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Quantum thermoelectric transmission functions with minimal current fluctuations
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Thermodynamic uncertainty relations (TURs) represent a benchmark result in nonequilibrium physics that
allows to place fundamental lower bounds on the noise-to-signal ratio (precision) of currents in nanoscale
devices. Originally formulated for classical time-homogeneous Markov processes, these relations, were shown
to be violated in thermoelectric engines and photovoltaic devices supporting quantum-coherent transport.
However, the extent to which these violations may occur still represents a missing piece of the puzzle. In
this work, we provide such answer in a definitive way within the general Landauer-Biittiker formalism for
noninteracting systems, beyond any perturbative regime, e.g., linear response. In particular, using analytical
constrained-optimization techniques, we rigorously demonstrate that the transmission function which maximizes
the reliability of thermoelectric devices (i.e., which minimizes the fluctuations of its steady-state currents) for
fixed average power and efficiency is a collection of boxcar functions. This allows us to show that TURs can
be violated by arbitrarily large amounts, depending on the temperature and chemical potential gradients, thus

providing guidelines to the design of optimal devices.
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I. INTRODUCTION

Since the industrial revolution, thermal machines repre-
sent a crucial component of our technological landscape, and
optimizing their performance has been an overarching goal
of engineers and scientists for centuries. At the macroscopic
level, the Second law of Thermodynamics imposes a funda-
mental trade-off between the average power output of thermal
machines and their efficiency. Specifically, the Carnot bound
provides the maximum efficiency that can be reached, which
is achieved only for infinitely slow processes, thus entail van-
ishing dissipation but also no output power [1]. Conversely,
finite power output implies a lower efficiency than Carnot’s.

The 20th century saw a relentless march towards miniatur-
ization, leading to the development and control of nanoscale
devices that are able to interconvert heat and particles at the
microscopic scale. Thermoelectric devices represent one of
the most prominent examples of this trend. These devices
have the ability to convert heat into electricity, and vice versa,
with a range of applications including the generation of re-
newable energy and the cooling of electronic devices [2,3].
According to the Landauer-Buttiker theory, in the nonlinear
regime, thermoelectric devices can be fully characterized by
means of the transmission function [4]. Over the years, sig-
nificant research has been directed towards optimizing these
devices to reach their best performance. A first paper by
Mahan and Sofo [5] showed that a narrowly-peaked distri-
bution of the transmission function would yield the highest
efficiency in linear response regime. In accordance with the
second law’s predictions, the corresponding power output,
however, would vanish. This result was later generalized in
Ref. [6] and by Whitney in Ref. [7], who raised the ques-
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tion of what electronic structure would provide the highest
efficiency (or, equivalently, the smallest dissipation) beyond
linear response for a given finite power output. Whitney’s
analysis showed that a boxcar transmission function is needed
to achieve maximum efficiency at given average power out-
put. However, at the microscopic scale, not only the average,
but also fluctuations become extremely relevant and need
to be properly taken into account in order to determine the
performance of thermal machines. The quest towards charac-
terizing their properties during out-of-equilibrium processes
and quantifying their connection with dissipation has been a
leitmotif throughout the development of stochastic thermody-
namics [8—15]. Recently, an important result was found, the
thermodynamic uncertainty relations (TURs) [16—18]. In their
simplest form, originally found and proven for Markov pro-
cesses at a steady-state regime, these inequalities take the form

A2

252, 1)
with A?Y denoting the variance of a generic current, J its cor-
responding mean value and o the average entropy production
rate. Equation (1) expresses a tradeoff between precision, as
quantified by the noise to signal ratio of any thermodynamic
quantity, and dissipation. Beside their fundamental impor-
tance, TURs have profound implications for the performance
and design of microscopic thermal machines. As shown in
Ref. [9] TURSs provide in fact a new upper bound, different
fromcomplementing the one imposed by the second law
of thermodynamics, on the maximum achievable efficiency
which does not depend only on the average power output any-
more but also on the power fluctuations. With a little algebra,
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it is in fact straightforward to show that Eq. (1) when applied
to the power output of an engine, i.e., J = P, translates into

AZ
P< =21 _q), )
2Tc \ n

where 7 is the engine’s efficiency, 7¢ is Carnot efficiency and
T is the temperature of the cold reservoir. On the one hand,
Eq. (2), shows that reaching Carnot’s efficiency at finite power
is possible but at the cost of diverging power fluctuations,
i.e., zero engine’s reliability. More generally, this relation
highlights how fluctuations quantitatively affect the maximum
power achievable at a given efficiency (or, equivalently, at a
given amount of dissipation), thus showcasing their impor-
tance towards the achievement of optimal nanoscale devices.
Recent studies, however, proved how Eq. (1) could be
violated precisely in thermoelectric devices [19-30], opening
up the possibility that quantum mechanics could in princi-
ple be exploited to further curb down fluctuations and thus
achieve higher performances. In this regard, Ref. [25] charac-
terized the fluctuations of the power stemming from a boxcar
transmission function, i.e., the one yielding the maximum
efficiency at finite power output, demonstrating that arbitrarily
large violations could be obtained in a thermoelectric device
at very high chemical potential gradients. This very naturally
leads to the following relevant question, that takes the baton
of the research line outlined above: what is the maximum
precision (i.e., the minimum amount of fluctuations) achievable
for a given efficiency and output power in a thermoelectric
device? The current lack of a universal quantum formulation
of TURs does not allow in fact to provide a definitive answer
to this interrogative; partial answers were provided in the
context of thermoelectric systems in linear response regime
[31] and in next leading order in the biases [19,21,22], as well
as for specific subclasses of fluctuation relations (known as
Evan-Searles-Jarzynski-Wojcik fluctuation relations) [32-39].
In this work, we solve this challenging problem by precisely
answering the above question. We achieve this by developing
a general method to solve concave optimization problems, that
we then apply to find the optimal transmission function for
which one has the smallest possible variance A%, for fixed
J and o. The answer is remarkably given by a collection
of boxcar functions, with boundary positions determined by
the values of I and o. This result can finally be interpreted in
the spirit of TURs as the ultimate lower bound to any noise
to signal ratio for noninteracting thermoelectric devices, valid
for arbitrary intensities of the biases. Our work thus provides
a comprehensiven important step forwards in the solution to
the long-standing question of the ultimate bound on the per-
formance of thermoelectric devices, taking into account both
the average power and the power fluctuations. Furthermore,
our result provides a bound which is always tighter than (1)
close to the linear response regime, reducing to it only in
some particular cases. We finally illustrate our findings in a
double quantum dot system coupled between two fermionic
reservoirs at different temperatures and chemical potentials.

II. LANDAUER-BUTTIKER FRAMEWORK

We consider a meso- or nanoscale noninteracting quantum
system, e.g., a quantum dot array, simultaneously coupled
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FIG. 1. The transport properties across a thermoelectric device
is determined by a transmission function 7 (¢). In this paper, we
determine the 7 (¢) which minimizes the fluctuations (variance) in
the current, for fixed average energy and particle currents.

to two macroscopic fermionic reservoirs at different inverse
temperatures B; = 1/7; and chemical potentials u; (i = L, R),
as depicted in Fig. 1. Within the Landauer-Biittiker formalism,
the (nonequilibrium) steady-state regime is fully characterized
by a transmission function 7 (¢) € [0, 1]. The particle and
energy currents are given by [40]

I:/de T (e) Af(e), J:/de T(€)e Af(e), (3)

where Af(€) = fi(e) — fr(€), with fi(€) = (ef 1) + 1)~!
denoting the Fermi-Dirac distributions of the left and right
reservoirs.

The entropy production rate is given by [41]

o = —5ﬂ.l + Sﬂul >0, “)

where 8g = B — Br and dg,, = Brur — Priur. Finally, fluc-
tuations around the mean values can be obtained by means
of the Levitov-Lesovik full counting statistics formalism if
electron-electron interactions are neglected and the long time
limit is considered [42]. For concreteness, we focus on the
variance of the particle current A%, which is given by

A} = / deT (e)Lfr(€) + fr(€)
—2fr(e)f1(e) — T(€)Af*(€)]
= / de{T (€)gle) + T ()1 — T ()IAf(€)?}, (5)

where we have introduced for convenience of notation the
quantity

8(€) = fr(ell = fL(e)] + fr(e)[1 — fr(e)]. (6

Similar considerations can be made for the fluctuations of
other currents, e.g., of energy. Moreover, all ideas can be read-
ily extended to systems involving multiple transport channels,
such as spin-dependent transmission functions.

From now on, we will focus on the particle current / and
our goal will be to find the transmission function which min-
imizes A? for fixed / and o. Since 0 = —85 J + 8p,, I, one
can equivalently fix / and J. In fact, our main theorem below
holds for an arbitrary number of constraints, provided they are
linear in 7 (¢).

Thermoelectrics can also be viewed as autonomous ther-
mal engines. The output power, associated to chemical work,
is P = —§,,1, where §,, = pu; — jtg, while the heat current to
each bath is given by Jé = J — ;I (Fig. 1). For concreteness,
we assume always 7 > Ti. The system will then operate as
an engine when P, JL,JS > 0, in which case the efficiency
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is n= P/Jé [41]. This interpretation allows us to draw a
connection with the seminal results of Ref. [7], which consid-
ered the transmission function maximizing the efficiency for a
fixed output power. Fixing P is tantamount to fixing /. Hence,
maximizing the efficiency n = —8,1/(J — i) is equivalent
to minimizing J for a given power output. The problem in
Ref. [7] can thus be rephrased as which transmission function
minimizes J for fixed /.

A crucial difference with respect to our case, however, is
that A% is a nonlinear (quadratic) functional of 7~. Moreover,
it is also a concave one. Standard tools, such as Lagrange
multipliers, therefore do not apply. Intuitively speaking, the
minimum of a concave function, defined on an interval, is at
the boundary of said interval, not somewhere in the middle, as
in the convex case.

A similar argument can be made to the problem at hand,
but involving a functional of 7 (¢), which can be viewed as a
function defined on an infinite dimensional space.

III. MAIN RESULTS

The main result of this paper can be condensed into the
following theorem:

Theorem 1. The transmission function 7 (¢) which mini-
mizes A% [Eq. (5)], for any number of linear constraints, is a
collection of boxcars with 7 (¢) being either O or 1; that is,

Top(€) =Y _0(e —anb(b; —€), )

where 6(x) is the Heaviside function and a;, b; € [—00, +00]
are the boxcars boundary points, that are fixed by the linear
constraints.

While a rigorous proof of this result is provided in Ap-
pendix A 2, we would like to give a somewhat more heuristic
and intuitive explanation. As previously said, the minimum
of a concave function defined on an interval is attained at the
boundaries. In our case at hand, we need to extrapolate this
reasoning to the minimization of a concave functional, i.e.,
the fluctuations A%, which depend on a function 7 (¢) instead
of a parameter. To do so, we can start by considering a N-
discretized version of the transmission function as a function
from some finite subset of the real line to [0,1]. Since for
each of the N, elements the transmission function takes values
between O and 1, the region of possible values describes a
hypercube [0, 1]V, where each coordinate represents one of
the values of the function, 7 (¢, ). In this situation A% is a con-
cave function of the 7 (¢;), whose domain is the hypercube.
But this means that the minimum is at the vertices of such
hypercube. To see this, consider any line segment inside of the
hypercube. The function 7 (&) restricted to this line segment
is concave, univariate and has an interval for a domain, so the
minimum in the segment must be one endpoint, which always
lies in the boundary of the hypercube (see Fig. 2). Having
to simultaneously satisfy this consideration for all segments
ofinside the hypercube on which each t(¢;) is defined, one
arrives at the conclusion that the minimum is a vertex of
the hypercube, where the transmission function only takes
values either O or 1. This thus motivates us to consider boxcar
functions as an ansatz.

A7 (€3)

7 (o)

7 (&2)

FIG. 2. If we discretize the integrals defining A?, the fluctuations
become a concave function, that always attains its minimum in the
vertices, corresponding to boxcar functions.

It is worth stressing that Theorem 1 holds true for an ar-
bitrary number of linear constraints. The fact that the optimal
7 (¢e) is a (collection of) boxcar implies that we can substitute
72% = 7 in Eq. (5), and express it as

bi
Aj=)" f de gle), 8)

where g(¢) = fr.(1 — f1) + fr(1 — fr) and where {qa;, b;} are
the boundary points of the boxcars. Equation (8) has two
very important consequences. The first one is that the original
minimization problem, has become a linear one; the second is
that the optimization is now turned from finding an optimal
continuous function 7 (¢) to finding the position of a finite set
of values, i.e., the boundary points {a;, b;}. The simplification
brought by Theorem 1 therefore allows to find those points
by means of a Lagrange-Karush-Kuhn-Tucker optimization
procedure [43,44]. To be more concrete, let us focus on the
case where I = Iy and J = J, are fixed. The functional to
minimize therefore reads

L({ai, bi; hm) = Af g + 20 —Jo) + 0 — L), (9)

where A and 7 are the Lagrange multipliers introduced to fix /
and J. This leads to our second main result (see Appendix A
for a detailed proof).

Theorem 2. The position of the optimal boxcars is deter-
mined by the regions in energy for which

g(e) < (ke +n)Af(e). (10)

This allows us to identify the boundaries of the box-
cars {a;, b;} when Eq. (10) is saturated, i.e., g(e) = (A€ +
n)A f(e). We note that this can also be obtained by minimiz-
ing Eq. (9) through standard Lagrange multipliers. The sign of
the inequality in Eq. (10), on the other hand, determines which
of these endpoints are left/right endpoints of the boxcars.
An explanation of its origin is however more subtle and can
be found in Appendix A 3 where the full Lagrange-Karush-
Kuhn-Tucker procedure is done.

Since the problem is now framed in terms of Lagrange
multipliers, one should interpret I(n,A) and J(n,X) as
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functions of n, A. A given choice of 5, A fixes an optimal
boxcar, which in turn fixes I and J (the values of the currents
for which said boxcar gives the minimum fluctuations). In
practice, of course, what we want is to work with fixed 7, J,
which thus requires determining the inverse functions n(Z, J)
and A(/, J). This has to be done numerically. We developed
a Python library for doing so, which can be downloaded in
Ref. [45]. The calculations are facilitated by the fact that,
as we show in Appendix B2, I is monotonic in n, and J in
A. Once the optimal boxcar 74y is determined for a given
I, J, the minimal variance A?’Opt is computed from Eq. (5),
with 7~ = 7. Since the latter is by construction the smallest
possible variance out of all transmission functions, it follows
that A7 > A} opt for any other model. This therefore represents
a generalized TUR bound. And, in addition, also establishes
which process saturates it.

IV. PHYSICAL INTERPRETATION AND SIGNIFICANCE

Our framework allows to find the transmission function
with the smallest variance, for a fixed I and J. In practice one
is often interested in situations where / and J stem from a
concrete physical model. That is, they are determined from
Eq. (3) by some given transmission function 7 (¢). One may
then ask how does the variance associated to this transmission
function fare with respect to the optimal one (obtained from
Theorems 1 and 2)? This optimal transmission function will
be given by a collection of boxcars, which raises the natural
question of how they could be achieved (or approximated) in
areal system. While the full answer to this question is outside
the scope of the current work, it is known that a chain of quan-
tum dots can be used to achieve an isolated boxcar [25,46].
Nevertheless, even if a given optimal transmission function
turns out to be physically impossible, the bound derived from
it is still valid.

Another question that arises is how the optimal bound
compares with the variance obtained from a concrete physical
model. That is, if 7, J, and A,z are determined from a given
transmission function 7 (¢), how do the boxcars obtained
from Theorems 1 and 2 fare? To illustrate this idea, we con-
sider the problem studied in Ref. [20], which discussed viola-
tions of the TUR (1) in the case of a resonant double quantum-
dot system, characterized by the transmission function

rzQ?
(e —w+il/2)? — Q22

where I' is the system-bath coupling strength, w is the excita-
tion frequency of each dot and €2 the inter-dot hopping con-
stant. For simplicity, we fix 7;, = Tg and ug = —uy, =6, /2.

TUR violations can be quantified by analyzing the Fano
factor F = A%/|I|. Since 0 = B4,/ in this case, we see that
the TUR (1) would correspond to F' > 2/(88,). Violations
thus occur when F 85, < 2. Results for the double quantum
dot are shown in Fig. 3, in red-solid lines, as a function of §,,.
The violations are generally small, of at most 1.86 in this case.
This, of course, depends on the choices of parameters, but
other results reported in the literature are roughly of the same
magnitude [19-21,23,25,27]. In contrast, the blue-dashed line
represents the Fano factor obtained from Eq. (10). This
corresponds to the same values of /,J (and o) as the red

Tale) = Y

—— double quantum dot
---- optimal case

2.5

1.5+ AN

FB6,
/

1.0+ S~

054 Tl

0.0 T T T

FIG. 3. Red-solid: Fano factor F = A?/[, in units of (,38“)*', for
the double quantum-dot in Eq. (11), as a function of §,. Violations
of the TUR (1) occur when this falls below 2 [20]. Blue-dashed:
Fano factor for the minimal variance process, computed using our
framework. Parameters: ' = 0.1,  =0.05, o =0, B, =Br =1,
and pup = —pgp =68,/2.

curve, but with the smallest possible Aiopt allowed over all

transmission functions. As can be seen, the variance obtained
from our generalized TUR bound is not violated by the dou-
ble quantum dot. Furthermore, F86,, is now monotonically
decreasing with §,,, and tends to zero at infinite bias. Conse-
quently, far from linear response, arbitrary violations of the
TUR are possible. Conversely, close to §,, ~ 0, one recovers
FBs, =2.

V. LINEAR REGIME

The results above illustrate that, far from linear response, it
is impossible to bound A? in terms only of / and o.. In fact, our
results just showed that far from linear response, arbitrary vi-
olations of the TUR are possible (similarly to what was found
in Ref. [25]). Conversely, one may naturally ask whether the
situation simplifies in the linear regime. We parametrize f; =
B+385/2 Br = B — 8p/2.and Brius = Biu + 85,./2. Britr =
B — 8, /2. Using this in the definition of both g and Af
yields, up to the order we are considering

g(e) = 2f(e)(1 = f(€)), (12)
Af(e) = Z(e)f(e)(1 = f(e)), (13)

where f(e) = (e#“~*) 4+ 1)~ is the Fermi-Dirac distribution
associated to the mean temperature and chemical potential and
>(e) = 8, — 8pe. If we consider a general current, then its
intensity and fluctuations are given respectively by [47]

In = fde h(e) T(e) Af(e), (14)

A, = /de W (€) (T (€)g(€) + T (e)[1 — T (e)]Af(€)*}.

(15)

So, for example, the entropy production is ¢ = Jx. Using
Theorem 1, we get to the conclusion that for fixed values
of 93 and o, the transmission function that minimizes A?Ih
is a collection of boxcars B. So suppose that the optimal
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FIG. 4. Red-solid: Fano factor F = A?/I, in units of o', for
the optimal boxcar given by A — oo, n =0, Brr) = 10 £ %5/2,
BrawyMrw = 2 % 9%u/2, 96u/s5s = 1/2 as a function of §5. Black-dashed:
Lower bound given by the TUR (1).

transmission function is the boxcar collection that is 1 in B
and define the functional

O[h] = /Bdé h(e) f(e)(1 — f(€)). (16)

Combining Eqs. (13) and (14) we get ), >~ O[hX] and Afﬂ ~
20[H*]. So

oAL  20[16[x?]
g2~ emxzr T7

where we used the Cauchy-Schwarz inequality. This means
that up to the order considered, the optimal process obeys
A%, /92 > 2/s which is the classical TUR in Eq. (1). Since we
also considered a generic current, this implies that we recover
this relation in the linear response regime.

To get a more concrete example, we consider again the par-
ticle and energy currents: I = 1 and J = J.. So substituting
and expanding ¥ leads to

oA} _20[1]0[X?] 25

2

— B 21 _ 2

n = oy =2t (OO - OleT).
(18)

So we can see that if §g = 0, as in Fig. 3, then the linear
response limit for the bound is exactly 2. However, if §g # 0,
then using Cauchy-Schwarz’s inequality one may show that
O[1]10[€?] > BO[€]?, so the rhs of (18) will be strictly larger
than 2. Furthermore, since the gradients are small in linear
response then / will also be small, so TUR (1) is generally
loose, unless §g = 0. (See Fig. 4 for an example.)

a7

VI. OPTIMAL PROCESSES

For each parameter set (7, Tx, (4, 1g), the currents I and
J in Eq. (3) can only take values within a finite interval,
irrespective of what the transmission function is. An exam-
ple is shown in Fig. 5(a). Before studying the predictions of
Theorems 1 and 2 in more depth, it is thus convenient to
establish the boundaries of this region, and then study the
corresponding boxcars within them.

The particle current / is bounded by two values, I, and
Inax, which can be found directly from Eq. (3) by noting

worst (o) ] (c)
@ thermoelectric 1.0 1.0
2.0
v N 0.5 0.5
0.0 0.0
~1.0 -10 0 10 -10 0 10
(d) e
1.0 1.0 e)
*(d) (c)
0.0 0.5 0.5
best
thermoelectric 0.0

0.0
-1.5 -0.5 05 10 0 10 -10 0 10
I 9 9

FIG. 5. (a) When (Tp, T, pr, ug) = (1,0.2, —1, 1/2), the al-
lowed values of I and J, for any possible transmission function,
must lie within the region formed by the curves Jiin (/) and Jyax (1),
with I € [Lnin, Imax] Which delimitate the convex region seen in this
figure. The thick red part of the curve. The different colors denote
four possible regimes for this thermoelectric. The red region to the
right denotes the region where the system operates as an engine
(P =—6,1 >0 and Jé =J — prl > 0). The small black region in
the bottom denotes the region where it operates as a refrigerator
(P,J5 <0 and J§ =J — pgl < 0). In the light pink region to the
bottom left, it operates as a heater (P, Jé < 0and JS > 0), while in
the pink region to the top, it operates as an accelerator (P < 0 and
Jé‘, JS > 0). [(b)—(e)] Examples of boxcars at different points along
the boundary. (b) Lyin, (€) Inax, (d) point in the Ji,;, (1) curve, (e) point
in the Jy,.x (1) curve.

that A f(e) changes sign only once, at the point €y = g, /3g.
Hence, Inin/max Will have optimal transmission functions 7 (¢)
given by boxcars starting at € and extending to either oo.
These are illustrated in Figs. 5(b) and 5(c).

For a given I € [Iyin, Imax], the energy current J will in
turn be bounded by extremal values Jin, (1) and Jpax (7). At
these lines, the solutions of Eq. (10), which minimize A?,
therefore also extremize J. Since J is monotonic in A (see
Appendix B 2), the extrema Jyn(/) and Jp,«(I) must occur
for A — *£o0.

Due to the lhs of Eq. (10) being always non-negative and fi-
nite, in this limit the condition reduces to (Ae + n)Af(e) = 0.
This expression changes sign twice, at €y and €; = —n/X (the
actual value of €; can be determined implicitly as a function of
I). The curve Jpnin(I) corresponds to a compact boxcar in the
interval [€p, €], as illustrated in Fig. 5(d). This preciselycurve
comprises the “best thermoelectrics” (or “most efficient”) in
Ref. [7]. Conversely, the curve Jy.x (1) (which iscontains the
“worst thermoelectrics”) is associated with the complemen-
tary boxcar, i.e., one which is O in [€g, €;] and 1 otherwise
[Fig. 5(e)]. Interestingly, we therefore see that our results also
encompass those of Ref. [7] as a particular case (also meaning
that the transmission function that maximizes efficiency for a
given particle current also minimizes fluctuations). However,
we call attention to the fact that along these boundaries the
system will not necessarily be operating as an engine. It will
only do so in the region highlighted by a red thick line. The
different possible working regimes are identified in Fig. 5(a).

For values of 1, J inside the region defined by Jiin/max (1),
the shape of the boxcar must be determined numerically
from Eq. (10). This is done by considering for a pair (X, n)
the functions Ae 4+ n and G(€) = £€)/af(). The intersection
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FIG. 6. The crossings between the colored full lines and the
graph of G define the optimal boxcars to the right (the transmission
function is 1 in the intersections with the gray region). Each line
corresponds to different values of the Lagrange multipliers (X, ) and
hence to different values of the constraints. The dotted line illustrates
one way the boxcars can change qualitatively. Init A = 0 and we have
a boxcar extending to 400, however changing A slightly to a positive
value makes the boxcar finite, while changing it to a negative value
adds a boxcar extending to —oo. The dashed line illustrates the other
possibility. In it the line is tangent to the graph of G and we have
two boxcars. One extending to —oo (to the left out of the graph) and
one extending to +oo. In this case, decreasing n first creates a third
intermediary boxcar, that later merges with the one extending to +o0o
once the line becomes tangent to the graph again. The parameters
used were T, = 1, T = 0.2, uy = 0.1, ug = 0.6. Graph of G and
different lines Ae + n. Each line corresponds to different values of
the Lagrange multipliers (X, n) and hence to different values of the
constraints. The solutions to (10) correspond to the intersections of
the lines with the gray regions. For each of the colored lines A, B, and
C, the corresponding optimal boxcar is displayed on the right. The
parameters used were 7, = 1, Tx = 0.2, and mu;, = 0.1, ug = 0.6.

between these functions provide the positions of the bound-
aries of the optimal boxcar for given (%, n) (see Fig. 6 for
some examples). This insight also sheds light on the intri-
cate dependence between the parameters (7, Tg, (1, 1r), the
constraints (/, J) and the possible boxcar topology (e.g., open
boundary or closed boxes, single or multiple boxes etc). This
in fact depends on the different ways that the line Ae + 1 and
the graph of G(¢) may intersect. In Fig. 6, we illustrate this by
connecting the color of the curve with the respective resulting
transmission function.

Finally, calculating the currents for the parameters (A, 1)
where these qualitative changes can occur leads us to

boundaries in the /-J plane of regions inside of which the
boxcars have a given qualitative shape. Several examples are
shown in Fig. 7: (a)—(c) corresponds to wu; = ug; (d)—(f) to
T; = Ty; and (g)—(k) to a bias in both affinities. In these graphs
the regions corresponding to each possible boxcar topology
are represented by different colors in Figs. 7(a), 7(d) and 7(g).

The largest number of boxcars we have been able to find is
3, as in Fig. 7(j). This is related to the type of constraints we
are imposing. If the variance of some other current is studied,
or if additional linear constraints are imposed (e.g., in the case
of spin-dependent transport channels), a more complex boxcar
topology can in principle occur.

As a more concrete example, we can once again consider
the double quantum dots and ask ourselves what transmission
functions would yield the same currents with optimal variance
and in the presence of the same gradients. Since we had
Br = Br = B and ug = —ur = §,/2, this scenario is located
exactly at the boundary between the gray and cyan regions in
Fig. 7(d). The optimal transmission function is found to be a
single boxcar of the form [—a/2, a/2] [48]. For boxcars of
this form, it is actually possible to determine the optimal Fano
factor Fopy = Aiop[ /|| analytically, by directly computing the
integrals in Eqgs. (3) and (5). The result is Fop = 2(1 — fp —
SR)/n fr(1 — fR)fL(1 — fo)l, where fr&) = fLw(a/2) are
the Fermi-Dirac functions of each bath, evaluated at the left
(right)-end of the boxcar.

VII. DISCUSSION

In this paper, we have provided a definitive answer to
the question of TUR violations in noninteracting quantum
thermoelectrics. We showed that, beyond linear response, no
bound exists which relate A% only to I and o; instead, the
trade-off relation involving these quantities becomes depen-
dent on the system parameters. Our approach addresses this
issue by determining what is the optimal process; i.e., out of
all possible processes allowed in Nature, which one yields the
smallest possible variance for a fixed / and o? We believe
this represents a very insightful question. First, it yields more
general bounds, not necessarily related only to / and o. And
second, and most importantly, it actually tells us which pro-
cess is the optimal one.

Recently, there has been growing interest in this kind of
approach. Irrespective of whether or not achieving the optimal
process is easy, knowing what it is provides a benchmark

5l(a) least efficient 1 (b) 1.57(d) 1 (e) 1.41(9) 1 (h) 1 (i)
0.5 1.0
3 1 0.8
52 -10 ¢ 10 - 0.0 0 ¢ 10 ~o06 -5 ¢ 5 -10¢ 10
1 0.5 ® 04 3 [
T -1.0 0.2 L9/ 7
Olmost efficient -15 0.0 |
-05 (} 0.5 -10 c 10 0 11 2 -10 c 10 -0.5 7 0.0 -10 810 06 10

FIG. 7. Examples of possible boxcar configurations. The large plots represent the allowed values of I and J for different sets
(T,, T, 11, itr), With the colors separating regions where the boxcars are topologically different (see text). The small plots are examples
of optimal boxcars in different regions. [(a)—(c)] (Ty, Tg, i1, ur) = (2, 1,0,0). [(D)-D] (1, 1, —1, 1). [(2)—-(Kk)] (1,0.2,0.1,0.6).
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which must be satisfied by any other process. For instance,
Ref. [49] determined the probability distribution maximizing
work extraction in the single shot scenario. This was later
studied experimentally in [50], which performed a process
that was not exactly optimal, but got extremely close.

The design of transmission functions in quantum ther-
moelectrics is a relevant technological problem. Our results
introduce fluctuations as a new ingredient to the mix. It pro-
vides, to our knowledge, the only known route for designing
transmission functions with target power and efficiency, but
also minimizing fluctuations.
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APPENDIX A: PROOF OF THEOREMS 1 AND 2

The problem consists in minimizing the variance A?
[Eq. (3)] subject to a set of linear (in 7°) constraints; in our
case, fixed I and J. Formally, this may be written as the
following mathematical optimization problem:

Minimize / ~ F@)BX) — f(x)?y(x)’dx, subject to

/ f@aix)dx=¢;, i=1,...,n and 0 f(x) <1VxeR.

(AD)

This is a concave functional of f(x), which therefore requires
specific methods in order to be tackled.

In what follows, we start by fixing the necessary notations
and definitions employed throughout this Supplementary Ma-
terial. The proofs of Theorems 1 and 2 are then given in
Secs. A2 and A 3, respectively. A series of additional remarks
and details are finally provided in Appendix Sec. B.

1. Notations, definitions, and standing hypotheses

To make things precise, we make the following hypothesis
and definitions. N

(I) We will denote by R the set of functions f: R — R
that are bounded and such that for every compact interval
[a, b], f has only finitely many discontinuities in [a, b]. Fur-
thermore, we will denote by R the subset of R where Im(f) C
[0,11.0 < f(x) < 1V -

) «;, B, and y will always denote functions in R, such

that
/Oo|a,~(x)|dx, /oo|/3(x)|dx and /Ooy(x)zdx

o0 o0 oo

are all finite and such that «;(x) # 0, B8(x) # 0, and y (x) # 0
almost everywhere.

(IIT) We define the following functionals acting on func-
tions in R:

Cilfl= /OO faix)dx, i=1,...,n,
Qlfl= / FEOBE) — fx)*y (x)dx,
L1f) = f FOIBG) — y (D). and

Blf]= / Y2 f)(1 = f(x))dx.

(

The functionals C; are the ones that give us the constraints
in (A1), while Q is the one to be optimized. As we will see
further on, the functional £ can be regarded as a linearized
version of Q. Finally, B[ f] can be used as a measure of how
far f is from being a boxcar.

(IV) We will be using the following jargon from optimiza-
tion theory [43,44].

(i) A feasible point (function) of an optimization prob-
lem is a point (function) that obeys all the constraints.

(i) The feasible region is the set of all feasible points
(functions).

(iii)) The optimal value is the value of the desired ex-
tremum.

(iv) An optimal point (function) is a feasible point
(function) that attains the desired extremum.

(v) In an optimization problem, the function/quantity
we want to either minimize or maximize is called the
objective function.

(V) The feasible region for the problem (A1) will be de-
noted F:

F = {f € Rsuch that C;i[f] = ¢; V i}.

(VI) We will denote by Q and L the optimal values mini-
mizing Q and L respectively, given the constraints C;:

Q= }rel?er[f] and L= }Q;L[f]'

Note that the hypothesis made about 8 and y imply that Q
and L must be finite when F # @.

(VII) We will denote by D(F') the set of discontinuities of
a function F : R — R.

(VIII) Finally, we recall the definition of oscillation of a
function f in an interval (as used in Analysis):

ws(l) = sup f&) — inf f(x).
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FIG. 8. A possible partition for a function f in R. The interval
[a, b] being considered is [—5, 5] (we are ignoring f outside of this
interval).

2. Proof of Theorem 1

We start by proving Theorem 1.

Theorem 1. The transmission function 7 (¢) which mini-
mizes A% [Eq. (5)] for any number of linear constraints is a
collection of boxcars, with 7 (¢) being either O or 1; that is,

Topi(€) = Y _ 0(e — an)d(b; — ),

where 0(x) is the Heaviside function and a;, b; € [—00, +00]
are the boxcars boundary points that are fixed by the linear
constraints in question.

This will actually be accomplished by proving the follow-
ing statement (using the notations we just defined):

If f € # is such that Q[f] < Q + 6, then B[f] < 5. (A2)

Proof. As a first step we will show that if f € ¥, then for
all ¢ > O there exist g, h € ¥ such that Q[g] < Q[f], L[h] <
L[f]and B[gl], Blh] < ¢. To see this, let us consider n > 0, an
arbitrary positive number and [a, b] a compact interval. Since
f €R, then D(f)N|a,b] is finite and there exist D (with
D = |D(f)Nla, b]|) open intervals Iy, ..., Ip, all of which
have measures less than n and such that if 7 = UiI,-, then
D(f)N[a, b] € I.Asaconsequence f has no discontinuities
on J = [a, b] \ I. As such, every point x € J has an open
interval N, U, containing it, such that the oscillation of f in
thisinterval, w ¢ (Ny)wr(Uy) is less than 5. Since the N, U, form
an open cover of J and J is compact, then there exists a
subcover that is finite: My, ..., Mc.

Let us consider a partition IT of the interval [a, b], such
that all the endpoints of the [; and the M, intervals that lie in
[a, b] are included and none of the subintervals has a measure
larger than n (see Fig. 8 for an illustration of such partition).
We will denote by J; the N open subintervals of IT such that
ws < n and by K; the remaining ones. Note that the measure
of the union of the J; must be at least » — a — Dn and hence
the measure for the union of the K; is at most D).

We then define the constants

fl.(_) = inf f(x), fiH’) =sup f(x), and
xeJ; x€eJ;
mi=1—f 4 £,

the integrals
| o
J.

J

ai, j
by = — / FOBO + (F) =27y (0P )dx,
Jj
e =my [ 0+ 2017 = penywiia
Jj

dj = m? /; y(x)zdx,

J

= - [J FOB@ — y 0P,

¢ =m; f, (B(x) — y (x)*)dx,

and the functions

(=)

-/ iAi

e A
Jfx)

It follows that if 0 < A; < 1V, then F;, € R and we also have

CilE]l=¢i + Zai,j(mjkj - fj(_)),
J

ifx € J;
otherwise’

J

QRI=QIf1+ Y (bj+cjh;j—d;3?) and
J

LIB] = LIf14 ) (¥ + ).
Jj

Furthermore, if u; = £'/m; for every i such that m; # 0 (u;
can be any value in [0,1] if m; = 0), then we have F,, = f.
Consider then the following concave programming problems.

Minimize

Z(bj—f‘cj‘)\j —

J
Zai’j(mjxj—f;”):o and 0< A <1V
J

d j)&) subject to the constraints
(A3)
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and

Minimize

Z(b’j + ;) subject to the constraints

J
D aijmp; = fi7)=0 and 0<i<1Vi
j

(A4)

Since F,, = f, then (1, ..., uy) is a feasible point for
both (A3) and (A4) corresponding in both cases to a value
0 for the objective function. As a consequence, if v =
(vi,...,vy) and o = (o1, ...,0yN) are optimal points for
(A3) and (A4), respectively, it follows that C;[F,] = C;[F,] =
¢;, while Q[F,] < Q[f] and L[F,] < L[f]. So we need to
show that we can choose n and [a, b] in such a way that
BF,], B[F,] < &.In what follows, £ means either v or o (the
argument is identical). To see why we can make B[F;] < ¢,
note that in both cases the feasible region R will be the inter-
section of a hypercube [0, 1]¥ and n hyperplanes defining the
linear constraints. Since there is always an extremal point of
the feasible region where the optimum of a concave problem
is attained [51] (an intuitive argument for this was provided in
the main text), then one needs only to look for the extremal
points of R. Since R is a polytope, the extremal points are the
vertexes, which in this case are all points where at least N — n
coordinates are either O or 1, implying that & has atleast N — n
coordinates that are either 0 or 1 (see Fig. 9 for an illustration).

In turn, this implies that

(1) ifx € Jjand § =0, then 0 < Fz(x) < 13

(ii) ifxeJiand§ =1,then1 —n < Fz(x) < 1;

(iii) if x € J; but & # 0, 1, then we can only say 0 <
F(x) <1
Assuming n < 1/2, it follows that

BIF] = / Y (0)*F: (x)(1 — F (x))dx

B
! 2 Bs

H

FIG. 9. The intersection of the hypercube [0,1]* and the
hyperplane x + 2y — z + w = 3/2 embedded in 3 dimensions. The
vertex list of this polytope is A = (0,3/4,0,0), B= (0,1, 1/2,0),
C=(/1,10), D=(1,3%4,1,0), E=(1,1/4,0,0), F=
0,1,1,12), G=(0,Y4,0,1), H=1(0,3%4,1,1), I =(1, 14,1, 1),
J=(1,0,12,1), K=(/,00,1), and L=(1,0,0,12). An
important point is that in all vertices at most one coordinate is
different from O or 1, corresponding to the single hyperplane used.

(

where we simply broke the integral over different intervals.
Since the integral | _Oooo ¥ (x)%dx is finite (from our hypotheses)
and 0 < F:(x)(1 — Fz(x)) < 1, then it is trivial that we can
choose [a, b] such that B; < ¢/3 by choosing a sufficiently
large interval. Since the measure of |, K; is at most Dy and
y (x)? is bounded (again from our hypotheses), then one can
easily bound B;:

By=>) /K y () F (x)(1 — Fe(x))dx

gZ/ I'dx < DyT,
i K

where T is any upper bound for y (x)>. So we can take B, <
¢/3 by choosing a sufficiently small n (namely n < ¢/3pr).
Finally, 85 can be bounded in a similar way, because if n < 1/2
and x € J; (where & = Oor 1), then F (x)(1 — Fz(x)) < n(1 —
n) < n. Furthermore, the measure of the J; intervals where
& # 0,1 is at most nn. So

By=Y /J y (X Fe (x)(1 — F (x))dx
j J

= > /, Y (0)*Fe (x)(1 — Fe(x))dx
J J

g=0orl

+ Z /, Y (0)*Fe (x)(1 — Fe(x))dx
j J

£7#0,1
< Y /Fndx—i— Zfr‘dx
g j o
g=0or1 40,1

<I'mb—a+n).

So we can take B3 < ¢/3 by making n sufficiently small (n <
¢/3r(b—a+n)). It follows that by taking [a, b] large enough and
n < min{!/2, ¢/3pr, ¢/3r(-a+n)} we get B[Fz] < e (so g=F,
and h = F;). The interpretation of this is that the solutions
of the optimization problems (A3) and (A4) lead to functions
F, that obey the same constraints as f, while having a better
objective (in the interpretation of the main paper, F; is a
transmission function with the same currents but a smaller
variance) and being closer to a boxcar function (because of
the structure of the solution). This is illustrated in Fig. 10.
The second step in the proof is that this implies that Q =
L. Let 8, & > 0 and let u € F be such that L[u] < L+ 8. By
what we just proved, there exists U € ¥ such that L[U] <
Llu] <L+ 6and B[U] < &. We now call attention to the fact
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FIG. 10. Starting with the function f and the partition in Fig. 8, we consider a hypothetical solution for a problem with 2 constraints. In
light gray, we have the intervals corresponding to A; = 1, in dark gray, the intervals corresponding to A; = 0 and in white for X; # 0, 1 (there
are at most 2 such intervals, since there are only 2 constraints). To the left, we have the initial function f and to the right, the optimized function

F, that is clearly closer to a boxcar collection.

that Q = L + B, so we have
Q<<QUI=LIUI+8BUI<L+5+e.

Since this is true for any 8, & > 0 it implies Q < L. On the
other hand, if v € ¥ is such that Q[v] < Q + 8, then there
exists V € ¥ such that Q[V] < Q[v] < Q+ § and B[V] < &.
So

LSLIVI=QIVI-8VI<Q+$

because B[V] > 0. Once again, since this is true for any §, ¢ >
0 it implies L < Q and hence that L = Q.

This leads us to the last step of the proof. Let ¢ € F be
such that Q[¢] < Q + §, then we have

LI¢] + Blo) <Q+8 = Blp] <8 +Q— LIg]
—5+L— Lp] <.

[

What we proved here is an actual proof of the statement

in the main text, because it means that as we consider trans-

mission functions that are closer and closer to being optimal

(Q[7] — Q) we will be taking § — 0 and hence these trans-

mission functions are getting closer and closer to being a

boxcar (B[7] — 0). In particular, if 7~ is an optimal function,

then Q[7] = Q implying that Q[7] < Q + § forall § > 0, so

B[7] < 4 in this case would imply that B[7 ] = 0 and hence
that 7~ is a boxcar almost everywhere.

3. Proof of Theorem 2

‘We now move our attention to the second theorem stated in
the main text, namely

Theorem 2. The position of the optimal boxcars is deter-
mined by the regions in energy for which

g(e) < (ke +n)Af(e),

where A and n are Lagrange multipliers introduced to fix /
and J.

Proof. Using Theorem 1, it follows from Eqs. (2) and (3)
of the main text that, for a transmission function 7~ that is

optimal we must have

b;
Hanbiebn =Y [ afee,

b
J(al,bl,...,bN)=Z/ Af(e)ede and

b;
Af oplar bi, ... by) = Z/ gle)de,

where, recall, Af(e)= fr(e)— fr(e) and g(e)=
fr(l — fo)+ fr(1 — fr). So if we consider a Lagrangian
L(ar, by, ... byio.n) = A2 o + AU — o) + n(I — ),
then the extrema are solutions of the system

gla;) = (ha; + n)Af(a;)
g(bi) = (Ab; + A f(b)
Har. by, ... by) = Iy
J(ay, by, ...,by) =Jp
g <bh<aa<b<...<ay < by.

As such we can further determine that the endpoints of the
boxcar predicted in Theorem 1 obey g(€) = (Ae + n)Af(e).
However, this still does not tell us what are the intervals that
constitute the actual optimal boxcar. To find this out, let us
consider first the values of the multipliers (A*, n*) for which
the optimal boxcar is attained and let IT be the partition of the
line created by the solutions in € to g(€) = (A*e + n*)Af(e).
Exploring the fact that Q = L (as seen in the proof for The-
orem 1), we can then consider the problem of minimizing
L for a transmission function in R that is constant on the
intervals in IT (so that it is piecewise constant) and satisfies
the constraints for / and J. This optimization problem would
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read:

Minimize

M

i=1

ZA,-'L’,- subject to the constraints

M M
0 S Ti g 1, ZB,"C,' = I() and ZC[T,’ = J(),
i=1 i=1

(A5)

where

A,-:[ g(e)de, B[:/ Af(e)de, C;:/eAf(e)de.
TI; I; I;

and 1, ..

., Iy are the intervals in I1. By construction there is an optimal solution where the t; (the value of the transmission

function in ;) are either 0 or 1. Examining the Karush—Kuhn—Tucker (KKT) conditions [43,44] of the problem (A5) we get

x,yi 20, x(—1)=y71=0

and A;+ (x; —y)—A"C;—n*B; =0,

for i=1,..., M, (A6)

where the x; and y; are auxiliary (slack) variables.
It is easy to show that a consequence of (A6) is that

;=0=A,—A"C;—n™B; >0 and
r,-:l:>A,-—)»*C,-—r;*B,-<0.

Noticing that

Ai —XCi—n"Bi = / g(e) — (W"e +n*)Af(e)de,
and that by hypothesis g(e) — (A*e + n*)Af(e) doesn’t
change signs inside of 7, this implies that the optimal boxcar
(which is the one satisfying the KKT conditions) must be the
one determined by:

gle) — (We +n")Af(e) <0,

concluding the proof. ]

APPENDIX B: ADDITIONAL REMARKS

1. Changes in the boxcar configurations

As was seen in the main text, a variety of different boxcar
configurations are possible (see, for example, Fig. 7). Since
the endpoints of the boxcars are given by the solutions of
g(x) = (Ax + n)Af(x), then the implicit function theorem
implies that these endpoints can only change continuously,
except for the cases where the endpoint corresponds to a
solution with multiplicity higher than 1 or to a solution com-
ing from +oo. What this means is that these two extreme
cases correspond to the situations where the configuration can
change.

More concretely, z is a solution of g(x) = (Ax + n)Af(x)
with multiplicity higher than 1 iff z is a root of G(x) — (Ax +
n) with multiplicity higher than 1 (where G = 8/ay), which is
equivalent to A = G'(z), n = G(z) — zG' (). This corresponds
to the situations where boxcars merge or split, as well as the
situations where boxcars pop in and out of existence at finite
energies (see Figs. 11 and 12).

The situations where solutions emerge from 0o happen
when these solutions emerge for the equation G(x) = Ax + .

(

This happens when A = 0 as a consequence of the fact that
G converges to a finite value at x = 300 (this is illustrated in
Fig. 13).

2. Derivatives and monotonicity of (A, ) and J(A, )

When (%, n) ¢ B, then functions / and J can be differ-
entiated via the implicit function theorem. In this case,when
R(x; A, ) = g(x) — (Ax + n)A f(x) only has simple roots. Let
x* be such a root. Applying the implicit function theorem
yields

Xt Af(xY) and B_x* _XTAf(XY)

= =—_—"°_ (Bl
on  RG&*A,n) ar R A, 1)

The boxcar corresponding to (A, 1) is the indicator func-

tion of an union | J,[ax, bil, with a; < by < ... <a, <b,
(where we can potentially have a; = —oo or b, = 00). Define
T
3 P
+ =50 I 50
9
. T
N 50 & 50
<
T
=50 5 50 -50 g 50

FIG. 11. A transition between 2 configurations where a boxcar
pops into existence. The bottom blue line does not intersect the gray
region and hence corresponds to an empty boxcar (a possible solution
for/ = 0,J = 0) as seen in the top-right graph. Increasing » until the
line is tangent (red dotted) leads to a single point of intersection and
a boxcar concentrated in a single energy as seen in the center-right
graph. Further increasing n (green dashed) the intersection increases
and the corresponding boxcar widens (bottom-right graph).
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then
if ay = —oX0

otherwise

0
§ =\ af@r

R'(ar:hm)

Since I and J will be given by

and 9k = { Af(b)?

0 if by = o0

otherwise -

R (bi;h,m)

b; b;
I1= 2/ Af(e)de, J= Zf Af(e)ede,

then from Eq. (B1), one obtains
ol

ol aJ
o Ek Ok — &) T Ek (Oxby — &rar) an

Since qay; is always the leftmost end of one of the boxcar
pieces, then either @y = —00 or R'(ax; A, ) < 0. Similarly,
since the b; are rightmost ends, then either by = oo or
R'(bk; A, n) > 0. From their definition, this implies that ei-
ther @y = —o0 or & < 0 and either b; = oo or 6; > 0 (note
that this is a consequence of &5 never being an end-point
Theorem 2). So comparing with the expressions obtained, we
see that if (A, n) does not correspond to 7 =0 or 7 =1
everywhere (that is, R has at least one root), then we have

— >0 and
n

otherwise both derivatives are 0.

— >0,
oA

3. Continuity of A7 (I, J)

We can show that the optimal value of A?  is a continu-

ous function of the constrained currents / and J. This follows
from showing that L as a function of the constraint values ¢ is
a convex function (and that L = Q, as was shown in the proof
of Theorem 1).

Theorem 3. L(¢) is convex as a function of ¢.

Proof. Let ¥ (¢) denote the feasible set for a problem with
constraints ¢ and let ¢, ¢, such that ¥ (¢;), F (¢,) # & (and

( T ]

=1

= / -

W

~ T

L 50 & 50

) 1
T

50 - 50 -50 & 50

FIG. 12. A transition between two configurations where two
boxcars merge. The bottom blue line has as intersection with the
gray area that has two components (plus a third one for € < 0 that
we will ignore). This leads to a configuration that has a gap in the
transmission function (top-right graph). If we increase 1 (red dotted)
the intersection widens until the two components become arbitrarily
close and the gap arbitrarily narrow (center-right graph). Further
increasing 71 (green dashed) leads to the components becoming one
and the gap disappearing (bottom-right graph).

aJ
o3 (0t~ eaad).
k

(

hence such that L is finite). For all ¢ > 0, we can then find
functions fi, f> such that f; € F(¢;) and L[f;] < L(¢;) + &.
It follows that for every ¢ € [0, 1], we have F, = (¢f; + (1 —
1)) € F(tp + (1 —t)p,). Moreover,

LIS L@ +e and L[fo] < L(¢p)+ ¢ imply that
LIF] <tl(¢) + A —1)l(p2) +e = Litg + (1 — 1))
<

tL(¢1) + (1 —)L(¢2) + ¢,

and since this must hold for all ¢ > Og > 0, then it follows
that

Lt¢r + (1 —1)¢) < tL(¢1) + (1 —1)L(¢2),

implying convexity. [ ]
T
3 o T l
+ -50 ¢ 50
W
- T
— 50 & 50
o))
T8
-50 - 50 -500 0 50

€

FIG. 13. A transition between two configurations where solu-
tions at 0o emerge. For the fully horizontal line (red dotted) the
intersection with the gray region extends all the way to co and there
is no intersection for € < 0, leading to an infinite boxcar (center-right
graph). However, if we decrease A from O to a negative value (blue)
the intersection no longer extends all the way to oo, so now we have
a finite boxcar (top-right graph). On the other hand, increasing A to
a positive value (green dashed; keeps the intersection going all the
way to oo but also creates a new one for € < 0 (happening beyond
the scale of the graph to the left). This leads to a situation with two
boxcars each extending to co and —oo respectively (bottom-right
graph—to display the second boxcar we break the scale in €).
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