variances [Eq. (5)]. The SNR is Sh = J2

h /�2
h. Here P is the

output power, JQi are the heat currents (i = L, R), and σ is the entropy
production. Power and heat are defined so that P + JL

Q + JR
Q = 0. The

last two lines refer to the hyperaccurate and linear-hyperaccurate
bounds in Theorems 1 and 2. All δ′s are “left minus right:” δβ =
βL − βR, δμ = μL − μR and δβμ = βLμL − βRμR. Finally, Ci j is the
covariance between two currents, defined in Eq. (6).

Current h(ε) Variance

JN 1 �2
N

JE ε �2
E

P = −δμJN −δμ �2
P = δ2

μ�2
N

JQR = JE − μRJN ε − μR �2
QR

= �2
E − 2μRCNE + μ2

R�2
N

JL
Q = μLJN − JE μL − ε �2

QL
= �2

E − 2μLCNE + μ2
L�2

N

σ = −δβJE + δβμJN −δβε + δβμ �2
σ = δ2

β�2
E + δ2

βμ�2
N − 2δβδβμCNE

Jhyp Eq. (8) Eq. (9)
Jthyp = aJQR + bJN Eq. (10) Eq. (11)

II. LANDAUER-BüTTIKER FORMALISM

We consider a quantum thermoelectric system character-
ized by an energy-dependent transmission function T (ε) ∈
[0, 1]. The system is coupled to two baths i = L, R, kept at
different inverse temperatures βi = 1/Ti (we set kB = 1), and
chemical potentials μi = eVi, where e is the electric charge
and Vi the voltage difference. A generic current, within the
Landauer-Büttiker formalism, has the form (we set h̄ = 1)
[23,24]

Jh =
∫

dε h(ε)T (ε)δ f (ε), (4)

where δ f = fL − fR and fi(ε) = (eβi (ε−μi ) + 1)−1 is the
Fermi-Dirac occupation of bath i. Here h(ε) defines the type
of current in question: the particle current JN corresponds
to h(ε) = 1, and the energy current JE to h(ε) = ε. Other
currents, such as heat, output power and entropy production,
are defined similarly, and summarized in Table I. More com-
plicated functions h(ε), despite not being typical, are also
physically allowed (as proven in Appendix C). Within the
Levitov-Lesovik full-counting formalism [25,26], the vari-
ance associated to any such current reads

�2
h =

∫
dε h2T [g + δ f 2(1 − T )], (5)

where g = fL(1 − fL ) + fR(1 − fR) and the argument ε of the
functions was omitted for clarity. The SNR (1) is then Sh =
J2

h /�2
h. We also introduce the covariance Ci j between currents

hi(ε) and h j (ε) [16]:

Ci j =
∫

dε hih jT [g + δ f 2(1 − T )]. (6)

Equivalent formulas can also be obtained using current-
current correlators [27].

Before we introduce our main results, let us motivate
them through an example. Consider a thermoelectric de-
vice under a voltage bias δμ and no temperature bias (TL =
TR). The transmission function is taken to be a smooth

FIG. 1. (a) Average particle current JN , and particle current fluc-
tuations �2

N , for the smooth boxcar (7), as a function of the chemical
potential bias βδμ, with constant βL = βR = β. (b) Signal-to-noise
ratio SN = J2

N/�2
N . The region for which the curve is blue repre-

sents violations of the classical TUR (2). Also shown is our new
hyperaccurate bound, Shyp [Eq. (9)]. In this case SN = Sthyp, so that
the particle current is the thermal hyperaccurate current. Parameters:
βa = 2.5, βγ = 0.5.

boxcar [18,28,29]:

T (ε) = 1

2

[
tanh

ε + a

γ
− tanh

ε − a

γ

]
, (7)

where γ is the smoothness factor, and 2a is the width. Boxcars
have long been studied in the context of thermal machines
[29]. Recently, it was also shown that they lead to TUR vi-
olations, which are only recovered in the large voltage bias
limit [30]. Figure 1(a) shows the average particle current JN ,
and its variance �2

N , as a function of the chemical potential
bias βδμ. Since βL = βR, the entropy production rate is simply
σ = βδμJN . Upon increasing the drive βδμ, the current grows
while the fluctuations diminish. The corresponding SNR SN

[Fig. 1(b)] therefore grows as well. For this model, the clas-
sical TUR (2), no longer places a bound on the maximum
precision achievable by the particle current, as shown in
Fig. 1(b).

Therefore, this highlights at least two important questions:
(i) In the absence of the TUR, what ultimately bounds the
precision? (ii) Are there other currents which can be more
precise than JN ? Our main results, summarized in Theorems
1 and 2 below, provide definitive answers to these questions.
Theorem 1 establishes the fundamental hyperaccurate bound
Shyp [dot dashed line in Fig. 1(b)] while Theorem 2 establishes
the best possible precision, Sthyp (“thermal hyperaccurate”),
achievable by actual thermodynamic currents, i.e., heats and
output power. In the example of Fig. 1(b), it turns out that
the particle current itself (and the entropy production) are
thermalhyperaccurate.

III. MAIN RESULTS

Theorem 1 (“hyp”): For given transmission function T (ε)
and parameters (TL, TR, μL, μR), the current which maximizes
the SNR (1) is the one corresponding to

hhyp(ε) ∝ δ f (ε)

g(ε) + δ f (ε)2[1 − T (ε)]
. (8)
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The related optimal SNR is given by

Shyp =
∫

dε
δ f (ε)2T (ε)

g(ε) + δ f (ε)2(1 − T (ε))
. (9)

Since the SNR is invariant to a change h → αh, Eq. (8) is
only defined up to a scale.

Proof: Since the problem is invariant under a change of
scale, to maximize J2

h /�2
h we can, without loss of generality,

also fix the scale so that Jh ≡ 1. The problem then becomes
that of minimizing �2

h over h(ε), subject to the constraint that
Jh = 1. This is a convex optimization problem and can thus
be treated with standard Lagrange multipliers. We introduce
the functional G[h(ε)] = �2

h/J2
h + λ(Jh − 1), where λ is a

Lagrange multiplier. Minimizing over h(ε), through standard
variational calculus, yields Eq. (8). Finally, substituting hhyp

in Eqs. (4) and (5), leads to (9). �
The bound (9) is straightforward to compute, requiring

only a single integral. It also simplifies considerably when-
ever T is sharply windowed between zero or one, which
encompasses the important examples of boxcars [18,28–30]
and quantum point contacts [31,32]. The scale invariance of
Eq. (8) can be made to match the choice of Ref. [10], for
which �2

hyp = 2Jhyp such that Shyp = Jhyp/2. The hyperaccu-
rate current is also gauge invariant, like JN , JQi , and P [33].

However, the fact that the hhyp is a complicated function
of ε means it is generally not accessible in the laboratory.
Hence, even though Eq. (9) provides a universal bound, it will
generally not be saturated by thermodynamic currents, which
are always of the form h(ε) = aε + b. To address this, we
next consider an optimization only over currents of this form.
In order to make it explicitly gauge invariant, we parametrize
without loss of generality h(ε) = a(ε − μR) + b. We refer to
these as “thermal hyperaccurate.” This leads to our second
main result:

Theorem 2 (“thyp”): Restricting to currents of the form
h(ε) = a(ε − μR) + b, the hyperaccurate current is the one
that satisfies

b

a
= JN�2

QR
− JQRCQR,N

JQR�
2
N − JNCQR,N

. (10)

The corresponding optimal SNR reads

Sthyp = J2
N�2

QR
+ J2

QR
�2

N − 2JN JQRCQR,N

�2
QR

�2
N − C2

QR,N

. (11)

Combined with Theorem 1, it thus follows that for any ther-
modynamic current

SJ � Sthyp � Shyp. (12)

Proof: Due to scale invariance, to maximize the SNR we
can minimize �2

h over a and b, with fixed Jh = J0, which can
be with standard Lagrange multipliers. �

If TL = TR, μL = −μR, and T (ε)δ f (ε) is an even function
of ε, one may verify that JN becomes thermalhyperaccurate
[Fig. 1(b)]. Conversely, if μL = μR = 0 and T δ f is an odd
function of ε, then JQL ≡ JQR become thermalhyperaccurate
instead. In other cases, the thermal-hyperaccurate current will
usually be a nontrivial mixture of heat and particle currents.

FIG. 2. Thermodynamic properties of a double quantum dot en-
gine [Eq. (13)] as a function of the temperature gradient δT /T =
(TL − TR )/T , with fixed T = (TL + TR )/2. (a) Average heat currents
JL(R)

Q , and average output power P. The system operates as an engine
when P, JL

Q, JR
Q > 0. (b) Corresponding SNRs. The black dot dashed

curve is the linear hyperaccurate bound (11). For low δT the output
power is nearly hyperaccurate. But for high δT , the situation reverses.
Parameters: β
 = β� = βε/2 = 1, βμR = −βμL = 0.35.

IV. DOUBLE QUANTUM DOT THERMAL MACHINE

We illustrate our results by studying a double quantum dot,
defined by the transmission function [13]

T (ε) = 
2�2

|(ε − ε0 + i
/2)2 − �2|2 , (13)

where 
 is the bath coupling strength (in the wide-band limit),
ε0 the dot energy, and � the inter-dot coupling. In Fig. 2(a)
we plot the average output power P, and the average heat
currents JQL(R) to the two baths (cf. Table I for definitions),
as a function of δT /T = (TL − TR)/T . The system operates as
an autonomous engine when P, JQR > 0 and JQL < 0 [34].

The corresponding SNRs of the three quantities are shown
in Fig. 2(b), with Sthyp shown as dot dashed. In this particular
case, Sthyp � Shyp. We can thus use our results to address
the accuracy of each current. For low thermal gradients the
output power is found to be nearly hyperaccurate. This hap-
pens because low δT yields heat currents which are small on
average, but whose fluctuations are nonnegligible, causing
the signal-to-noise ratio SQi to fall significantly. For large δT

the situation reverses, and the current to the cold bath JQR

becomes nearly hyperaccurate. We therefore see that the pre-
cision characteristics are very different in the domain where
the dots operate as an engine or not.

We can analyze how close the output power is to be-
ing thermalhyperaccurate. In Fig. 3(a) we plot SP/Sthyp as
a function of δμ/T = (μL − μR)/T for different values of
δT /T = (TL − TR)/T , where T = (TL + TR)/2. As is clear
from the image, the output power becomes hyperaccurate for
sufficiently large δμ. For moderate δμ, the precision of P
will depend on δT [in agreement with Fig. 2(b)]. A similar
analysis is shown in Fig. 3(b) for the entropy production σ . It
is found that for most parameter ranges, σ is close to thermal
hyperaccurate. The discrepancy, however, is more significant
for large δT .
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FIG. 3. How accurate is the output power and entropy produc-
tion? The curves represent the ratio (a) SP/Sthyp and (b) SQR/Sthyp,
with respect to the thermal hyperaccurate bound (11), as a function
of δμ/T = (μL − μR )/T . Each curve is for a different value of
δT /T = (TL − TR )/T , where T = (TL + TR )/2. From top to bottom:
δT /T = 0.05, 0.2, 0.6.

V. SMALL BIASES REGIME

The previous example indicates that for small biases (linear
response regime), the entropy production becomes thermal-
hyperaccurate. To understand this in more general terms, we
carry out a systematic expansion of our two bounds in terms
of the biases δβ and δβμ. We parametrize

βL(R) = β ± δβ/2, βL(R)μL(R) = βμ ± δβμ/2. (14)

Expanding in terms of δβμ is mathematically more convenient.
To convert to δμ simply use δβμ = βδμ + μδβ + δβδμ. A
fourth order series expansion of all currents considered in this
Letter, as well as their fluctuations, is reported in Appendix D.
Here we focus specifically on Theorems 1 and 2. The entropy
production, up to fourth order in the biases, reads

σ = σ (2) + �4/24. (15)

Here σ (2) = δ2
βθ2 − 2δβδβμθ1 + δ2

βμθ0 is the lowest order con-
tribution, with θn = ∫

dεεn f (1 − f )T and f = (eβ(ε−μ) +
1)−1 being the Fermi function evaluated at the average temper-
ature and chemical potential. The last term in Eq. (15), on the
other hand, reads �4 = ∫

dε(δβμ − εδβ )4 f (1 − f )(1 − 6 f +
6 f 2)T , which is a fourth-order contribution in δβ and δβμ.

We compute similar expansions for both Shyp [Eq. (9)] and
Sthyp [Eq. (11)]. It is found that they coincide to the fourth
order, and are given by

Shyp = Sthyp = σ

2
− (�4 + 6�4)/24, (16)

where �4 = ∫
dε(δβμ − εδβ )4 f 2(1 − f )2T (1 − T ) is also a

fourth-order contribution.
We thus reach the following conclusions. Both bounds

coincide to the fourth order. And they coincide with the
classical TUR (2) only up to the second order. The entropy
production thus becomes hyperaccurate, but only to the lowest
order (where it also satisfies the FDR �2

σ = 2σ ). This is in
agreement with Fig. 3. Deviations from the TUR appear at
the fourth order. If S(t)hyp < σ/2, the TUR will hold, but will
never be saturated. And if S(t)hyp > σ/2, then there definitely

FIG. 4. Factor (�4 + 6�4)/δ4
β (assuming δβμ = 0) in Eq. (16),

as a function of T and μ, for the boxcar transmission function (7).
Negative (blue) means the classical TUR can be violated. (a) Sharp
boxcar, a = 1/2, γ = 0. (b) Smoothed boxcar, a = 1/2, γ = 0.1.

exists a thermodynamic current (the hyperaccurate one) which
violates the TUR.

Using our results, we can provide guidelines on how T
must behave in order to obtain TUR violations. The term �4 is
always nonnegative, and therefore contributes toward making
S(t)hyp < σ/2. The first strategy is thus to suppress �4. Since
it depends on T (1 − T ), it is minimized by transmission
functions that are sharply windowed, changing quickly from
zero to one. This is in agreement with Refs. [22,30,35], where
TUR violations were found to be largest for boxcar functions.
The term �4, on the other hand, can have any sign. The
function f (1 − f )(1 − 6 f + 6 f 2) has a negative minimum
around ε = μ, and remains negative only over a window of
width of ∼2T . Large TUR violations are thus precise when
the transmission function is a boxcar centered around μ, and
of width ∼2T . Figure 4 illustrates the idea,where we plot the
factor �4 + 6�4 for the boxcar transmission function defined
in Eq. (7). Negative (blue) regions mean that there definitely
exists a current which will violate the classical TUR.

VI. CONCLUSIONS

Thermodynamic uncertainty relations have become one of
the central results to characterize current fluctuations arbi-
trarily far from equilibrium. However, the standard TUR is
not valid in the quantum regime, leading to the question of
whether a new universal upper bound on the signal-to-noise
ratio of currents exist. In this Letter we provide a definitive
answer to this question in terms of the current which possess
the highest possible SNR for any given set of biases and
transmission function, called the hyperaccurate current. Our
bounds are valid for processes arbitrarily far from equilibrium,
and are easily computable. Moreover, they can always be
saturated by physically motivated processes, allowing one to
unambiguously establish how hyperaccurate is a given ther-
modynamic current.

We also showed how our new bounds can be used to
determine the precise parameter range for the temperature
and voltage biases for which, given a certain transmission
function, a desired target current can become hyperaccurate.
While our results focused on the steady of a two terminal
setup, they can be readily extended to multiterminal devices
and time-dependent drives. Similarly, one can also in principle
extend it to include bulk noises, in the form of Büttiker probes.
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APPENDIX A: BASIC NOTATION AND THE TWO-POINT
MEASUREMENT SCHEME

We consider a quantum system with initial state ρ̂, evolv-
ing unitarily with evolution operator Û (t, t0). Let Ô(t ) =∑

ot
ot�̂ot denote a generic observable, with eigenvalues ot

and projectors �̂ot . Throughout, we will repeatedly make use
of the spectral theorem, which states that given an operator
Ô, as above, a generic function of it will have the following
decomposition

f (Ôt ) =
∑

ot

f (ot )�̂ot . (A1)

Within the two-point measurement (TPM) scheme, the
probability of observing oti at time ti and then ot at time t
is given by

pt (�o) =
∑
oi,ot

δ(�o − (ot − oi ))

× Tr[�̂ot Û (t, ti )�̂oi ρ̂(ti )�̂oiÛ
†(t, ti )�̂ot ], (A2)

with δ(.) denoting the Dirac’s delta function and ρ̂(ti) being
the initial state. We also define the cumulant generating func-
tion (CGF)

G(η)t = ln
∫

d (�o)e−iη�opt (�o). (A3)

From this, the variance can be obtained by differentiating over
η: 〈(�ot )2〉 = (−i)2∂η2G(η)t |η=0. Assuming that the initial
density matrix ρ̂(ti ) commutes with Ôti , it is also possible to
to rewrite the CGF as

Gt (η) = ln Tr[eiηÔt Û (t, ti )e
iηÔi ρ̂(ti )Û

†(t, ti )]. (A4)

APPENDIX B: FULL COUNTING STATISTICS FOR
HYPERACCURATE FERMIONIC CURRENT IN QUANTUM

THERMOELECTRIC SYSTEMS

We now analyze the CGF in the case of noninteracting
fermions. We consider a composite system, with total Hamil-
tonian

Ĥ = ĤS +
∑

α

(Ĥα + V̂Sα ), (α = L, R). (B1)

The first term is the Hamiltonian of the system, which is
taken to be described by a quadratic Hamiltonian in a set

of fermionic operators cs; that is, ĤS = ∑
s εsĉ†

s ĉs. This sys-
tem functions as a junction, connecting a left and right
bath, with Hamiltonians ĤL(R) = ∑

l (r) εl (r)ĉ
†
l (r)ĉl (r). Finally

V̂SL(R) = ∑
s,l (r)(Jsl (r)ĉ†

s ĉl (r) + H.c.) is the corresponding in-
teraction. The above creation and annihilation operators for
the system and the leads are fermionic operators each satis-
fying their own standard anticommutation relations {ĉ j, ĉ†

k} =
δ jk , ĉ j ĉk = ĉ†

j ĉ
†
k = 0.

Usually, the observable that is considered is either the
particle number N̂L or the energy ĤL of one of the reservoirs,
say the left one for concreteness.

But here we will be interested in measuring a generic
observable of the form Ôh = h(ĤL ). By virtue of the spectral
theorem Eq. (A1), its spectral decomposition in the Fock basis
is given by

Ôh = h(ĤL ) =
∑

l

h(εl )ĉ
†
l ĉl . (B2)

Thus, by construction, this observable does not have co-
herences between different Fock states, and commutes with
both the Hamiltonian and the particle number operator of
the left reservoir. In order to be able to apply the TPM
formalism of the previous section, one finally needs to
consider an initial state which commutes with the desired
observable, Ôh. We take, as is standard, the assumption
that the interactions V̂SL + V̂SR are adiabatically switched
on from ti = −∞, so that the initial state has the form
ρ̂(−∞) = ρ̂S (−∞)

⊗
α=L,R Z−1

α exp[−βα (Ĥα − μαN̂α )]. We
remark that the choice of the initial state for the central
junction system is immaterial in the steady-state after the
thermodynamic limit is performed in the baths [36]. We will
therefore choose ρ̂S (−∞) = Z−1

S e−βS (ĤS−μSN̂S ) from now on.
Taking into account that ti = −∞, we are therefore led to

the following expression for the CGF of the hyperaccurate
observable

Gt (η) = ln Tr[Û †(t,−∞)eiηÔhÛ (t,−∞)eiηÔh ρ̂(−∞)]

= ln Tr[Û †(t,−∞)eiη
∑

l h(εl )ĉ†
l ĉl Û (t,−∞)

× eiη
∑

l h(εl )ĉ†
l ĉl ρ̂(−∞)]. (B3)

Finally, a useful reformulation of the above result was found
by Klich [37], which allowed to express the CGF as a de-
terminant of second-quantization operators restricted to their
single-particle subspace. The latter can be summarized as
follows: let X̂ = ∑

i j Xi j ĉ
†
i ĉ j be a fermionic bilinear operator

and X denote the matrix with entries Xi j ; then the following
identity can be proven

Tr[eX̂ ] = det[1 + eX]. (B4)

The same holds true for any product of fermionic bilinear
operators, i.e., Tr[eX̂ eŶ ] = det[1 + eXeY]. For the problem at
hand, one has that

Oh = diag(h(εl )) ⊕ 1SR (B5)
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and

ρ(−∞) =
⊕

α=L,R,S

diag(nα (εα )), (B6)

where nα (εα ) = [1 + e−βα (εα−μα )]−1. The application of
Eq. (B4) to Eq. (B3) then leads to

Gt (η) = det[1LSR − ρ(−∞) + ρ(−∞)(U†(t,−∞)

× eiη Oh U(t,−∞)eiη Oh )]. (B7)

Equation (B7) represents the general expression for the
current statistics of thermoelectric devices consisting of non-
interacting fermions at any given time, and without any
approximation. In the following section, we will consider the
case of time-independent elastic scattering, also known as
the Landauer-Büttiker regime, where the CGF reduces to the
so-called Levitov-Lesovik expression.

APPENDIX C: ELASTIC SCATTERING

From now on, let us assume that the scattering region is of
similar size or smaller compared to the relaxation lengthscales
of the electrons (coherent scattering). Furthermore, we will
focus our attention to elastic scattering, which implies that
each electron moves from one reservoir to the other as a
plane wave with energy ε. This condition is equivalent to
requiring energy conservation and the validity of a large devi-
ation principle, which is an assumption usually satisfied at the
steady-state regime, whenever the size of the central system is
negligible compared to the size of the baths (for which a ther-
modynamic limit is performed) [26]. In this case, electrons
with different energies thus contribute to particle, energy, or
any other such observable’s (e.g., the hypercurrent’s) statistics
independently and thus Gt (η) = ∫

dε Gt (η, ε). Furthermore,
one can describe the above problem by taking the long-time
limit t → +∞ in Eq. (B3), and introducing the so-called
scattering matrix Ŝ = limt→∞ ei(ĤL+ĤR )tÛ (t,−t )e−i(ĤL+ĤR )t .
Exploiting the above considerations, the CGF Eq. (B7) then
reduces to

χ (η) := lim
t→∞

1

t
Gt (η) =

∫
dε ln det[12 − nF (ε)

+ nF (ε)(S†(ε)X(ε)S(ε))X†(ε)], (C1)

where 12 = (1 0
0 1), and finally where we have introduced the

two matrices

nF (ε) =
(

[1 + eβL (ε−μL )]−1 0
0 [1 + eβR (ε−μR )]−1

)
,

X(ε) ≡
(

e−iηh(ε) 0
0 1

)
. (C2)

Upon expressing the scattering matrix in terms of reflection
and transmission coefficients of the left and right leads S(ε) =
(rLL (ε) tLR (ε)

tRL (ε) rRR (ε)), and making use of the following relations:

(i) det[S] = 1, (ii) |rLL(ε)|2 + |tLR(ε)|2 = 1, (iii) |rRR(ε)|2 +
|tRL(ε)|2 = 1, and (iv) |tLR(ε)|2 = |tRL(ε)|2 ≡ T (ε), allows to
finally arrive at the Levitov-Lesovik expression for the desired
current

χ (η) =
∫

dε ln{1 + T (ε)[(eh(ε)η − 1)nL(ε)(1 − nR(ε))

+ (e−h(ε)η − 1)nR(ε)(1 − nL(ε)))}. (C3)

From this, Eqs. (4) and (5) of the main text follow directly by
taking the appropriate derivatives. This calculation therefore
allows us to conclude that, indeed, it is in principle possible to
measure generic currents, given by some function h(ε). The
caveat to do so is to measure an operator of the form (B2),
interpreted in terms of the spectral theorem.

APPENDIX D: PERTURBATIVE FOURTH ORDER
EXPANSION

In this section we will provide the detailed calculations of
all the various currents, their fluctuations and the hyperaccu-
rate bounds upon a fourth order Taylor expansion in the biases
δβ and δβμ, where

βL(R) = β ± δβ/2, βL(R)μL(R) = βμ ± δβμ/2. (D1)

Let us start by giving the perturbative expansions of the basic
quantities appearing as integrands of Eqs. (4) and (5). First
of all, let us define the variable x ≡ β(ε − μ). This means
that we will do the expansions of the following quantities of
interest in δx = δβε − δβμ. Moreover, for easiness of notation,
let us define fn ≡ f (n)(x), with f = (eβ(ε−μ) + 1)−1 being
the Fermi function evaluated at the average temperature and
chemical potential.

(i) � f = f1δx + f3

24δ3
x + O(δ5

x );

(ii) g = −2 f1 − f3

4 δ2
x − f5

192δ4
x + O(δ5

x );

(iii) � f 2 = f 2
1 δ2

x + f1 f3

12 δ4
x + O(δ5

x ).
Inserting these expansions back into the expressions for the
average currents and variances allows to obtain the desired
results. In particular, let us define the quantity

φn
m = −

∫
εn fmT . (D2)

Notice that in the main text, in particular in Eq. (15), we
adopted the simplified notation

θn ≡ φn
1 = −

∫
εn f1T =

∫
dεεn f (1 − f )T , (D3)

where the identity f1 = − f (1 − f ) has been used.
By using Eq. (D2), after some simple algebra, one obtains

the following expressions for the average currents.
(i) The average particle current:

JN = −δβφ1
1 + δβμφ0

1

+ 1

24

3∑
k=0

(
3

k

)
(−1)kδk

βδ3−k
βμ φk

3 + O(
δ5
β, δ5

βμ

)
.

(D4)
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(ii) The average energy current:

JE = −δβφ2
1 + δβμφ1

1

+ 1

24

3∑
k=0

(
3

k

)
(−1)kδk

βδ3−k
βμ φk+1

3 + O(
δ5
β, δ5

βμ

)
.

(D5)

(iii) The entropy production:

σ = δ2
βφ2

1 − 2δβδβμφ1
1 + δ2

βμφ0
1

+ 1

24

[
4∑

k=0

(
4

k

)
(−1)kδk

βδ4−k
βμ φk

3

]
+ O(

δ5
β, δ5

βμ

)
≡ σ (2) + �4/24 + O(

δ5
β, δ5

βμ

)
, (D6)

where σ (2) ≡ δ2
βθ2 − 2δβδβμθ1 + δ2

βμθ0 and �4 ≡∫
dε(δβμ − εδβ )4 f (1 − f )(1 − 6 f + 6 f 2)T . This is

the result reported in Eq. (14) of the main text.
(iv) The particle variance:
In order to express the variances and the hyperaccurate

bounds in a similar compact fashion, we introduce the last
quantity given by

ψn
lm =

∫
dε εn fl fmT (1 − T ). (D7)

By making use of it, one finds the following expressions

(1) The particle variance

�2
N = 2φ0

1 +
[

2∑
k=0

(
2

k

)
(−1)kδk

βδ2−k
βμ

(
ψk

11 + φk
3

4

)]
+

[
4∑

k=0

(
4

k

)
(−1)kδk

βδ4−k
βμ

(
ψk

13

12
+ φk

5

192

)]
+ O(

δ5
β, δ5

βμ

)
. (D8)

(2) The energy variance:

�2
E = 2φ2

1 +
[

2∑
k=0

(
2

k

)
(−1)kδk

βδ2−k
βμ

(
ψk+2

11 + φk+2
3

4

)]
+

[
4∑

k=0

(
4

k

)
(−1)kδk

βδ4−k
βμ

(
ψk+2

13

12
+ φk+2

5

192

)]
+ O(

δ5
β, δ5

βμ

)
. (D9)

(3) The energy-particle correlation function:

C = 2φ1
1 +

[
2∑

k=0

(
2

k

)
(−1)kδk

βδ2−k
βμ

(
ψk+1

11 + φk+1
3

4

)]
+

[
4∑

k=0

(
4

k

)
(−1)kδk

βδ4−k
βμ

(
ψk+1

13

12
+ φk+1

5

192

)]
+ O(

δ5
β, δ5

βμ

)
. (D10)

It is important to stress that all the terms in the above (and below) expressions proportional to the various ψs vanish in the case
of a box-car transmission function. Finally, the two hyperaccurate bounds Shyp [Eq. (9)] and Sthyp [Eq. (11)] are given by

Shyp = Sthyp =
∫ T� f 2

g + [1 − T ]� f 2
=

∫ [
−T f1

2
δ2

x +
(
T f3

48
− T (1 − T ) f 2

1

4

)
δ4

x

]
+ O(

δ5
β, δ5

βμ

)
, (D11)

= δ2
βφ2

1 − 2δβδβμφ1
1 + δ2

βμφ0
1

2
− 1

48

[
4∑

k=0

(
4

k

)
(−1)kδk

βδ4−k
βμ

(
φk

3 + 12ψk
11

)] + O(
δ5
β, δ5

βμ

)
. (D12)

The last term can also be rearranged more clearly into the two contributions �4 + 6�4 introduced in Eq. (16).
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