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Particle current statistics in driven mesoscale conductors

Marlon Brenes ,1,* Giacomo Guarnieri ,2 Archak Purkayastha ,3,4 Jens Eisert ,2 Dvira Segal ,5,1 and Gabriel Landi 6,7

1Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto,
60 Saint George St., Toronto, Ontario M5S 1A7, Canada

2Dahlem Centre for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
3School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland

4Centre for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University,
Ny Munkegade 120, DK-8000 Aarhus C, Denmark

5Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
6Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil

7Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

(Received 24 November 2022; accepted 21 July 2023; published 22 August 2023)

We propose a highly scalable method to compute the statistics of charge transfer in driven conductors.
The framework can be applied in situations of nonzero temperature, strong coupling to terminals, and in the
presence of nonperiodic light-matter interactions, away from equilibrium. The approach combines the so-called
mesoscopic leads formalism with full counting statistics. It results in a generalized quantum master equation that
dictates the dynamics of current fluctuations and higher order moments of the probability distribution function
of charge exchange. For generic time-dependent quadratic Hamiltonians, we provide closed-form expressions
for computing noise in the nonperturbative regime of the parameters of the system, reservoir, or system-reservoir
interactions. Having access to the full dynamics of the current and its noise, the method allows us to compute
the variance of charge transfer over time in nonequilibrium configurations. The dynamics reveal that in driven
systems, the average noise should be defined operationally with care over which period of time is covered.

DOI: 10.1103/PhysRevB.108.L081119

Current fluctuations are inherent to out-of-equilibrium
mesoscopic devices operating in the quantum regime [1–5].
Their categorization and quantification is relevant to the
understanding of fundamental thermodynamics as well as
the operation of quantum thermal machines [6–9]. Recent
experimental advances include nonperiodic modulation in
light-induced currents [10,11] and the control of the system-
reservoir interactions in superconducting circuits [12] as well
as single-molecule junctions [13,14]. These advances call for
methodologies that allow one to cope with the effects of
these physical properties at finite-temperature to understand
fluctuations in their regimes of operation.

Most of the existing methods for computing current fluc-
tuations, however, are only applicable in restricted regimes
of operation. When solely coherent quantum effects are im-
portant and there is no time-dependence in the Hamiltonian,
the Levitov-Lesovik approach [15,16], which extends the Lan-
dauer scattering theory [17], provides nonperturbative exact
results. Green’s function techniques can be formulated to treat
strong system-reservoir coupling [18]. However, to include in
this approach either a time-periodic drive or incoherent effects
arising from many-body interactions typically requires treat-
ments via nonequilibrium Green’s functions [19–22]. These
methods are perturbative either in the Hamiltonian parameters
or the drive parameters and naturally cannot be applied to
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cases lacking a perturbative parameter, such as when applying
a strong nonperiodic drive on the nanoscale conductor.

If the system-reservoir coupling energy is weak, quan-
tum master equations (QMEs) offer an alternative, flexible
route to evaluate both average currents and their fluctuations
[1,23–26].

While for small systems, QME methods can handle many-
body interactions in a nonperturbative manner, these methods
are fundamentally limited in their ability to accurately and
consistently describe the system’s quantum state [27]. Fur-
thermore, it has been recently argued that an appropriate
thermodynamic description at the fluctuating level may only
be obtained after applying the secular approximation on the
Redfield QME [28].

We introduce a novel method that allows for the non-
perturbative characterization of current fluctuations in out-
of-equilibrium configurations for arbitrarily driven systems,
overcoming the aforementioned limitations. Our scalable
method combines a full-counting statistics (FCS) treatment
[1] with the so-called mesoscopic leads description [29–32]
and brings together advantages of both approaches. Meso-
scopic leads build the reservoirs by a finite collection of
fermionic modes, each of which is subject to damping,
intended to bring the discrete modes of the bath to their equi-
librium state with respect to a fixed temperature and chemical
potential. In its basic form, the mesoscopic leads approach has
been shown to build the correct thermodynamic state [33–40]
and it has been adopted to study noninteracting [41–44],
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periodically driven [40,45,46], and impurity [47–49] models,
as well as thermal machines [39] in the strongly interact-
ing, finite-temperature and strong system-reservoir coupling
regimes, away from equilibrium. The method presented in this
work bridges and combines in a nontrivial way two estab-
lished but separate frameworks, namely the mesoscopic leads
approach and the FCS, yielding the charge current and its
fluctuations for arbitrary system-reservoir coupling strength,
temperature, bias-voltage and time-dependent driving fields.
Further, in the case of Gaussian time-dependent quantum
systems, our framework leads to elegant expressions for the
instantaneous dynamics of the currents and its noise. Studying
as an example a periodically driven system, we compute the
instantaneous charge current noise. We reveal the subtle na-
ture of fluctuations under driving far away from equilibrium
with the noise showing crucial dependency on the time inter-
val under investigation.

Mesoscopic reservoirs. We consider a fermionic system
S described by a set of L annihilation operators {ĉ j} and
a Hamiltonian ĤS(t ), possibly interacting and driven. The
system is coupled to Q fermionic reservoirs, each mod-
elled by a set of operators {b̂n,α}, Hamiltonians ĤB,α =∑∞

n=1 ωn,α b̂†
n,α b̂n,α (we set h̄ = 1, kB = 1) and prepared in

grand-canonical states at temperatures Tα and chemical poten-
tials μα . Each reservoir α is assumed to couple to a specific
system operator ĉpα

via ĤSBα
= ∑∞

n=1 λn,α (ĉ†
pα

b̂n,α + b̂†
n,α ĉpα

),
which is not necessarily weak. The corresponding bath spec-
tral densities are Jα (ω) = 2π

∑∞
n=1 |λn,α|2δ(ω − ωn,α ). The

combination of time-dependent drives and/or interactions in
t �→ ĤS(t ), together with strong couplings between the system
and the fermionic baths, makes the above problem notoriously
difficult to handle.

The mesoscopic leads approach has been successful in
this regard [29–31,39,40,45,50,51]. Here, each reservoir α

is mapped into a finite set of Nα lead modes {âk,α}, k =
1, . . . , Nα , each of which is coupled to a residual reservoir, as
depicted in Fig. 1. The method is designed so as it converges
to the true dynamics when Nα → ∞.

The Hamiltonian of the leads reads ĤL =∑
α

∑Nα

k=1 εk,α â†
k,α

âk,α , with each lead mode âk,α assigned
an energy εk,α , designed to homogeneously sample the
spectral bandwidth of ĤBα

. Moreover, S only interacts with
the lead modes, and not their residual reservoirs. It follows
that ĤSBα

�→ ĤSLα
= ∑Nα

k=1 κk,α (ĉ†
pα

âk,α + â†
k,α

ĉpα
), with

new coupling strengths κk,α = √
Jα (εk,α )γk,α/(2π ), where

γk,α = εk+1,α − εk,α will be small whenever Nα is large.
Crucially, via this mapping the residual environment of
each lead mode has a flat spectral density, governed by γk,α

[30,31]. Thus, even if the original SB coupling is not weak, the
coupling of the lead modes to their residual baths becomes
small, provided Nα is sufficiently large.1 This condition
allows one to trace out the residual environments and obtain
a master equation for the joint system-state ρ̂SL.

Full counting statistics. The mesoscopic leads approach
only gives access to average currents through continuity equa-

1More quantitatively, the condition is that γk,α needs to remain the
smallest energy scale in the problem [50,51].

(a)

(b)

FIG. 1. Mesoscopic lead description of an open quantum system.
(a) A depiction of an infinite bath at temperature T and chemical
potential μ with spectral density function J (ω) coupled locally
to the pth fermionic site of a system. (b) The bath is discretized
by a finite collection of N fermionic modes with self-energies εk ,
which are coupled locally to the pth site of the system with strength
κk,p. Each of the modes is subject to dissipation intended to drive
the mode to thermal and chemical equilibrium state. In (a), FCS is
performed with a counting field χ embedded in the reservoir. In
contrast, in (b) the counting fields turn up in the internal system-
modes couplings.

tions. Our goal is to take this method a step further and con-
struct the full probability distribution of charge fluctuations.
Letting Iν (t ) denote the stochastic charge current to reservoir
ν and Nν (t, t0) = ∫ t

t0
dt ′ Iν (t ′) the corresponding integrated

(net) charge in the interval [t0, t], our interest will be on the
probability P(n, t, t0) = P(Nν (t, t0) = n). We have that [1]

P(n, t, t0) =
∫ π

−π

dχ

2π
e−inχ G(χ, t, t0). (1)

As one of our main results, we show in Ref. [52]
that G(χ, t, t0) := Tr[ρ̂SL(χ, t, t0)] and ρ̂SL(χ, t, t0)
satisfies the generalized master equation d

dt ρ̂SL(χ, t, t0) =
Lχ (t )ρ̂SL(χ, t, t0), with the tilted Liouvillian

Lχ (t )ρ̂ = −i
[
ĤS(t ) + ĤL + Ĥχ

SL, ρ̂
]
χ

+
∑

α

Dαρ̂. (2)

Here, χ is the counting field, [Âχ , B̂]χ := Âχ B̂ − B̂Â−χ ,

Ĥχ
SL =

Q∑
α=1

Nα∑
k=1

κk,α

(
ĉ†

pα
âk,α e−iχδα,ν/2 + â†

k,α
ĉpα

eiχδα,ν/2
)
, (3)

and

Dαρ̂ =
Nα∑

k=1

γk,α (1 − fk,α )

[
âk,αρ̂â†

k,α
− 1

2
{â†

k,α
âk,α, ρ̂}

]

+
Nα∑

k=1

γk,α fk,α

[
â†

k,α
ρ̂âk,α − 1

2
{âk,α â†

k,α
, ρ̂}

]
. (4)

The Lindblad dissipators Dα are generators of quantum
dynamical semi-groups: It is important to note that in this
picture, they are made time-independent. They act only
locally on the individual lead modes âk,α , with strength γk,α

and Fermi-Dirac occupation fk,α := (e(εk,α−μα )/Tα + 1)−1.
Setting χ = 0, one recovers the traditional mesoscopic leads
master equation [39]. With Lχ , however, we now have access
to the full P(n, t, t0). Note that we have included an explicit

L081119-2



PARTICLE CURRENT STATISTICS IN DRIVEN … PHYSICAL REVIEW B 108, L081119 (2023)

dependence on the initial condition at t0. As we shall see,
it is important to keep track of this argument to evaluate
charge statistics in systems with an explicit time-dependent
Hamiltonian. The counting field χ specifies which physical
process we are monitoring. Charge transport is usually
associated with quantum jumps in the master equation, with χ

placed in the terms âk,αρ̂â†
k,α

and â†
k,α

ρ̂âk,α of Eq. (4). Instead,
a crucial aspect of our result (2) is that χ is placed in the
unitary system-leads interactions, ĉ†

pâk,α and â†
k,α

ĉp. This is a
consequence of the mapping, which implies that the exchange
of particles between S and B is mapped to an exchange
between S and the lead modes âk,α . In nondriven systems at
steady state, such a distinction is immaterial. However, for
driven systems, and during transients, it is crucial.

We note that the proposed scheme is based on the two-point
measurement protocol FCS [1] which can be justified with the
assumption that initial total density matrix is a product state
of system and environment states (see Ref. [52] for further
details).

Noise. The average current, Jν (t ) := 〈Iν (t )〉 = d
dt 〈Nν (t, t0)〉

is given by [39,40]

Jν (t ) = i
Nν∑

k=1

κk,νTr{(ĉ†
pν

âk,ν − â†
k,ν

ĉpν
)ρ̂SL(χ = 0, t, t0)},

(5)

and therefore does not require the tilted dynamics. For all
higher order moments, however, Lχ is required. Here, we
focus on the charge variance var[N (t, t0)] := 〈N2

ν (t, t0)〉 −
〈Nν (t, t0)〉2 or, more conveniently, the noise

Dν (t, t0) := d

dt
var[Nν (t, t0)] = 2

∫ t

t0

dt ′ 〈δIν (t )δIν (t ′)〉, (6)

where δIν (t ) = Iν (t ) − Jν (t ) and the last equality follows from
Nν (t, t0) = ∫ t

t0
dt ′ Iν (t ′).

A major advantage of our approach is the ability to de-
scribe arbitrary drives and transient dynamics. In such cases,
it is crucial to note that while Jν (t ) is an instantaneous
quantity, Dν (t, t0) depends on the time interval [t0, t] in
question. At the stochastic level, the charge is additive as
Nν (t2, t0) = Nν (t2, t1) + Nν (t1, t0),∀t2 > t1 > t0. In contrast,
the variance is not additive since var(A + B) = var(A) +
var(B) + 2cov(A, B). Equation (6) thus yields

Dν (t2, t0) = Dν (t2, t1) + 2
d

dt2
cov[Nν (t2, t1), Nν (t1, t0)], (7)

which shows a dependence on the correlation between
the transferred charge at different intervals. For systems
with autonomous steady states, it suffices to work with
limt→∞ Dν (t, t0), and no such subtlety arises. However, this
is not the case in driven systems. For example, in the case
of periodic drives (with characteristic driving period τ ),
Dν (t0 + τ, t0) reflects fluctuations over a single period while
limt→∞ Dν (t, t0) portrays the fluctuations over many periods.
To our knowledge, there is currently no method capable to
account for this distinction, and demonstrate its ramifications.

Gaussian states and dynamics. Our description thus far has
made no assumption about the structure of ĤS(t ). Arbitrary
interacting systems are accessible and can be simulated using,
e.g., tensor networks, as put forth in Ref. [39]. However, if

ĤS(t ) is quadratic in fermionic operators, the tilted Liouvil-
lian (2) is Gaussian-preserving. Let {b̂i} = {ĉ j, âk,α} denote
a combined set of fermionic operators of the system plus
the Q leads. A quadratic ĤS(t ) implies that we may write
Ĥ (t ) = ĤS(t ) + ∑Q

α=1(ĤLα
+ ĤSLα

) := ∑
i, j hi, j (t )b̂†

i b̂ j , for a
matrix H(t ) with matrix elements hi, j (t ) of dimension L +∑Q

α=1 Nα . In the untilted case (χ = 0), it is well-known that
the particle-number preserving covariance matrix C � 0 with
entries [C(t )]i, j := Tr[b̂†

j b̂iρ̂(t )] evolves according to the Lya-
punov equation [40,53,54]

dC(t )

dt
= −[W(t )C(t ) + C(t )W†(t )] + F, (8)

where [W(t )]i, j = ihi, j (t ) + γi, j/2 and γ is a diagonal matrix
with entries γk,α [Eq. (4)] in the sector of the leads. Similarly,
F is a diagonal matrix with entries γk,α fk,α . The average cur-
rent (5) can then be written as Jν (t ) = iTr[GνC(t )], where Gν

is an antisymmetric matrix with entries ±κk,ν in the sectors
connecting ĉpν

and âk,ν [52].
The noise can be obtained using the method shown in

the Ref. [52]. It consists of writing the noise over any in-
terval [t1, t2] as Dν (t2, t1) = 2Tr[GνC̃(t2, t1)], where C̃(t2, t1)
is an auxiliary matrix, obtained by integrating the modified
Lyapunov equation

dC̃(t, t1)

dt
= − [W(t )C̃(t, t1) + C̃(t, t1)W†(t )]

− 1

2
[C(t )Gν[1 − C(t )] + [1 − C(t )]GνC(t )],

(9)

with initial condition C̃(t1, t1) = 0. The second line contains
C(t ), which is the solution of Eq. (8), with initial condition at
time t = 0 (and not t1). Physically, we can interpret the solu-
tion C̃(t2, t1) as turning a detector on at t1 and then off at t2.
The real dynamics C(t, 0) evolves from t = 0 onward, indefi-
nitely. Given a window [t1, t2], we obtain the corresponding
fluctuations by integrating Eq. (9). With these expressions,
we can therefore analyze fluctuations over arbitrary intervals,
for Hamiltonians with arbitrary time dependence. Equa-
tions (8) and (9) can be integrated using standard Runge-Kutta
methods.

Time-dependent current and noise in two-terminal junc-
tions. We consider two metal electrodes kept at different
equilibrium states and bridged by a two-site fermionic system,
which is modulated via a time-periodic electric field,

ĤS(t ) =
(

eaE (t )

2

)
(ĉ†

1ĉ1 − ĉ†
2ĉ2) − �(ĉ†

1ĉ2 + ĉ†
2ĉ1). (10)

Here e is the electric charge, a is the spacing between the two
sites and E (t ) = A cos(ωt ) is the electric field. We fix the in-
ternal coupling � as the energy scale of the problem. The two
reservoirs have the same temperatures, TL = TR = 0.1�, but a
chemical potential bias μL = 24� and μR = −24� [45]. The
spectral function of the baths are taken as JL(ω) = JR(ω) =
�, ∀ω ∈ [−W,W ], and zero otherwise, where W is a cutoff
energy and � the effective coupling. We discretize each reser-
voir into N lead-modes with energies εk between −W and W ,
such that γk,α = 2W/N and κk,p = √

�γk,α/2π . Throughout,
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FIG. 2. (Top) average currents JL(t ) and −JR(t ) [Eq. (5)] during
multiple periods τ = 2π/ω of the external drive, up until the LC is
reached. (Bottom) noise DL/R(t, t1), starting at the LC t1 = 24π/ω.
Integrating over the first period yields S0

ν in Eq. (12). Waiting for
multiple periods and then integrating yields instead S∞

ν in Eq. (13).
Parameters are described in the main text.

we fix � = 0.5�, W = 100�, and N = 400 (which sufficed
to guarantee convergence of all simulations). The integra-
tion of Eqs. (8) and (9) was carried out through fourth-order
Runge-Kutta integration with a time-step δt = 0.01/�.

Figure 2 (top) displays the instantaneous currents Eq. (5)
of the left and right reservoirs during several drive periods
τ = 2π/ω, starting at C̃(0) = 0, with a fixed eaA = 40� and
ω = 5�. As can be seen, JL/R gradually tend to the limit cycle
(LC), where Jν (t + τ ) = Jν (t ). This suggests we define the
LC-averaged current as

Jν = 1

τ

∫ t1+τ

t1

dt ′Jν (t ′), (11)

where t1 is a large enough time such that Jν (t1 + τ ) = Jν (t1).
To analyze the noise, we wait until the LC has been reached

at time t1, so that we eliminate any dependence on the arbitrary
initial condition.2 In Fig. 2 (bottom), we plot DL/R(t, t1),
starting at t1 = 24π/ω. The choice of t1 is arbitrary, as long
as it is large enough such that Jν (t1 + τ ) = Jν (t1). Note that
DL(t, t1) = DR(t, t1) ∀t ; this is a consequence of the sym-
metric model parameters and it is nongeneric behavior (see
Ref. [52] for details). At t = t1, we start counting particles to
analyze the instantaneous noise. We find that Dν (t + τ, t1) 
=
Dν (t, t1) over the first period [left-most grey region in Fig. 2
(bottom)]. In fact, integrating Dν (t, t1) from t1 to t1 + τ yields

S0
ν := 1

τ

∫ τ

0
dt ′Dν (t1 + t ′, t1), (12)

which is the average variance of the charge transferred over
a single period after the LC. Similarly, integrating from t1 to

2Given that the Lindblad master equation is expected to be gapped,
there will be a finite time until this occurs.
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FIG. 3. J , S0, and S∞ [Eqs. (11)–(13)] as a function of the driving
field amplitude eaA/�, in the limit cycle, with fixed frequency ω =
5�. (Inset) same, but as a function of ω/�, with fixed eaA = 20�.
Other parameters are as in Fig. 2.

t1 + 2τ yields the average fluctuation over two periods, and
so forth, as it can also be measured. For t � t1, τ , we see
in Fig. 2 (bottom) that eventually the noise itself becomes
periodic, and |Dν (t + τ, t1) − Dν (t, t1)| → 0 for t → ∞.3

This suggests we define

S∞
ν := lim

t→∞
1

τ

∫ τ

0
dt ′Dν (t + t ′, t1), (13)

depicted in the right-most grey region in Fig. 2 (bottom).
S∞

ν is in fact the so-called LC-averaged zero-frequency
component of the noise [19]. Despite being a more standard
quantity in the context of systems with autonomous steady
states, it lacks the clear physical interpretation as S0

ν when
time-dependent drives are present.

Figure 3 displays J , S0 and S∞ as a function of the driv-
ing field strength A. We have suppressed the ν index, as
L and R quantities are equivalent in the present case with
symmetric driving and bias. This model is known to display
current-suppressed minima for certain values of the driving
field [45]. A key feature of this is that one can also sys-
tematically suppress S∞ [19]. In contrast, the single-period
variance S0 displays a fundamentally different behavior, re-
maining nonzero even for arbitrarily large drive amplitudes.
This means that even though the average current is sup-
pressed, the fluctuations of the charge exchanged within each
period are not. This fundamental difference between S∞ and
S0 is a feature of driven systems, and depends on the fre-
quency in question. In the inset of Fig. 3, we plot J , S0 and S∞

3This is a consequence of Eq. (7), which in this case can be written
as D(t + τ, t1) = D(t, t1) + 2 d

dt cov[N (t, t1), N (t1, t1 − τ )]. The last
term is the rate of change of the covariance, which becomes vanish-
ingly small when t � t1, τ .
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as a function of ω. We see that S0 and S∞ coincide asymptot-
ically in the low frequency regime, becoming identical in the
nondriven case, ω = 0 (see Ref. [52]). Conversely, for large
frequencies, they deviate substantially.

Conclusions. Accurate, nonperturbative computation of
fluctuations of observables in driven, nonequilibrium quan-
tum settings is a long-standing problem. Here, we have put
forward a powerful, flexible method that paves the pathway
into investigations of fluctuations of quantum systems out of
equilibrium. Having access to the full dynamics of the noise
we revealed that the average fluctuations contain correlations
between different time periods in periodically driven systems,
arising from the nonadditivity of the variance. Specifically
our method allowed us to uncover the fundamental distinction
between two measures for noise, S0 and S∞. While the former
is a measure for the pure variance of a physical quantity
within a certain time interval, the latter contains covariance
terms over time intervals [Eq. (7)]. In driven systems, S0 thus
has a clearer physical interpretation of charge fluctuations,
contrasting S∞.

Future prospects include studies of light-driven materials
under nonperiodic modulations, relevant to proposals for peta-
hertz signal processing [10,55]. In these scenarios, the full
transient dynamics of currents and charge fluctuations are of
the essence.

Current fluctuations can further reveal fundamental
aspects of electron-electron interactions, as demonstrated in
nondriven systems [56]. By combining our FCS-mesoscopic
lead framework with tensor-network techniques [39], one
could uncover correlated-electron phenomena in nanoscale
devices from the behavior of both transient currents and their
noise signals.
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