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Understanding the thermodynamics of driven quantum systems strongly coupled to thermal baths is a central
focus of quantum thermodynamics and mesoscopic physics. A variety of different methodological approaches
exist in the literature, all with their own advantages and disadvantages. The mesoscopic leads approach was
recently generalized to steady-state thermal machines and has the ability to replicate Landauer-Büttiker theory
in the noninteracting limit. In this approach a set of discretized lead modes, each locally damped, provide a
Markovian embedding for the baths. In this work we further generalize this approach to incorporate an arbitrary
time dependence in the system Hamiltonian. Following a careful discussion of the calculation of thermodynamic
quantities we illustrate the power of our approach by studying several driven mesoscopic examples coupled
to finite-temperature fermionic baths, replicating known results in various limits. In the case of a driven
noninteracting quantum dot we show how fast driving can be used to induce heat rectification.
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I. INTRODUCTION

Thermodynamics is a pillar of physical, chemical, and bi-
ological sciences primarily due to the unique synergy it offers
between the fundamental and pragmatic. It tells us that heat
and work are just two different forms of energy (the first law),
and it sets constraints on the heat generated by mechanical
operations that we are allowed to perform (the second law)
[1]. Importantly, the notion of thermal equilibrium is central
for defining the state functions of conventional thermodynam-
ics. However, when we move toward the microscopic domain,
understanding thermodynamics far from equilibrium becomes
increasingly important [2–5].

In particular, as we go toward the advent of quantum
devices across various platforms like atoms and ions in
optical traps [6], molecular junctions [7], quantum dots
[8], hybrid semiconductor-superconductor circuits [9,10],
nitrogen-vacancy centers in diamonds [11], etc., it has become
necessary to understand the energy and the entropy cost of
such applications [12,13]. These devices are inherently noisy
because complete isolation from surrounding environment
is neither possible at such small length scales nor desired
in many applications. In fact, in some applications, cou-
pling to multiple baths is desired, for example, to induce
a voltage bias (for example, Refs. [14–16]). Moreover, the
working principle of these devices often require control via
external driving, modelled by a time-dependent Hamiltonian
[17–19]. To describe and understand the energy and the en-
tropy cost of such devices, one needs (a) a consistent extension
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of the standard notion thermodynamics to externally driven
microscopic quantum systems coupled to multiple macro-
scopic baths and (b) a prescription to calculate the required
thermodynamic quantities. In this paper, we show that the
so-called mesoscopic leads approach (also known by other
names, such as pseudomodes approach and driven Liouville
von-Neumann equation) [20–51] achieves these goals, provid-
ing a numerically efficient formalism applicable far beyond
regimes accessible by other approaches.

Most standard formalisms to describe such open quantum
systems rely on weak system-bath couplings such that a Born-
Markov approximation can be made, and an effective quantum
master equation can be derived [52,53]. Although usually
analytically and numerically the simplest, various drawbacks
of such approaches have been pointed out [54–70], and it
has been shown that no such approximation can generically
accurately describe the long-time state of the system in the
presence of multiple baths [70]. Moreover, in many appli-
cations, like those involving quantum dots and molecular
junctions, experimentally the system-bath couplings are of-
ten not desired to be weak [7–10]. The presence of external
driving makes the situation even more complicated, since
driving can introduce further non-Markovian effects (see, for
example, Refs. [71,72]).

In the non-Markovian regime, the most widely used
formalism are those of nonequilibrium Green’s functions
(NEGF) [73] and Schwinger-Keldysh path integrals [74].
Other formalisms like microscopically derived quantum
Langevin equations [75–79] and the scattering approach
[80–85] are closely related to these approaches. In the absence
of many-body interactions (i.e, higher than quadratic terms
in fermionic or bosonic creation and annihilation operators
in Hamiltonian), these approaches can efficiently give ex-
act results for long-time steady state if there is no external
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driving. Treating systems with many-body interaction using
these approaches requires existence of a small parameter, such
that a diagrammatic expansion is possible [73,74]. Further,
in the presence of an external driving, often even quadratic
Hamiltonians cannot be treated exactly. Assuming that the
drive is periodic, one has to often rely on perturbative ex-
pansions either in frequency or in strength of the drive (for
example, Refs. [84,86–88]). In experimental situations, how-
ever, one may not be just limited to such regimes (for example,
Ref. [15]). Moreover, even in cases where these approaches
efficiently give the long-time behavior, obtaining the full be-
havior from short times to long times is usually quite difficult.

The mesoscopic leads approach is an alternate way to
obtain the dynamics of the system in strong-coupling non-
Markovian regime [20–51]. In this approach, the macroscopic
baths are systematically approximated by a finite number
of damped modes, which we call leads. Initially introduced
for bosonic baths [20–22], this approach has been sub-
sequently extensively used to study quantum transport in
fermionic setups also [23–39,42–51]. When combined with
tensor network techniques, it has been recently shown that
it is possible to completely nonperturbatively obtain energy
and particle currents in nonequilibrium steady states (NESS)
of interacting quantum many-body systems, and thereby the
thermodynamics at NESS, using this approach [47]. Related
approaches have been developed to describe impurity models
at and beyond Kondo regimes [28,29,32,36,48,49]. However,
most existing investigations were limited to time-independent
Hamiltonians, with only few considering time-dependent sys-
tem Hamiltonians [30,42].

Formalisms to describe thermodynamics of externally
driven systems coupled to baths have been investigated us-
ing various approaches and approximations [84,85,87,89–91],
each with its own merits and drawbacks and applied to simple
setups [42,86,88,92–96]. But, to our knowledge, thermody-
namics with time-dependent drive in the mesoscopic leads
approach has only been previously considered in the case of
a driven resonant-level model, where the thermodynamics has
been described only in the regime of slow driving [42]. Here
we extend the mesoscopic leads approach to arbitrary sys-
tem Hamiltonians in the presence of arbitrary time-dependent
driving. We start from a microscopic description which is
common to all standard approaches to open quantum systems
(Sec. II A). Following existing approaches to thermodynamics
of quantum systems [97–100], we then give a careful and
detailed discussion of the quantities that are required to be
calculated in order to describe the thermodynamics in the
presence of an arbitrary external drive and coupling to mul-
tiple baths (Sec. II B). Next, we discuss how the mesoscopic
leads approach can be systematically derived from the micro-
scopic description (Sec. III A) and show that all quantities
required for the description of thermodynamics can be ob-
tained via this approach (Sec. III B). Then, we lay down an
elegant formalism for quadratic Hamiltonians, which holds
for arbitrary driving in the system and arbitrary strengths of
system-bath couplings and can easily describe dynamics and
thermodynamics at all times. This therefore provides a simple
way to access cases beyond both NEGF and standard weak-
coupling quantum master equation descriptions (Secs. III C
and III D). We apply the formalism to two examples: a driven

resonant level (Sec. IV), and a two-site fermionic system with
one site being externally periodically driven (Sec. V). We
use the former for benchmarking our approach. In the latter,
motivated by Ref. [88] we investigate rectification of energy
currents. In particular, we obtain the entropy cost of energy
rectification as a function of drive frequency. This would be
difficult to obtain using most other approaches. Finally, we
conclude by summarizing and giving the outlook (Sec. VI).

II. THERMODYNAMICS OF DRIVEN OPEN
QUANTUM SYSTEMS

A. Microscopic description of open quantum systems

Let us begin by describing a general system
configuration—a microscopic system of interest coupled
to multiple macroscopic baths. The former is controlled
by some external protocol, mathematically described by
a time-dependent Hamiltonian ĤS (t ). The Hamiltonian
describing the coupling between the baths and the central
system is thus

Ĥtot = ĤS (t ) +
∑

α

(Ĥα + ĤSα ), (1)

where α labels the different baths, Ĥα is the free Hamiltonian
of the baths, and ĤSα describes the coupling between the baths
and the system. We assume that initial state of the system is
in an uncorrelated product state with the baths. Furthermore,
we assume that each bath begins in a thermal state at inverse
temperature βα and chemical potential μα . Thus the joint
state is

ρ̂tot(0) = ρ̂S (0)
∏
α

ρ̂ th
α , where ρ̂ th

α = e−βα (Ĥα−μα N̂α )

Zα

. (2)

where N̂α is the number operator of the αth bath and Zα =
Tr[e−βα (Ĥα−μα N̂α )] is the corresponding partition function. Ad-
ditionally, we assume that the bath Hamiltonian conserves
the number of particles, i.e., [Ĥα, N̂α] = 0. Starting from the
initial state Eq. (2), the entire system is left to evolve uni-
tarily under the Hamiltonian Ĥtot, according to d ρ̂tot(t )/dt =
−i[Ĥtot(t ), ρ̂tot] (we set h̄ = 1), so at time t the total density
matrix is

ρ̂tot(t ) = Û (t ) ρ̂tot(0)Û †(t ), (3)

where Û (t ) = T e−i
∫ t

0 dt ′Ĥtot (t ′ ) is the time-evolution operator
and T is the time-ordering operator. The evolution of the
system of interest, ρ̂S , can be obtained by tracing out the the
bath. We will denote LS and LB as the number of degrees of
freedom (e.g., the number of sites in lattice descriptions) in
the system and in each bath, respectively. Since the system is
microscopic, LS is finite. Each bath, on the other hand, is by
assumption macroscopic, thus LB → ∞. However, for mathe-
matical rigorousness and to avoid unwanted divergences, this
limit should be taken only after the bath degrees of freedom
have been traced out. That is,

ρ̂S (t ) = lim
LB→∞

TrB[ρ̂tot(t )], (4)

where TrB[. . .] refers to trace over all bath degrees of freedom.
The order of the operations is crucial, with the limit is taken
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after the trace. In order to avoid carrying cumbersome nota-
tion, we define the expected value of some generic operator
Ô, which may be time dependent, as

〈Ô(t )〉 = lim
LB→∞

Tr[Ô(t )ρ̂tot(t )]. (5)

In many cases, we will be interested in the long-time behavior
of the system which corresponds to

lim
t→large

〈Ô(t )〉 = lim
t→large

{
lim

LB→∞
Tr[Ôρ̂tot(t )]

}
. (6)

Once again, the order of limits cannot be interchanged.
The above unitary picture of describing thermal baths is

the starting point for microscopic derivations of all stan-
dard approaches to open quantum systems, such as NEGF
[73], Feynman-Vernon influence functional methods [74],
quantum master equations [52], and quantum Langevin equa-
tions [75–79]. The crucial point is the microscopic nature of
the system and the macroscopic nature of the baths. Given its
microscopic description, the system is assumed to be acces-
sible to microscopic measurements. This is not true for the
macroscopic baths whose microscopic details are not acces-
sible. Instead, only knowledge of some of their macroscopic
properties such as the temperatures, chemical potentials, and
spectral functions are assumed to be known. Consequently, ef-
fective expressions for system observables and currents from
baths are obtained after integrating out the baths. The vari-
ous standard techniques of open quantum systems allow one
to compute these, albeit at differing levels of approximation
[52,73,74]. With this microscopic setting in mind, we will now
turn to describing the necessary thermodynamic quantities
and how they can be studied in this context.

B. Description of the thermodynamics

In this section, we will discuss the thermodynamic quanti-
ties in the setup described in the previous section. Our choice
of definitions is completely self-consistent, despite not being
unique. A careful discussion of this point is given further in
this section. We focus on the average thermodynamic currents,
such as work, heat, and entropy production. The work per-
formed by the external protocol is defined as the change in
energy of the global setup,

Wext(t ) = 〈Ĥtot(t )〉 − 〈Ĥtot(0)〉. (7)

Under this sign convention, work is positive if done on the
system and negative if it is done by the system. Since only
the system Hamiltonian is time dependent, the work can be
rewritten as follows:

Wext(t ) =
∫ t

0
dt ′ d〈Ĥtot(t ′)〉

dt ′ =
∫ t

0
dt ′

〈
∂ĤS (t ′)

∂t ′

〉
, (8)

where we used the fact that ∂Ĥtot/∂t = ∂ĤS/∂t .
We define the entropy production as Refs. [97–100],

�(t ) = lim
LB→∞

D

[
ρ̂tot(t ) ‖ ρ̂S (t )

∏
α

ρ̂ th
α

]
, (9)

where D(ρ̂ ‖ σ̂ ) = Tr[ρ̂ log ρ̂ − ρ̂ log σ̂ ] is the quantum rel-
ative entropy between the density matrices ρ̂ and σ̂ . Since
D(ρ̂ ‖ σ̂ ) � 0, we have that �(t ) � 0, so the second law of

thermodynamics is naturally satisfied. Given this definition,
one can recast the entropy production in terms of the dissi-
pated heat and the change in the von-Neumann entropy of the
system only [97,99],

�(t ) = δSS (t ) −
∑

α

βαQα (t ), (10)

where δSS is the change in von-Neumann entropy of the sys-
tem, δSS = SS (t ) − SS (0), with S(t ) = −Tr(ρ̂ log ρ̂ ) and Qα

is the heat dissipated into the αth bath given by

Qα (t ) = 〈Ĥα (t )〉 − 〈Ĥα (0)〉 − μ[〈N̂α (t )〉 − 〈N̂α (0)〉]. (11)

Apart from the work done by the external protocol, there is
a chemical work due to the nonzero chemical potentials of
the baths. Chemical work done by the system generates an
increase in the number of particles within the baths,

Wchem(t ) = −
∑

α

μα (〈N̂α (t )〉 − 〈N̂α (0)〉). (12)

The total work is therefore given by the sum of the external
work Eq. (7) and the chemical work,

W (t ) = Wchem(t ) + Wext(t ). (13)

The change in internal energy is defined by

δU (t ) = W (t ) −
∑

α

Qα (t ), (14)

which corresponds to the first law of thermodynamics. By
substituting in the definitions of both the total work, the dis-
sipated heat, and the expression for Ĥtot given by Eq. (1), one
finds that the change in internal energy is

δU (t ) =
〈

ĤS (t ) +
∑

α

ĤSα (t )

〉
−

〈
ĤS (0) +

∑
α

ĤSα (0)

〉
.

(15)

Intuitively, the change in the internal energy of the system
only depends on those components of the Hamiltonian that
relate to the system.

We also call attention to the limit LB → ∞ in Eq. (9),
which permits definitions of the work, heat, and internal
energy, in accordance with the expectation value given by
Eq. (5). This limit is important for thermodynamic consider-
ations: Equation (10) has the form of a standard Clausius’s
statement of the second law if the temperatures and the chem-
ical potentials of the baths can be considered constant. If the
baths are macroscopic, then they have an infinite capacity
for heat and particles, and hence their macroscopic proper-
ties temperatures and chemical potentials can be considered
constant. So, for infinitely large baths Eq. (9) is indeed a
statement of the second law. On the other hand, for finite bath
sizes, this constancy assumption regarding the temperatures
and chemical potentials does not hold beyond a finite time,
thus requiring corrections for a consistent thermodynamic
description [100,101].

The above definitions of heat and work seem to suggest
that one needs to access the full baths to describe the thermo-
dynamics. However, this is not the case. The heat and work
defined above can be written in terms of currents from the
baths, which can be obtained without having access to the full
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microscopic details of the baths. The energy current from the
αth bath is

JE
α (t ) = −d〈Ĥα〉

dt
= −i〈[Ĥtot(t ), Ĥα]〉 = i〈[Ĥα, ĤSα]〉, (16)

while the particle current is defined

JP
α (t ) = −d〈N̂α〉

dt
= −i〈[Ĥtot(t ), N̂α]〉 = i〈[N̂α, ĤSα]〉. (17)

Finally, the heat current from the αth bath is thus defined as
in terms of the energy and particle currents according to

JQ
α (t ) = JE

α (t ) − μαJP
α (t ). (18)

Using these definitions, the heat dissipated into the αth bath
and the chemical work can be recast explicitly in terms of
these currents as

Qα (t ) = −
∫ t

0
dt ′JQ

α (t ′), Wchem(t ) =
∑

α

μα

∫ t

0
dt ′JP

α (t ′),

Wext(t ) = δU (t ) −
∫ t

0
dt ′JE

α (t ′), (19)

where the last expression follows from the first law. These
expressions, along with Eqs. (10) and (15), show that the
description of average thermodynamics quantities can be de-
scribed by knowing, as function of time, the energy and the
particle currents from the baths, the state of the system and
the system-bath coupling energy.

It is important to mention that the above definitions
of thermodynamic quantities, while being completely self-
consistent, are not unique, especially at strong coupling
between the system and the baths [102]. In particular, there
are valid criticisms against the definition of δU (t ) including
the system-bath coupling energy and the identification of von-
Neumann entropy as the thermodynamic entropy. However,
if the system is finite-dimensional and is driven (either by
an external drive, or via chemical potential and temperature
biases, or both), then the work and heat increase indefinitely,
while the change in internal energy δU (t ) and the change in
entropy of the system δSS (t ) remain finite, regardless of their
actual definitions. Consequently, δU (t ) and δSS (t ) become
negligible in the expressions of external work [Eq. (19)] and
entropy production [Eq. (10)], respectively. As a result, in
such cases, the long-time thermodynamics can be entirely and
uniquely described in terms of the currents from the baths.

So far the formalism we have described holds for arbi-
trary bath Hamiltonians. Next we focus specifically on the
case where each bath is described by an infinite number of
fermionic or bosonic modes prepared in a thermal state. In
this case, the Hamiltonian of the αth bath is given by

Ĥα =
∞∑

m=1

ωmα b̂†
mα b̂mα, (20)

where b̂mα are fermionic or bosonic annihilation operators for
the mth mode of the αth bath. We also fix the nature of the
system-bath couplings to

ĤSα =
∞∑

m=1

(λmα Ŝ†
α b̂mα + λ∗

mα b̂†
mα Ŝα ), (21)

where Ŝα is the system operator coupling with the αth bath.
With this canonical model of thermal baths, it can be shown
that the dynamics of the system, the currents from the baths
and the system-bath coupling energy are all uniquely deter-
mined by the bath spectral functions,

Jα (ω) = 2π

∞∑
m=1

|λmα|2δ(ω − ωmα ), (22)

and the Fermi or the Bose distributions, fα (ω) = (eβα (ω−μα ) ±
1)−1. Crucially, these properties do not depend on the fine mi-
croscopic details of each bath. Any set of baths with the same
spectral functions and same initial temperatures and chemical
potentials gives rise to the same dynamics of the system, the
currents from the baths, and the system-bath coupling energy.

While the LB → ∞ limit is crucial for a consistent de-
scription of dynamics and thermodynamics of open quantum
systems, it makes the calculation of the above thermodynamic
quantities intractable. This is additionally complicated by the
fact that, without any further approximations, the reduced
dynamics of the system is non-Markovian. Only in the ab-
sence of external driving, if the system is also quadratic in
bosonic or fermionic creation and annihilation operators, can
the long-time results be obtained without making further ap-
proximations using standard analytical techniques like NEGF,
Landauer-Buttiker formalism, etc. In the presence of external
driving, even for quadratic cases, all approaches often have to
rely on perturbative techniques (for example, [84,86–88]).

In the absence of exact analytical techniques, arguably, the
most direct way to numerically simulate the dynamics is to
consider finite, but large-enough, baths and carry out the full
unitary evolution. A systematic way to do this is given by the
chain mapping of the baths [103–111] (see Appendix). This
utilizes the understanding that we can choose a convenient
way to microscopically model the baths, such that the bath
spectral functions are left invariant, without changing the dy-
namics or the thermodynamics. However, the size of the baths
required to simulate the dynamics grows with time. If the
drive is periodic, and a periodic steady state is reached within
the time possible to simulate with the largest size baths, then
the whole dynamics can be inferred. If this is not the case,
for example if the drive is not periodic, then the long-time
behavior cannot be obtained by this technique.

In the following section, we introduce the mesoscopic
leads approach, which allows us to obtain completely non-
perturbative numerically exact results and thereby accurately
describe the thermodynamics of externally driven open quan-
tum systems up to arbitrarily long times. We will benchmark
these results against the brute-force simulation with the chain-
mapping technique.

III. THE MESOSCOPIC LEADS APPROACH

A. Microscopic derivation

We now show how the mesoscopic leads approach [20–51]
can be microscopically derived in the setting described in the
previous section. A schematic of how each bath is microscop-
ically represented in this approach is given in Fig. 1(a). This
can be done for any given bath spectral function. The first step
of this approach is the observation that any continuous bath
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(a)

(b)

FIG. 1. (a) The strong coupling between system S and the bath
can be can be approximated by L leads which are each independently
coupled to independent infinite baths. (b) A close up of the one of the
leads with energy εkα and the system, with coupling strength κkα . The
lead is weakly coupled to the infinite bath with decay rate γkα .

spectral function can be approximated by discretizing it into
Lα (for simplicity, equally spaced) points, {εk}, k = 1 to Lα ,
and defining

Jeff
α (ω) =

Lα∑
k=1

|κkα|2γk

(ω − εkα )2 + (γkα/2)2
, (23)

with

κkα =
√
Jα (εkα )ekα

2π
, γkα = ekα, ekα = εk+1 α − εkα.

(24)

With this definition, it can be checked that Jeff
α (ω) tends

to Jα (ω) as Lα increases. Hence, for a finite but large-enough
Lα (which corresponds to small-enough ek) Jeff

α (ω) is a con-
trolled approximation to Jα (ω). Equation (23) shows that
each bath α, with spectral functionJα (ω), can be decomposed
into Lα different baths, each with a specific Lorentzian spec-
tral function.

A bath with a Lorentzian spectral density, however, yields
the same dynamics as if the system was coupled with strength
κkα) to an additional fermionic mode âka, with energy εkα ,
which itself is coupled to its own bath, with a flat spectral
function γα [47], see Fig. 1(b). This can be viewed as a single
step of the chain mapping of Appendix, Eq. (A2). We thus
arrive at the mesoscopic lead, consisting of Lα modes,

ĤLα
=

Lα∑
k=1

εkα â†
kα

âkα, (25)

while the system-bath coupling becomes the system-lead cou-
pling,

ĤSα = ĤSLα
=

Lα∑
k=1

κkα (Ŝ†
α âkα + â†

kα
Ŝα ). (26)

Now, we define the extended state of the system and lead
modes ρ̂ext and the extended Hamiltonian,

Ĥext(t ) = ĤS (t ) +
∑

α

(
ĤLα

+ ĤSLα

)
, (27)

where ĤLα
is the Hamiltonian of the bath attached to the αth

lead mode. The final step is to integrate out the residual baths
to obtain an effective equation of motion for the system and
the lead modes to the leading order in ek . The crucial point
to note in doing so is that κkα ∝ √

ekα and γkα ∝ ekα . So both
HSLα

and the coupling between the lead modes and their own
residual baths are small in the limit where Jeff

α (ω) is a good
approximation to Jα (ω). Using standard techniques [47], this
allows us to obtain the following quantum master equation for
ρ̂ext:

d ρ̂ext

dt
= −i[Ĥext(t ), ρ̂ext(t )] +

∑
α

L̂α{ρ̂ext(t )}, (28)

where

L̂α{ρ̂ext(t )}

=
Lα∑

k=1

γkαeβα (εkα−μα ) fkα

×
[

âkαρ̂ext(t )â†
kα

− 1

2
{â†

kα
âkα, ρ̂ext(t )}

]

+
Lα∑

k=1

γkα fkα

[
â†

kα
ρ̂ext(t )âkα − 1

2
{âkα â†

kα
ρ̂ext(t )}

]
, (29)

with fkα = [eβα (εkα−μα ) ± 1]−1 being the Fermi or the Bose
distribution function. This is the central equation of the meso-
scopic leads approach. Here, each bath is modelled by a finite
set of modes, each mode being damped via a local Lindblad
operator. The local Lindblad operator is such that it would
take the mode to its thermal state if it was uncoupled from the
system. To obtain the correct dynamics at all times, the initial
state Eq. (2) will also have to be closely approximated. For
this, we choose

ρ̂ext(0) = ρ̂S (0)
∏
α

e−βα (ĤLα −μαN̂Lα )

ZLα

, (30)

where N̂Lα
= ∑Lα

k=1 â†
kα

âkα is the total number operator for the
lead modes and ZLα

is the corresponding partition function.
Clearly, this initial state becomes a close approximation to
Eq. (2) for large-enough lead modes. The above derivation
shows that by increasing the number of lead modes, the dy-
namics of the system obtained from the above quantum master
equation will converge to the dynamics of the system in the
presence of baths with spectral functions Jα (ω).

There are several salient features of the mesoscopic leads
approach that make it advantageous over most other ap-
proaches. Although this approach has been used in the
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presence of external driving before [30,42], these important
features, to our knowledge, have hardly been emphasized and
appreciated in previous works. The first important point to
note is that the above derivation holds for arbitrary types of
driving in the system. This fact is quite nontrivial, because,
in microscopic derivations of quantum master equations, the
dissipative part of the quantum master equation can change
depending on the nature of the drive [71,72]. However, in
the mesoscopic leads approach, the fact that both κkα and
γkα are small allows us to obtain the same dissipators to the
leading order in ek for all kinds of driving.

The small parameter in the derivation is ekα , which reduces
on increasing the number of lead modes. This is not a small
parameter of the physical setup we want to model but rather
a small parameter that controls the error in the numerical
simulation. Thus, this approach can give fully nonperturbative
results, with controlled errors which can be reduced by in-
creasing the number of lead modes. Furthermore, although the
individual coupling between each lead mode and the system
is small, overall, the effective spectral function Jeff

α (ω) is
not small. Rather, it is a good approximation to Jα (ω). The
mesoscopic leads approach can thus treat arbitrary strengths
of system-bath coupling. Although the evolution equation for
the extended density matrix ρ̂ext is an additive Lindblad equa-
tion, the reduced dynamics of the system (i.e., not including
the leads) can be fully non-Markovian and have completely
nonadditive contributions from the leads.

Finally, and perhaps most importantly, the extended setup
of the system and the lead modes is of finite size. Due to the
Lindblad damping, it incorporates the effect of infinite number
of degrees of freedom of the baths. Consequently, unlike the
chain-mapping technique mentioned in the previous section,
long-time simulation can be done while keeping the number
of lead modes finite, provided the spectral function is accu-
rately enough represented. This is a crucial advantage of this
approach over the brute-force method using chain mapping.

Along with the above salient features, all quantities re-
quired for the description of thermodynamics can be obtained
from the mescoscopic leads approach, as we discuss in the
next subsection.

B. Thermodynamics from mesoscopic leads approach

The mesoscopic leads approach simulates the evolution
of ρ̂ext. Since this extended state evolves under a Lindblad
equation it is Markovian, whereas the original system alone
still undergoes non-Markovian evolution. This is known as
a Markovian embedding. As such, it provides access to ex-
pectation values of operators in the extended Hilbert space of
system plus leads, as well as the rate of change of expectation
values of such operators. We need to write all the quantities
required for the description of thermodynamics in terms of
such quantities.

As discussed before, we need to know the state of the
system, the system-bath coupling energy, and the particle and
the energy currents from the baths as a function of time. The
state of the system is directly obtained from the mesoscopic
leads approach. The system-bath coupling energy is just the
expectation value of the system-lead coupling operator, which
is also directly obtained because it is an operator in the

extended Hilbert space. For obtaining the currents from the
baths, we note that the mesoscopic leads approach consider
the following microscopic structure of each bath:

Ĥα = ĤLα
+ ĤLEα

+ ĤEα
, (31)

where ĤEα
describe the composite Hamiltonian of the residual

baths of all the lead modes, and ĤLEα
describe the correspond-

ing composite coupling between the lead modes and their
residual baths. The particle current from the αth bath, defined
in Eq. (17), can now be seen to be given by

JP
α (t ) = i

〈[
N̂Lα

, ĤSLα

]〉
, (32)

where N̂Lα
= ∑Lα

k=1 â†
kα

âkα is the total number operator for the
lead modes. This is also the expectation value of an operator
in the extended Hilbert space, so can be directly obtained from
the mesoscopic leads approach. However, for energy current,
defined in Eq. (16), we get

JE
α (t ) = i

〈[
ĤLα

+ ĤLEα
, ĤSLα

]〉
. (33)

The fact that ĤSLα
and ĤLEα

does not commute does not let
us write the energy current as an expectation value in the
extended Hilbert space. However, we note that

d
〈
ĤSLα

〉
dt

= −i
〈[

ĤSLα
, ĤS (t )

]〉 − i
〈[

ĤSLα
, ĤLα

+ ĤLEα

]〉
.

= JE
α − i

〈[
ĤSLα

, ĤS (t )
]〉
, (34)

This gives the energy current from the αth bath in terms of
expectation values of operators on the extended Hilbert space,
and rate of change of such operators,

JE
α (t ) = d

〈
ĤSLα

〉
dt

+ i
〈[

ĤSLα
, ĤS (t )

]〉
. (35)

This can therefore be obtained accurately from the meso-
scopic lead approach. Calculating the above expectation
values from the quantum master equation, Eq. (28) finally
yields

JE
α (t ) = i

〈[
ĤLα

, ĤSLα

]〉 + Tr
[
ĤSLα
L̂α{ρ̂ext}

]
. (36)

The second term on the right-hand side would naively not be
expected.

The proper definition of currents is important to describe
thermodynamics in the presence of an external drive. Given
the quantum master equation, Eq. (28), it is tempting to define
the particle and the energy currents as

IP
α (t ) = Tr

{
N̂Lα
L̂α[ρ̂ext(t )]

}
, IE

α (t ) = Tr{ĤextL̂α[ρ̂ext(t )]}.
(37)

However, these describe currents from the residual baths
into the mesoscopic leads. They do not correspond to the
current from the baths into the system defined in Eqs. (17)
and (16), see Fig. 2. For a driven system, IP

α (t ) �= JP
α (t ),

IE
α (t ) �= JE

α (t ). In the absence of drive, and at the NESS, due
to continuity equations, these two different definitions will
agree. For similar reasons, with periodic drives, when a pe-
riodic NESS (limit cycle) is reached, the time-period average
of these two different currents become the same. However, in-
stantaneously they will still be different. The currents from the
baths, Eqs. (17) and (16), are independent of the microscopic
modeling of the baths. If instead of the mesoscopic leads a
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FIG. 2. Schematic representation of a system coupled to meso-
scopic leads. The arrows represent the two set of currents associated
with the left bath, the “external” (IP

L and IE
L ) and “internal” (JP

L

and JE
L ).

different microscopic modeling of the baths giving the same
spectral functions is used, like the chain mapping, then the
currents would be exactly the same. However, the currents
IP
α (t ), IE

α (t ) depend on the particular microscopic modeling
of the baths as mesoscopic leads and may not be replicated
in a different microscopic model of the baths, like the chain
mapping.

From the above discussion, it is clear that all quantities re-
quired for the description of thermodynamics can be obtained
accurately from the mesoscopic leads approach. A crucial
point to note is that, throughout the entire discussion to now,
we have left the system Hamiltonian and the system oper-
ators coupling to the baths completely arbitrary. The entire
discussion therefore holds for arbitrary system Hamiltonians,
with arbitrary driving. However, it is nontrivial to simulate the
dynamics of ρ̂ext(t ). Simulation in the presence of many-body
interactions (i.e, higher than quadratic terms) require tensor
network techniques [45,47–49]. While this may be numeri-
cally expensive, it is still feasible for a range of parameters
where many other techniques fail, and, wherever possible,
it gives numerically exact nonperturbative results. This has
been shown for quantum transport and thermodynamics in the
absence of any explicit time-dependent drive [47].

In this work, however, we will not consider many-body
interactions. In the absence of many-body interactions, as will
be shown below, numerically exact results can be obtained
quite elegantly by simulating a Lyapunov equation. For driven
systems, such exact results are often not amenable to other
numerical or analytical techniques (except for brute-force nu-
merics via chain mapping).

C. The Lyapunov equation for noninteracting systems

Consider a system Hamiltonian of the form

ĤS (t ) =
LS∑

�,m=1

[HS(t )]�mĉ†
� ĉm, (38)

where HS(t ) is a LS × LS Hermitian matrix, sometimes called
a single-particle Hamiltonian, with time t as a parameter. This
describes a number conserving noninteracting fermionic sys-
tem of LS sites in a lattice of arbitrary dimension and geometry
with an arbitrary external type of external drive. Consider
this system to be coupled via number conserving bilinear
coupling with baths at various sites. In the mesoscopic leads
approach, the system-lead coupling for the lead describing the
bath attached at the αth site is

ĤSLα
=

Lα∑
k=1

κkα (ĉ†
α âkα + â†

kα
ĉα ). (39)

The extended setup of system and leads can now be written in
the form

Ĥext(t ) =
LS+

∑
α Lα∑

�,m=1

[Hext(t )]�md̂†
� d̂m, (40)

where d̂m is a fermionic annihilation operator of the either a
system site or a lead site. For such cases, if the initial state of
the system is Gaussian, then the dynamics of the whole setup
remains Gaussian at all times. All properties of the extended
system can be obtained by calculating the correlation matrix,
also called the single-particle density matrix, C(t ), with ele-
ments [112]

Cpq(t ) = Tr[d̂†
q d̂pρ̂ext(t )]. (41)

Since ρ̂ext(t ) is Gaussian at all times, it can be obtained ex-
actly from Cpq(t ). The crucial simplification is that one can
directly write down the equation of motion for Cpq(t ) from
Eq. (28) in the form of a Lyapunov equation, as we discuss
below. For simplicity and relevance to later examples, in the
following, we consider two baths, but the discussion can be
straightforwardly generalized to more than two baths.

For two baths, the matrices Hext(t ) and C(t ) can be written
in block form,

Hext(t ) =

⎡
⎢⎢⎣

HS (t ) HSL1 HSL2

H†
SL1

HL1 0

H†
SL2

0 HL2

⎤
⎥⎥⎦,

C(t ) =

⎡
⎢⎢⎣

CS (t ) CSL1 (t ) CSL2 (t )

C†
SL1

(t ) CL1 (t ) CL1L2 (t )

C†
SL2

(t ) C†
L1L2

(t ) CL2 (t )

⎤
⎥⎥⎦. (42)

Here the LS × Lα matrix HSLα
gives the coupling between the

system and the lead representing the αth bath, and HBα
=

diag{εkα} gives the Hamiltonian of the αth lead. Similarly,
the LS × LS-dimensional matrix CS (t ) gives the system cor-
relation matrix, the LS × Lα-dimensional matrix CSLα

(t ) gives
the correlations between the system and the αth lead, CLα

(t )
gives the correlation matrix corresponding to the αth lead, and
CL1L2 (t ) gives the correlations between the two leads. With
the correlation matrix written in this form, its equation of
motion, obtained from Eq. (28), is given by the following
continuous-time differential Lyapunov equation:

dC
dt

= −[W(t )C(t ) + C(t )W†(t )] + F, (43)
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with W(t ) = iHext(t ) + ϒ/2, where

ϒ =
⎡
⎣0 0 0

0 ϒ1 0
0 0 ϒ2

⎤
⎦, F =

⎡
⎣0 0 0

0 F1 0
0 0 F2

⎤
⎦, (44)

and ϒα = diag{γkα}, Fα = diag{γkα fkα}. The dynamics can
be obtained by integrating this matrix equation numerically,
say, via Runge-Kutta methods. The size of the matrices re-
quired scales linearly with total number of sites in the system
and the leads, and not exponentially, as it would have been
if we were to directly consider the evolution of ρ̂ext(t ). All
quantities required for thermodynamics can also be obtained
by knowing C(t ). Moreover, this is possible for arbitrary types
of driving, which is beyond the reach of most other analytical
or numerical techniques. Further simplification is possible if
the drive is periodic, as we show in the next subsection.

D. Floquet solution of the periodically
driven Lyapunov equation

The dynamics of Eq. (43), in the presence of a periodic
drive, will be characterized by a transient, followed by a limit
cycle where C(t ) becomes time periodic. If one is interested
only in the limit cycle, naively this would require solving
Eq. (43) over many periods, which may be expensive. Instead,
one can employ the following method For simplicity, we as-
sume the drive takes the form W(t ) = W0 + W1 cos(ωt ). The
generalization to multiple harmonics is straightforward. We
then attempt a solution of the form C(t ) = ∑∞

n=−∞ Cneinωt .
Hermiticity of C implies that C†

n = C−n. Plugging this in
Eq. (43) yields a set of recursive algebraic equations,

inωCn + W0Cn + CnW†
0 = Fδn,0 − 1

2 W1(Cn−1 + Cn+1)

− 1
2 (Cn−1 + Cn+1)W†

1. (45)

This can now be solved iteratively, as in the Gauss-Seidel
method [113]. First, one takes Cn �=0 = 0 and solves Eq. (45)
for C0. Then the result is used to set up three new equations for
C−1, C0, C1, which in turn is used to set up five equations for
C−2, C−1, C0, C1, C2, and so on.

The solution is greatly facilitated when W0 is diagonaliz-
able (which is almost always the case); that is, W0 = S�S−1,
where � is a diagonal matrix containing the eigenvalues
(which are generally complex). Define C̃n = S−1Cn(S−1)†

and similarly for F̃ and W̃1. Then Eq. (45) can be rewritten
element-wise as

[C̃n]i, j = 1

inω + �i + �∗
j

[
δn,0F̃ − 1

2
W̃1(C̃n−1 + C̃n+1)

− 1

2
(C̃n−1 + C̃n+1)W̃1

]
i, j

. (46)

This is advantageous because the largest overhead in Eq. (45)
is the linear system of equations associated with the fact
that W0 is not diagonal. In Eq. (46), the only computa-
tionally expensive part is the diagonalization of W0, which
only has to be performed once. Afterwards, all operations
involve only simple matrix multiplications. After conver-
gence, one recovers Cn = SC̃nS† and use this to construct
C(t ) = ∑∞

n=−∞ Cneinωt . This yields the solution within the

limit cycle; that is, it is valid through an entire period of oscil-
lation. We now test out our technique on a number of models
that highlight the power and versatility of the methodology
to explore thermodynamics beyond the reach of most other
approaches.

IV. THERMODYNAMICS OF A DRIVEN
RESONANT LEVEL

As a first example, we apply the formalism to study
the thermodynamics of the driven resonant-level model
[42,86,87,89,92,93,96]. This provides a simple model in
which we can benchmark our results against other method-
ologies employed in the literature. The system is composed
of a single dot with an externally controlled, time-dependent
energy ε(t ). The Hamiltonian is

ĤS (t ) = ε(t )ĉ†ĉ, (47)

where ĉ† and ĉ are the fermionic creator and annihilator op-
erators of the system. We focus on the two-terminal case, in
which the dot is coupled to two baths, labeled by L and R.
Our framework can, in principle, handle the case in which
each bath is described by an arbitrary, structured spectral den-
sity. For simplicity, however, we consider the case in which
both baths are described by the same flat spectral density,
given by

J (ω) =
{

�, ω ∈ [−W,W ]

0, otherwise
, (48)

where � is the system-bath coupling strength and W is a hard
cutoff.

Within the mesoscopic leads approach, each bath is de-
scribed by a damped lead with L modes. Fixing a set of
energies {εk} that appropriately sample the spectral density,
the couplings {κkα} and the damping rates {γkα} are fixed
by Eq. (24). Here we follow Refs. [35,114] and choose the
energies {εk} via linear-logarithmic discretization. In this pro-
cedure, Llin energies are chosen to be linearly spaced in some
frequency window [−W ∗,W ∗], and then Llog energies are
chosen to be logarithmically spaced in each of the intervals
[−W,W ∗] and [W ∗,W ], so that the total number of modes
is Llin + 2Llog. For a careful discussion on the choice of
discretization procedure, see Ref. [51]. Throughout all the
examples in this section, we fix � = 1 and use this to set the
energy scale. Furthermore, we fix W = 8 and W ∗ = 4.

We take the energy of the dot to be driven by a sine-
protocol of the form

ε(t ) = A sin(ωt ). (49)

We study the full time evolution of the extended system by nu-
merically integrating the Lyapunov equation (43). In Figs. 3(a)
and 3(b), we show the particle and energy current, respec-
tively, computed with A = 1 and ω = 0.25. We set the baths
to have equal temperature TL = TR = 1 but opposite chemical
potentials μL = −μR = 0.5 and the initial population of the
dot to be p0 = 0.5. We take both leads to have the same
number of modes L and show the results for increasing values
of L. For comparison, we also present results obtained via
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FIG. 3. (a) Particle current as a function of time in the driven-resonant model coupled to two baths for increasing number of modes L in
each lead, where both leads have the same number of modes. The red curve shows the results obtained the chain-mapping (CM) simulation
with L = 100, which is exact up to a finite time, indicated with a dashed line. (b) Same as (a) but for the energy current. The inset shows a
zoomed vision of the short timescale. (c) Same as (a) and (b) but for the entropy production rate. In these calculations we used � = 1, W = 8,
W ∗ = 4, TL = TR = 1, μL = −μR = 0.5, A = 1, ω = 0.25, p0 = 0.5, and Llin/Llog = 0.1.

brute-force simulation with chain mapping (see Appendix),
which is numerically exact only up to a finite time, determined
by the size of the chain taken, indicated with a vertical dashed
lines. It is completely clear that with increase in number of
lead modes, the results converge to that obtained by chain-
mapping method up to the time it remains valid. In Fig. 3(b),
the inset shows a zoom of the short timescale. Remarkably,
even the short-time dynamics is well described. Note that the
harmonically driven resonant level with constant bath spectral
functions can be exactly solved [73]. This would yield exactly
the same results as obtained from the chain-mapping proce-
dure up to a finite time proportional to bath size.

It is worth restating that in the mesoscopic-leads formalism
one has full access to the state of the system at all times and
for all driving frequencies. This is in contrast to most other
formalisms, like NEGF and the Landauer-Büttiker formalism,
where it is difficult to calculate dynamics at all times and for
all driving frequencies. This means, for instance, that we can
compute the entropy production rate at all times and not only
the average over a cycle. In the case of the resonant level, since
the correlation matrix reduces to only a number, the entropy of
the system is given by SS (t ) = −pt log pt − (1 − pt ) log(1 −
pt ), where pt = 〈c†c〉 is the population of the dot at time t .
Therefore, by simply differentiating this function with respect
to time, we can compute the instantaneous entropy production
rate [cf. Eq. (10)] as �̇(t ) = ṠS (t ) − ∑

α βαJQ
α . This is shown

in Fig. 3(c), where convergence to chain-mapping results up
to a finite time is also shown.

The convergence of results obtained from mesoscopic
leads to those obtained by chain mapping also demonstrates
the fact these results are independent of the particular mi-
croscopic modeling of the baths. All microscopic models of
the baths which give the same spectral functions lead to same
dynamics and thermodynamics at all times. Using the proper
definition of currents, given in Eqs. (32) and (36), is crucial
for this. If, instead, we used Eq. (37), which is tempting to
use given the Lindblad description of mesoscopic leads, the
converged result from mesoscopic leads approach would be
different, as shown in Fig. 4. Therefore, they do not agree
with results from the chain-mapping approach. The expres-
sions in Eq. (37) give currents from the residual baths to
the lead modes (see Fig. 2) which depend on the particular
microscopic modeling on the baths.

Next, as an important check, we compare the quantities
computed for the driven resonant-level model against their
classical counterpart in the high temperature. We consider the
same setup as before, with exactly the same parameters except
for the temperature of the two baths. In the limit T  �, the
population of the dot is well described by a classical Pauli
master equation of the form

d pt

dt
=

∑
α=L,R

{−�[1 − fα (t )]pt + � fα (t )(1 − pt )}, (50)

with a time-dependent Fermi distribution fα (t ) =
{e[ε(t )−μα]/T + 1}−1. In Fig. 5, we show the comparison of the
entropy of the dot computed using our approach for increasing
values of T against the results obtained by numerically
integrating the classical master equation [Eq. (50)] for high
temperature. The plots clearly show the convergence of
the results with increasing temperature, providing another
benchmark for the consistency of our approach. This simply
demonstrates that the mesoscopic leads approach recovers the
high-temperature, classical limit. At lower temperatures and
weak coupling, one could also benchmark the mesoscopic
leads approach against a Floquet-Born-Markov approach
[115,116], which has a wider regime of validity. In fact, the

FIG. 4. (a) Comparison of the particle current from the left bath
in the two-terminal driven resonant level with the currents from the
residual baths into the mesoscopic leads. (b) Same, but for the energy
currents. In these calculations, both leads had L = 100 modes and the
other parameters were � = 1, W = 8, W ∗ = 4, TL = TR = 1, μL =
−μR = 0.5, A = 1, ω = 0.25, p0 = 0.5, and Llin/Llog = 0.1.
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FIG. 5. Convergence of the entropy of the dot in the driven
resonant-level model with two terminals using the mesoscopic lead
approach (solid lines) toward the value predicted by the Pauli master
equation [Eq. (50)] (black dots) on increasing the value of tempera-
ture, where the temperatures of both baths are set to the same value.
The amplitude of the driving is A = 1 and the driving frequency
is ω = 25. In the mesoscopic lead simulations the other param-
eters were W = 8, W ∗ = 4, L = 100, Llog/Llin = 0.1, � = 1, and
p0 = 0.5.

formalism in Sec. III D is a version of Floquet-Born-Markov
approach but applied to the extended setup of system and the
leads. However, since we have already benchmarked against
exact results, we proceed to a more nontrivial system in the
next section.

V. ENTROPY COST OF ENERGY RECTIFICATION
IN A DRIVEN NON-INTERACTING SYSTEM

Motivated by Ref. [88], we study heat rectification in a
periodically driven noninteracting system. There, the authors
studied the problem for bosonic degrees of freedom. Here we
consider instead a chain of two fermionic modes, in which
only the first mode is driven. A similar problem was also
considered in Ref. [30,117] but focusing only on particle
currents. With our framework, we can now also extend this
to energy current and hence heat rectification [118].

The Hamiltonian of the system is given by

ĤS (t ) = ε1(t )ĉ†
1ĉ1 + ε2ĉ†

2ĉ2 + λ(ĉ†
1ĉ2 + ĉ†

2ĉ1), (51)

where λ is the coupling strength between the two modes,
ε2 is the energy of the second, and ε1(t ) is the energy of
the first dot, which is controlled by periodic protocol of the
form ε1(t ) = ε1(0) + A sin(ωt ). In our simulations, we always
fixed ε1(0) = ε2 = 0. Additionally, each mode is coupled to
its own bath. By simplicity, we take both baths to be described
by the same flat spectral density, given by Eq. (48). Again,
we fix � = 1 for both baths, and use this parameter to set the
energy scales. We also choose the chemical potentials of both
leads to be zero, so that the heat current matches the energy
current.

In order to study heat rectification, two configurations of
the setup are considered. In the forward configuration, we
set TL = Thot and TR = Tcold, where Thot > Tcold. In the reverse

FIG. 6. Schematic of the rectification model. Two double dots
are coupled to one another with coupling strength λ. Here the left dot
is driven by a time-dependent, oscillatory force at a frequency ω. We
consider the difference in the particle current when the hot and cold
baths are swapped.

setup, the temperatures are swapped, so TL = Tcold and TR =
Thot (see Fig. 6). Since only the first dot is driven, the system
is not symmetric with respect to left-right inversion. As a
consequence, the currents in the two scenarios will generally
be different.

Since the system is time dependent, one must be careful
with the notion of rectification, since the heat flowing through
the system is ill defined. Due to the presence of the driving,
the magnitude of the time-period averaged energy currents
associated with the left and right bath are not the same, even
in the long-time limit. In fact, they differ precisely by the
time-period averaged power associated with the driving. For
this reason, we shall focus only on the energy current flowing
toward the left mode, which is the one being driven. As a
particular example, let us choose λ = 3. We use the method
described in Sec. III C to plot the energy currents in the
forward and reversed configuration as a function of time for
increasing values of ω, which is shown in Fig. 7. In our simu-
lations, the amplitude of the driving is A and the temperatures
are Thot = 2 and Tcold = 1. We fixed the number of modes in
both leads to be L = 100, which was checked to be enough
to ensure proper convergence of the simulations. We denote
by JE

L the energy current from the left bath in the forward
configuration, while by −J̃E

L energy current into the left bath
in the backward configuration (see Fig. 6). Both currents
eventually go into a limit cycle show periodic oscillations
with the same frequency as the drive. The horizontal dashed
lines correspond to the cycle-average values in the limit cycle,
computed using the method of Sec. III D. The plots clearly
show that the magnitude of the forward and backward currents
are not the same in the limit cycle. Instead, the gap between
them depends on the driving frequency. We have found that
analogous rectification does not occur in the particle current
for our chosen setup.

Another interesting point to note is that, in Fig. 7(d), by our
sign conventions, the cycle-averaged heat flows into the left
bath in both forward and backward configurations. In forward
configuration the left bath is hot (see Fig. 6). So it shows that,
due to the relatively high frequency of the drive, the hot bath
is getting heated in this configuration.
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FIG. 7. Energy current as a function of time in the forward
configuration (blue curve) and opposite of the energy current as a
function of time in the reverse configuration (orange curve) for dif-
ferent values of driving frequency: (a) ω = 3, (b) ω = 4, (c) ω = 5,
and (d) ω = 6. The dashed lines indicate the average current in the
limit cycle. The coupling strength between the two modes if fixed to
λ = 3 and the other parameters are Thot = 2, Tcold = 1, A = 1, � = 1,
μL = μR = 0, W = 8, W ∗ = 4, and L = 100 with Llin/Llog = 0.1.

In order to better study the frequency dependence of recti-
fication, we define the rectification coefficient as

R =
∣∣JE

L + J̃E
L

∣∣∣∣JE
L − J̃E

L

∣∣ , (52)

where JE
L (J̃E

L ) is the cycle-averaged energy current in the for-
ward (backward) configuration in the long-time limit. In the
case of a perfect diode, i.e., where there is some current flow-
ing in one configuration but none in the other, we have that
R = 1. If there is no rectification, i.e., both currents have the
same magnitude but opposite signs, then R = 0. Interestingly,
this quantity, which is analogous to that used to characterize
rectification in the absence of external driving, is not upper
bounded by 1. Due to external driving, it can happen that the
direction of cycle-averaged heat current is the same in both
configurations, as we saw in Fig. 7(d). In such cases, we will
have R > 1.

Using the method described in Sec. III D, we now compute
the limit-cycle solution for a wide range of couplings λ and
driving frequencies ω, and look at both the rectification coef-
ficient and the entropy production. In Fig. 8(a) we show the
rectification coefficient as a function of ω/λ, for increasing
values of λ. As can be seen, in the low- and high-frequency
regimes the rectification coefficient goes to zero, but for in-

FIG. 8. (a) Rectification coefficient as a function of the driving
frequency divided by the coupling strength λ between the two modes
λ for increasing values of λ. (b) Cycle-averaged entropy production
rate as a function of the driving frequency divided by the coupling
strength between the two modes λ for increasing values of λ. The
parameters used are Thot = 2, Tcold = 1, A = 1, � = 1, μL = μR = 0,
W = 8, W ∗ = 4, and L = 100 with Llin/Llog = 0.1.

termediate values it peaks. For λ > 1, this peak occurs in the
same value of ω/λ.

In the limit cycle, the cycle-averaged entropy production
rate is given simply by σ = ∑

α βαJ
Q
α , where J

Q
α denotes the

cycle-averaged heat current associated with each bath. Inter-
estingly, we have found that, even though there is rectification
of energy current flowing into the left bath, the cycle-averaged
entropy production rate, i.e., σ is the same in both the for-
ward and reversed configurations. In Fig. 8(b) we plot σ as
a function of ω/λ. We find that there is a strong peak in the
entropy production rate at the same frequency in which the
maximum rectification coefficient occurs. This clearly shows
that an increase in rectification of energy current in our setup
comes at the cost of an increase in the entropy production rate.

We note that plots in Fig. 8, which give the entropy cost of
energy rectification as a function of driving frequency in our
setup, would be difficult to obtain via most other techniques.
This is far beyond a Markovian regime of system dynamics
and additionally does not have any small parameter in the
Hamiltonian to allow perturbation techniques. The frequency
of the drive is also a free parameter, which has been varied
from low to a high value, ruling out any possibility of pertur-
bation in frequency also. This clearly highlights the power of
our approach.
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Our results in this section open many interesting questions,
even for this rather simple setup. The various interesting
features, like the dependence of the position of the peak
on various system parameters, the temperature dependence
of rectification, and the effect of having additional chemical
potential bias, all can now be explored completely non-
perturbatively. These directions deserve thorough separate
investigations, which we delegate to future works.

VI. CONCLUSION

In this work we have performed a detailed analysis of the
mescoscopic leads in the context of quantum thermodynam-
ics. Our main contribution is that the methodology allows for
the inclusion of an arbitrary time dependence on the system
Hamiltonian. This is a formidable challenge in quantum ther-
modynamics which we have demonstrated this technique can
overcome. Following an overview of the thermodynamics of
driven open quantum systems we reviewed the mesoscopic
leads formalism and show how the definitions of the energy
and particle current behave in the presence of driving. We
emphasize that this technique has the formidable feature of
being able to cope with both strong coupling to the leads and
fast driving. We have demonstrated this focusing in particular
on quadratic systems; however, an extension to interacting
central systems by means of tensor networks is possible. We
believe that the power of the methodology will allow for
extensive explorations of thermodynamics of quantum sys-
tems in regimes that have so far been inaccessible with other
approaches. To demonstrate the power of the methodology we
apply our method to both the driven resonant-level model and
driven tunnel coupled quantum dot models, respectively. In
the case of the driven resonant level we were able to show
that our results replicate known results in the literature in the
high-temperature limit. In the case of the driven quantum dot
we showed how driving of one of the dot’s energy can be used
to induce a powerful heat rectification effect in a parameter
regime which would be inaccessible to conventional tech-
niques. In future work we plan to extend this technique further
to access higher moments of the currents both in the presence
and absence of driving as well as incorporating nonquadratic
interactions in the central system.
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APPENDIX: BRUTE-FORCE NUMERICS
WITH CHAIN-MAPPING

The systematic way to implement the brute-force simula-
tion of unitary dynamics of the system and baths using finite,
but large-enough, baths is offered by the chain mapping of the
baths. Any bath spectral function, with finite upper and lower
cutoffs, can be mapped into a semi-infinite one-dimensional
nearest-neighbor tight-binding chain with only the first site of
the chain coupled with the system [103–111],

Ĥα =
LB∑

p=1

εp,α â†
p,α âp,α + gp,α (â†

p,α âp+1,α + â†
p+1,α âpα ),

ĤSα = g0,α (S†
α â1,α + â†

1,αSα ), (A1)

with LB → ∞. Such a chain gives the spectral functionJα (ω)
if the on-site potentials εp,α and the hoppings gp,α are obtained
from the following set of recursion relations:

g2
p,α = 1

2π

∫
dωJp,α (ω),

εp+1,α = 1

2πg2
p,α

∫
dω ωJp,α (ω),

Jp+1,α (ω) = 4g2
p,αJp,α (ω)[

JH
p,α (ω)

]2 + [Jp,α (ω)]2
, (A2)

with p going from 0 to LB, J0,α (ω) = Jα (ω), and JH
p,α (ω)

being the Hilbert transform of Jp,α (ω),

JH
p,α (ω) = 1

π
P

∫ ∞

−∞
dω′ Jp,α (ω′)

ω − ω′ , (A3)

where P denotes the principal value. With finite high- and
low-frequency cutoffs, the parameters εp,α and gp,α quickly
tend to constants for increasing p. Let these constants be εBα

and gBα
. With baths modelled as such chains, the process to

be simulated involves switching on the system-bath couplings
at initial time. Due to Lieb-Robinson bounds, the information
about this spreads at a finite speed proportional to gBα

. Conse-
quently, to simulate up to a time t , baths of size

LB ∼ gB,αt (A4)

suffices to accurately mimic the limit LB → ∞. We see that
to simulate accurately up to a longer time, a larger bath size is
required.
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