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In order to better understand the minimal ingredients for thermal rectification, we perform a detailed investiga-
tion of a simple spin chain, namely, the open XX model with a Lindblad dynamics involving global dissipators.
We use a Jordan-Wigner transformation to derive a mathematical formalism to compute the heat currents and
other properties of the steady state. We have rigorous results to prove the occurrence of thermal rectification
even for slightly asymmetrical chains. Interestingly, we describe cases where the rectification does not decay
to zero as we increase the system size, that is, the rectification remains finite in the thermodynamic limit. We
also describe some numerical results for more asymmetrical chains. The presence of thermal rectification in this
simple model indicates that the phenomenon is of general occurrence in quantum spin systems.
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I. INTRODUCTION

One of the fundamental issues of nonequilibrium statistical
physics is the derivation of transport laws from the underlying
microscopic dynamics. In particular, a theme of general in-
terest is the investigation of energy transport, which involves
two main mechanisms, the conduction by electricity and by
heat, issues, however, with quite different status in the lit-
erature. On the one hand, the success of modern electronics
since the invention of the transistor is well known, with huge
impact in our daily lives. On the other hand, we have seen
a slow progress of phononics, the counterpart of electronics
dedicated to the study and manipulation of heat current. Heat
analogs of electronic devices, such as transistors and gates,
have already been proposed [1], but the absence of a feasible
and efficient thermal diode, the basic ingredient of these de-
vices, makes considerable advancement difficult. A thermal
diode or thermal rectifier is a device in which heat has a
preferable direction to flow; more precisely, the magnitude
of the heat current changes as we invert the device between
two thermal baths. Thus, the first obvious ingredient for the
occurrence of rectification is the existence of an asymmetry in
the system.

The most usual models for the study of heat conduction in
insulating solids have been given, since Debye [2] and Peierls
[3], by chains of classical harmonic or anharmonic oscillators.
Unfortunately, in the more treatable harmonic version there
is no thermal rectification. Even for the harmonic classical
system with inner self-consistent stochastic reservoirs [4], the
absence of thermal rectification has been proved [5]. It is
interesting to recall that such a system obeys the Fourier law,
which does not hold in purely harmonic chains [6], showing
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that the inner reservoirs indeed represent some vestiges of
anharmonicity, which, however, are not enough for the occur-
rence of thermal rectification.

The search for the minimal ingredients sufficient to guar-
antee rectification is a fundamental and difficult problem in
transport theory. In this direction we recall the study of sim-
ple models, avoiding intricate details which may hide the
ingredients. For example, we recall the establishment of rec-
tification in Ref. [7], a toy model of alternating graded bars
and bullets. There it was shown that the existence of a local
temperature-dependent thermal conductivity together with the
graded structure ensures rectification.

Besides this recurrent study of classical oscillators and re-
lated models, it is important to stress the currently increasing
interest in the study of energy transport at the quantum scale,
motivated, e.g., by the emerging field of quantum thermody-
namics and advances allowing the manipulation of quantum
systems. In particular, there are recurrent investigations of
quantum spin models, which involve problems in connection
with different areas: condensed matter, cold atoms, quantum
information, etc.

In this direction, rectification in the boundary driven XXZ
spin- 1

2 model (with polarization at the edges) is shown in
Ref. [8] for the spin current in the case of a homogeneous
chain with asymmetrical external magnetic field, and it is
shown in Ref. [9] for the energy current in a graded chain.
We recall that the XXZ chains are archetypal models for
open quantum spin systems. Interestingly, Ref. [8] showed the
absence of spin rectification in a system with a zero anisotropy
parameter � (coefficient of σ z

j σ
z
j+1). For � �= 0, rectification

was observed. As the XXZ model can be mapped onto a
problem of bosons with creation and annihilation operators,
with quadratic terms and a quartic one proportional to � (the
Tonks-Girardeau model), the vanishing of rectification in the
absence of the quartic term is compared to the case of classical

2470-0045/2020/102(6)/062146(9) 062146-1 ©2020 American Physical Society

https://orcid.org/0000-0002-7389-1962
https://orcid.org/0000-0003-2402-9644
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.062146&domain=pdf&date_stamp=2020-12-28
https://doi.org/10.1103/PhysRevE.102.062146


SILVA, LANDI, DRUMOND, AND PEREIRA PHYSICAL REVIEW E 102, 062146 (2020)

oscillators, where there is no rectification in the absence of
anharmonicity (given by terms of order 4 or higher in the
potential).

Anyway, heat rectification has been described in some
quadratic models with proper arrangements. For example, the
quantum Ising model is shown to rectify [10] if the intersite
interaction is long enough to link the first site (connected to
the left bath) to the last one (connected to the right bath).
Otherwise, there is no rectification in such a model.

In the present work, searching for simple quantum models
showing rectification, that is, aiming to shed some light on
the question of minimal ingredients necessary for the occur-
rence of heat rectification, we perform an analytical detailed
investigation of the XX spin- 1

2 model with some specific
dissipators and nearest-neighbor interactions only. Even for a
slight asymmetric chain, we prove the occurrence of thermal
rectification by performing analytical computations. Interest-
ingly, we describe cases of heat rectification which does not
decay to zero as the system size increases, that is, it remains fi-
nite in the thermodynamic limit. We still show the rectification
for more asymmetrical chains by using numerical techniques.
The presence of heat rectification in this simple quadratic
quantum spin model, i.e., in a simple system without intricate
interactions, indicates that it is a ubiquitous phenomenon in
the quantum context: For the occurrence of thermal rectifi-
cation, it seems that we need only asymmetry in the system
and a thermal conductivity (or inner parameters) depending
on temperature and so parameters which change as we invert
the baths leading to rectification.

The rest of the paper is organized as follows. In Sec. II
we introduce the model, the Jordan-Wigner transformation,
and some initial results. In Sec. III we describe the currents
and some properties. In Sec. IV analytical results for the heat
rectification are shown. Section V presents some numerical
results. We summarize in Sec. VI.

II. MODEL AND PRELIMINARY DETAILS

Here we consider a one-dimensional quantum XX spin
chain with N sites, described by the Hamiltonian

H =
N∑

j=1

h j

2
σ z

j + 1

2

N−1∑
j=1

α j
(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

)
, (1)

where the σ i
j are the usual Pauli matrices, h j is the external

magnetic field acting on site j, and α j is the exchange inter-
action between spins j and j + 1. The rectification will be
directly associated with the asymmetry of the coefficients hj

and α j with respect to the left-right reflection of the chain.
These spin chains are coupled on the first and last sites

to thermal reservoirs and kept at temperatures TL and TR, re-
spectively. They are modeled by an infinite number of bosonic
degrees of freedom given by the Hamiltonian

Hi
B =

∑
l

�i,l a
†
i,l ai,l , (2)

where ai,l is a set of independent bosonic operators and �i,l

are the corresponding frequencies, which we assume to take
on a quasicontinuum of values in the interval [0,∞). More-
over, the interactions with the first and last sites are assumed

to take the form

HL
I = σ x

1

∑
i

gi(a
†
L,i + aL,i ),

HR
I = σ x

N

∑
i

gi(a
†
R,i + aR,i ).

(3)

In order to proceed with the study, we recast the problem as
a Lindblad master equation in the weak-coupling regime [11],
describing the time evolution of the system’s density matrix
ρ by

dρ

dt
= −i[H, ρ] + DL + DR, (4)

where DL and DR are the Lindblad dissipators associated with
the baths. It is possible to derive them from Eq. (3) using the
method of eigenoperators [11].

Consider first only a single system-bath interaction, with
Hamiltonian HI = A ⊗ B, where A and B are Hamiltonian
operators of the system and the bath, respectively. We define

�(ω) =
∫ ∞

−∞
eiωt 〈B(t )B(0)〉dt

=
∫ ∞

−∞
eiωt tr

{
eiHBt Be−iHBt B

e−HB/T

Z

}
dt, (5)

that is, the Fourier transform of the bath correlations, evalu-
ated for a bath thermal state, with temperature T and partition
function Z = tr(e−HB/T ).

Let us define ε to be the eigenenergies of H and 
ε the
corresponding projection operators onto the subspace corre-
sponding to ε. From the weak-coupling-limit derivation [11]
we define the eigenoperator corresponding to the bath cou-
pling A as

A(ω) =
∑
ε,ε′


εA
ε′δε−ε′,ω (6)

and they satisfy

[H, A(ω)] = −ωA(ω), A†(ω) = A(−ω). (7)

In terms of these eigenoperators, it can be shown [11] that the
Lindblad dissipator associated with the microscopic interac-
tion HI = A ⊗ B will be, in the rotation-wave approximation,

D(ρ) =
∑

ω

�(ω)[A(ω)ρA†(ω) − 1

2
{A†(ω)A(ω), ρ}]. (8)

This method therefore allows us to write down the corre-
sponding dissipator. All it requires is sufficient knowledge of
the eigenstates of H in order to compute the A(ω).

Let us now evaluate �(ω) in Eq. (5) for the case of a
typical bath-interaction operator B = ∑

l gl (a
†
l + al ), which

appear in Eq. (3). Using the fact that 〈a†
l al ′ 〉 = δl,l ′n(�l ),

where n(α) = (eα/T − 1)−1 is the Bose-Einstein distribution,
and carrying out the Fourier transform in (5), we obtain

�(ω) = 2π
∑

l

g2
l {[1 + n(�l )]δ(ω − �l ) + n(�l )δ(ω + �l )}

=
∫ ∞

0
d� G(�){[1 + n(�l )]δ(ω − �l )

+ n(�l )δ(ω + �l )}.
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In the last line of this equation, the sum was transformed into
an integral, assuming that the bath frequencies �l take on a
continuum of values. The function G(�) corresponds to 2πg2

l
times any additional factors that come from the transition from
a sum to an integral over �l (which do not depend on T ). To
simplify, we henceforth assume that G(�) = γ , where γ is a
constant. We have then

�(ω) =
{
γ [1 + n(ω)] for ω > 0
γ n(−ω) for ω < 0.

(9)

A comment is pertinent here. There are other possible spectral
densities, for example, the Ohmic case G(�) = �. A different
density will change the forthcoming computation, but the
main result, i.e., the occurrence of rectification, will remain,
since, as we will see later, it is essentially due to the existence
of asymmetry and temperature-dependent parameters in the
system (which change as we invert the baths).

This result is so far general and valid for any type of
bath-coupling operator A(ω). Now we must specialize it for
the case A = σ x

1 and A = σ x
N , which are the coupling operators

appearing in Eq. (3). This means that we must find the opera-
tor A and to do so we need to know the spectral decomposition
of H .

Now, to diagonalize H , we use a fermionic representation
through the Jordan-Wigner transformation [12,13] given by

ηl = Qlσ
−
l , (10)

where the operators Ql are defined by Ql = ∏l−1
j=1(−σ z

j ).
These operators satisfy the fermionic algebra

{η†
l , ηl ′ } = δl,l ′ , {ηl , ηl ′ } = 0. (11)

We first transform the Hamiltonian in terms of σ+
l and σ−

l
operators given by

σ+
l = 1

2

(
σ x

l + iσ y
l

)
,

σ−
l = 1

2

(
σ x

l − iσ y
l

)
.

(12)

The Hamiltonian in (1) becomes then

H =
N∑

j=1

h j

2

(
σ+

j σ−
j − 1

2

)
+ 1

2

N−1∑
j=1

α j (σ
+
j σ−

j+1 + σ−
j σ+

j+1).

(13)
Using the Jordan-Wigner transformation (10), we can rewrite
(13) in a quadratic form

H =
N∑

j=1

h jη
†
jη j +

N−1∑
j=1

α j (η
†
jη j+1 + η

†
j+1η j )

=
∑
n,m

Wn,mη†
nηm, (14)

where Wn,m is a matrix with entries Wj, j = h j and Wj, j+1 =
Wj+1, j = α j .

In order to put H in diagonal form, we first diagonalize the
matrix W . Since it is symmetric, it may be diagonalized by an
orthogonal transformation Sn,k (S†S = 1) as

Wn,m =
N∑

k=1

εkSn,kSm,k . (15)

The actual form of the eigenvalues and eigenvectors will often
be complicated, as they depend on the specific choices of h j

and α j in (1), which are nonuniform. The eigenvector matri-
ces Sn,k will turn out to play an important role as effective
coupling constants in the global master equation [see, e.g.,
Eq. (33)].

Here we define a new set of fermionic operators

η̃ j =
N∑

k=1

S j,kηk, (16)

in terms of which Eq. (14) becomes

H =
N∑

k=1

εk η̃
†
k η̃k. (17)

Now that we know the diagonal structure of the Hamiltonian,
we have to find the operator in the dissipator (8) in terms of
the fermionic operators A(ω). We start with the left bath, so
A = σ x

1 . It is easy to see that using (10) and (16) we have

σ x
1 =

N∑
k=1

S−1
1,k (η̃†

k + η̃k ). (18)

We note that due to the diagonal structure in Eq. (17), it
follows that [H, η̃k] = −εk η̃k . Thus, η̃k and η̃

†
k are eigenop-

erators of H with allowed transition frequencies ω = εk and
ω = −εk , respectively. In this way, we can write the eigenop-
erator A(ω) as

A(ω) =
N∑

k=1

[
S−1

1,k (η̃kδεk ,ω + η̃
†
kδ−εk ,ω )

]
. (19)

The dissipator DL(ρ), of the left site, is then found from
Eq. (8),

DL(ρ) =
N∑

k=1

[
�(εk )

(
S−1

1,k

)2

(
η̃kρη̃

†
k − 1

2
{η̃†

k η̃k, ρ}
)

+ �(−εk )
(
S−1

1,k

)2

(
η̃

†
kρη̃k − 1

2
{η̃k η̃

†
k , ρ}

)]
. (20)

Finally, we substitute the expression for � using Eq. (9). In
order to do so, we must differentiate the cases where εk > 0
and εk < 0. We therefore write

DL(ρ) =
∑
εk>0

γ
(
S−1

1,k

)2
{

[1 + nL(εk )]

[
η̃kρη̃

†
k − 1

2
{η̃†

k η̃k, ρ}

+ nL(εk )

[
η̃

†
kρη̃k − 1

2
{η̃k η̃

†
k , ρ}

]}

+
∑
εk<0

γ
(
S−1

1,k

)2
{

nL(−εk )

[
η̃kρη̃

†
k − 1

2
{η̃†

k η̃k, ρ}
]

+ [1 + nL(−εk )]

[
η̃

†
kρη̃k − 1

2
{η̃k η̃

†
k , ρ}

]}
, (21)

where ni is the Bose-Einstein occupation, previously defined.
In Eq. (21) we see that the separation between positive and

negative energies is not good to work with. Instead, we may
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write the terms in a unified way by defining the Fermi-Dirac
occupation

fi,k = 1

eεk /Ti + 1
(22)

and the auxiliary function

χi,k = 2n(|εk|) + 1 = coth

( |εk|
2Ti

)
, (23)

which we note is always positive. Then the dissipator finally
becomes

DL(ρ) =
N∑

k=1

γ (S−1
1,k )2χL,k

{
[1 − fL,k]

[
η̃kρη̃

†
k − 1

2
{η̃†

k η̃k, ρ}
]

+ fL,k

[
η̃

†
kρη̃k − 1

2
{η̃k η̃

†
k , ρ}

]}
. (24)

Now we turn to the bath coupled to the last site N . Here the
relevant operator is A = σ x

N . In this case, using the Jordan-
Wigner transformation and the fact that η

†
jη j = σ+

j σ−
j , we

find

σ x
N = QN (η†

N + ηN ), (25)

where QN = ∏N−1
j=1 (−σ z

j ).
Now we define a new operator that counts the total number

of fermions

N =
N∑

i=1

η
†
i ηi =

N∑
i=1

σ+
i σ−

i =
N∑

i=1

η̃
†
i η̃i. (26)

Here we recall that the number of fermions in the system is
proportional to the magnetization in the spin representation.
The expression for σ x

N can be written as

σ x
N = eiπN e−iπη

†
N ηN (η†

N + ηN ). (27)
This expression can be simplified to

σ x
N = eiπN (ηN − η

†
N ). (28)

As before, using the expression (16), we have

σ x
N =

N∑
k=1

S−1
N,ke−iπN (η̃k − η̃

†
k ). (29)

Since [H,N ] = 0, it follows that S−1
N,keiπN η̃k is also

an eigenoperator with transition frequency ω = εk , whereas
S−1

N,k η̃
†
k eiπN is an eigenoperator with frequency ω = −εk . Thus

we can write the expression for A = σ x
N as

A(ω) =
N∑

k=1

S−1
N,k[eiπN η̃kδεk ,ω + η̃

†
k eiπN δ−εk ,ω]. (30)

Following the same previous steps, we can write the dissi-
pator DR(ρ) as

DR(ρ) =
N∑

k=1

γ
(
S−1

N,k

)2
χR,k

{
[1 − fR,k]

×
[
η̃keiπNρeiπN η̃

†
k − 1

2
{η̃†

k η̃k, ρ}
]

+ fR,k

[
η̃

†
k eiπNρeiπN η̃k − 1

2
{η̃k η̃

†
k , ρ}

]}
. (31)

The presence of the global operator e−iπN seems, at a first
glance, to complicate matters. However, for all the quantities
we consider here, due to the fact that e−2iπN = 1, that opera-
tor will be irrelevant. Henceforth, we define the values

gL,k = S−1
1,k, gR,k = S−1

N,k (32)

to simplify the notation.

III. PROPERTIES OF THE STEADY STATE

A. Occupation numbers

With Eq. (4), we may now study the behavior of observ-
ables such as 〈η̃†

k η̃k′ 〉. For the off-diagonal elements (k �= k′)
we find

d

dt
〈η̃†

k η̃k′ 〉 = −γ

2
(AL,k + AL,k′ + AR,k + AR,k′ )〈η̃†

k η̃k′ 〉,

where AL(R),k(k′ ) = gL(R),k(k′ )χL(R),k(k′ ). Here we see that the
term inside parentheses is always positive; consequently, we
conclude that 〈η̃†

k η̃k′ 〉 will relax exponentially toward zero and
therefore vanish at the steady state. Now for the diagonal
elements, again using Eq. (4), we find

d

dt
〈η̃†

k η̃k〉 = γ gL,kχL,k ( fL,k − 〈η̃†
k η̃k〉)

+ γ gR,kχR,k ( fR,k − 〈η̃†
k η̃k〉). (33)

With Eq. (33) we can see that, in the steady state, the occupa-
tions will converge to

〈η̃†
k η̃k〉 = gL,kχL,k fL,k + gR,kχR,k fR,k

gL,kχL,k + gR,kχR,k
. (34)

When TL = TR this reduces to 〈η̃†
k η̃k〉 = fk , as expected. Now

let us see what happens if the chain is subjected to a small
difference of temperature, given by TL = T + δT/2 and TR =
T − δT/2. Equation (34) reduces to

〈η̃†
k η̃k〉 � fk + δT

2

(
gL,k − gR,k

gL,k + gR,k

)
∂ fk

∂T
+ O(δT )2. (35)

If the chain is homogeneous then by symmetry gL,k = gR,k

and the first correction will be of order δT 2. This is expected
since, for a homogeneous chain, the perturbation should not
depend on the sign of δT . However, we see that, in general,
when we have an inhomogeneous chain, reversing the order
of the baths will change the occupation numbers.

With Eq. (23) we can analyze the behavior of the occu-
pations numbers. We can see that the relaxation in Eq. (33)
will occur with typical rates proportional to χi,k . We note
that this function diverges when the energy approaches zero.
Thus, the present model predicts that different modes of the
Hamiltonian will relax with different rates, the relaxation be-
ing faster the smaller the energy of the fermionic mode. This
fact is actually quite reasonable from a physical standpoint.
The energy εk of a fermionic mode represents the energy gap
that needs to be overcome in a thermal transition. Modes with
a small gap should experience a larger number of transitions
while they relax to equilibrium and therefore should relax
more quickly.
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B. Particle and energy current

Using Eq. (4) we can derive some expressions for the
energy and particle currents. In the fermionic representation,
the temperature unbalance between the two baths will lead to
a flow of particles along the chain. In the spin representation,
this is mapped into a flow of magnetization.

To evaluate the current of particles or magnetization, we
start with a conservation law for the time evolution of 〈N 〉.
Since [H,N ] = 0, it follows from Eq. (4) that

d

dt
〈N 〉 = tr{NDL(ρ)} + tr{NDR(ρ)}. (36)

The two terms on the right-hand side may be readily identi-
fied as the flow of particles from the system to each of the
reservoirs. In the steady state we have d〈N 〉/dt = 0 and both
fluxes will coincide. We then define

JN = tr{NDL(ρ)} = −tr{NDR(ρ)}, (37)

which is, we stress, a relation valid in the steady state.
Using Eq. (24) for the dissipator, we find that

JN =
N∑

k=1

γ gL,kχL,k[ fL,k − 〈η̃†
k η̃k′ 〉]. (38)

Substituting the occupation for the steady state, we have

JN =
N∑

k=1

γ
gL,kχL,kgR,kχR,k

gL,kχL,k + gR,kχR,k
( fL,k − fR,k ). (39)

We see that the current is essentially a sum of all occupa-
tion unbalance, weighted by certain functions. It is important
to note that these weights are temperature dependent. Pre-
cisely, we see that the current is nothing but a sum of currents
associated with each eigenmode of the system.

Now we can define the energy current doing the same steps
in terms of the conservation of 〈H〉. Its form will be analogous
to Eqs. (38) and (39), but each term now will be multiplied
by εk:

JE =
N∑

k=1

γ εk
gL,kχL,kgR,kχR,k

gL,kχL,k + gR,kχR,k
( fL,k − fR,k ). (40)

With the expression for the energy current, we can analyze
the occurrence of rectification in the system. First let us ana-
lyze the expression for the particle current given by Eq. (39).
For a small temperature gradient it becomes

JN � γ δT
N∑

k=1

gL,kgR,k

gL,k + gR,k
χk

∂ fk

∂T

+ γ δT 2
N∑

k=1

gL,kgR,k (gR,k − gL,k )

(gL,k + gR,k )2

∂χk

∂T

∂ fk

∂T
. (41)

When a system does not present rectification, the current
will be an odd function of δT . Here we see the presence of
a term proportional to δT 2, which will be the lowest-order
contribution to the rectification. Note that it will be nonzero
when gL,k �= gR,k .

We can write down these results more explicitly, using (22)
and (23). Finally, we define

JN = γ δT J1 + γ δT 2J2 + · · · , (42)

where

J1 =
N∑

k=1

gL,kgR,k

gL,k + gR,k

|εk|
2T 2

csch
(εk

T

)
(43)

and

J2 =
N∑

k=1

gL,kgR,k (gR,k − gL,k )

(gL,k + gR,k )2

εk|εk|
2T 4

csch2
(εk

T

)
. (44)

Here we note that J2 is the remaining term of O(�T ) for the
occurrence of thermal rectification. As we have an inhomoge-
neous chain, gL,k − gR,k �= 0.

IV. HEAT RECTIFICATION

With the expressions for the energy current, we can inves-
tigate the occurrence of thermal rectification in the XX chain.
We know from the first law of thermodynamics that the energy
current is given by the power current and the heat current

Ė = Ẇ +
∑

r

Q̇r, (45)

where r = L, R represents the index of the baths. From the
microscopic derivation for the Lindblad equation we can cal-
culate these quantities:

Ẇ (t ) = Tr{ḢS (t )ρS},
Q̇r (t ) = Tr{HS (t )Dr (ρS )}. (46)

We can see that our Hamiltonian is independent of time, so
no work can be done on the system and the energy current is
given by the heat current

Ė =
∑

r

Q̇r ≡ Q̇. (47)

These definitions are justified, for example, in [14].
According to Eq. (40), we have to calculate the eigen-

values and eigenvectors of the matrix associated with the
Hamiltonian to compute the heat current. That is, we have
to diagonalize an inhomogeneous tridiagonal matrix. The
need to introduce more complex asymmetries and interactions
makes any analytical treatment for this problem much more
difficult.

In order to simplify the interaction matrix and to find an
analytical solution, we consider a system subject to a pertur-
bation on the external magnetic field at the first and last sites.
The matrix W describing the interaction is given by

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h − α α 0 · · · 0 · · · 0

α h α
. . . 0 · · · 0

0 α h α 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 α h α 0
...

...
...

. . . α
. . . α

0 0 0 · · · 0 α h + α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (48)
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To be clear, the external magnetic field is given by h for the
internal sites i ∈ [2, N − 1]. Here α represents the interaction
between the neighbors that we assume to be constant and at
the first and last sites has a perturbation given by α, the same
value of the interaction between the sites. For this specific
matrix we have an analytical solution for the eigenvalues and
eigenvectors

εk = h + 2α cos

[
(2k − 1)π

2N

]
,

vk
j = sin

[
(2 j − 1)(2k − 1)π

4N

]
,

(49)

where k, j = 1, 2, . . . , N . All the details and the process of
diagonalization can be found in [15].

To proceed with the calculation, we need to normalize the
eigenvector. By using the geometric sum we obtain

vk
j =

√
2

N
sin

[
(2 j − 1)(2k − 1)π

4N

]
. (50)

Thus, the matrix S that diagonalizes the matrix W [Eq. (15)]
is given by

S j,k =
√

2

N
sin

[
(2 j − 1)(2k − 1)π

4N

]
. (51)

Since S is orthogonal, we can calculate the quantities given
by (32). After several manipulations we have

gL,k = 2

N
sin2

[
(2k − 1)π

4N

]
,

gR,k = 2

N
cos2

[
(2k − 1)π

4N

]
. (52)

Substituting (50) and (52) in the expression for the heat flux
(40), we arrive at

J = 2γ

N

N∑
k=1

[
sin2(δk ) cos2(δk )χL,kχR,k

cos2(δk )χL,k + sin2(δk )χR,k

]

× [h + 2α cos(2δk )]( fL,k − fR,k ), (53)

where δk = (2k−1)π
4N and JE ≡ J .

To investigate the occurrence of rectification we have to
compute the heat flux in the reversed bias. To compute these
values, we change the baths. This represents the exchange of
the temperatures T ′

L = TR and T ′
R = TL. According to (40) and

(53), the heat flow in the opposite direction is

Jr = −2γ

N

N∑
k=1

[
sin2(δk ) cos2(δk )χL,kχR,k

cos2(δk )χR,k + sin2(δk )χL,k

]

× [h + 2α cos(2δk )]( fL,k − fR,k ), (54)

where the index r means the reversed flow.
As we can see, the expressions (53) and (54) have a com-

plex dependence on the temperature, given by χL(R),k , and the
analytical treatment from these expressions is a complicated
task. In order to simplify the analytical calculations, we make
some additional assumptions.

As we can see in the expression (49) for the eigenvalues,
we can have a spectrum that is entirely positive by taking h >

0, α > 0, and h > 2α. Also, regarding the baths, we take our
system subjected to a large temperature gradient. Namely, we
consider the limits TL → ∞ and TR → 0.

From these assumptions, we have to analyze the behavior
of (22) and (23) to calculate the heat flux. According to the
Fermi-Dirac occupation, we can see that, when TL → ∞ and
TR → 0,

fL,k → 1
2 ,

fR,k → 0.
(55)

Carrying out the same analysis for χL,k and χR,k given by (23),
we have

χL,k → ∞,

χR,k → 1.
(56)

Replacing these results in the expression for the heat flow (53)
and the reversed heat flow (54), we obtain

J = γ

N

N∑
k=1

(
h + 2α cos

[
(2k − 1)π

2N

])
cos2

[
(2k − 1)π

4N

]
,

Jr =− γ

N

N∑
k=1

(
h + 2α cos

[
(2k − 1)π

2N

])
sin2

[
(2k − 1)π

4N

]
.

(57)
These fluxes can be calculated by using the geometric sum.
After some algebraic manipulations we find

J = γ (h + α)

2
,

Jr = −γ (h − α)

2
,

(58)

with α �= 0 [15].1

As the values are different (J �= Jr), we have the existence
of thermal rectification. By (58) we can see that we have a
ballistic transport, that is, the heat flow does not depend on the
size of the chain. It is interesting to note that, in such a regime,
the difference between the magnitude of the flows depends
only on α. Consequently, we note an important result: The
rectification factor remains finite when N → ∞.

We can perform the same analysis for a negative spectrum.
Now we consider h < 0, α > 0, and |h| > 2α. The procedure
is the same as we previously described,

J =− γ

N

N∑
k=1

(
h+2α cos

[
(2k − 1)π

2N

])(
cos2

[
(2k − 1)π

4N

])
,

Jr = γ

N

N∑
k=1

(
h + 2α cos

[
(2k − 1)π

2N

])(
sin2

[
(2k − 1)π

4N

])
.

(59)

1As stressed, we cannot take α = 0 in the expressions for the
rectification (derived for nonzero α). In the case of α = 0, we have
a homogeneous magnetic field and no interactions between the sites,
and so we need to go back to Eq. (40) for the energy flux. For this
case, the eigenvectors of the matrix interaction W are equal to the
canonical eigenvectors, and so gL,k and gR,k are equal to 0 or 1,
depending on k. Analyzing Eq. (39), with this behavior in k, we find
JE = 0, as expected.
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The heat flows are given by

J = γ (|h| − α)

2
,

Jr = −γ (|h| + α)

2
.

(60)

As expected, we have thermal rectification. In more asymmet-
ric systems we expect the improvement of the rectification.

Now we analyze the regime of strong interaction between
the sites. If we take α large enough, we split the energy
spectrum into positive and negative values. More specifically,
for N even, if we assume

α >
h

2

∣∣∣∣sec

[
(N + 1)π

2N

]∣∣∣∣,
the spectrum is divided into N/2 positive values and N/2
negative ones. In the regime of a large temperature gradient
in (55) and (56), we have the expression for the heat current

J = γ

2

[
N/2∑
k=1

εkgR,k −
N∑

k=N/2+1

εkgR,k

]
, (61)

where gR,k is given by (52). Carrying out the manipulations,
we find the heat current

J = γ

N
csc

( π

2N

)[
α + h

2

]
. (62)

For the heat current in the reversed bias, we have the expres-
sion

Jr = −γ

2

[
N/2∑
k=1

εkgL,k −
N∑

k=N/2+1

εkgL,k

]
. (63)

Performing the algebraic manipulations, we find

Jr = − γ

N
csc

( π

2N

)[
α − h

2

]
. (64)

Again, we have thermal rectification, and comparing with the
result obtained in (58), we see that, for strong interaction α,
the difference between the magnitude of the flows depends
now on the magnetic field h. Moreover, note that, again, we
have ballistic transport of heat, since as N → ∞ the currents
converge to nonzero values [ γ

N csc( π
2N ) → 2γ

π
], and again we

have a finite rectification factor in the thermodynamic limit.
If we define the rectification factor

R = J + Jr

min(J, |Jr |) , (65)

we can write, for (58),

R = 2α

h − α

and for (62) with (64),

R = h

α − h/2
.

In the next section we perform some numerical analysis
to investigate the behavior of rectification in some interesting
and more intricate cases using (65) for the rectification factor.

FIG. 1. Rectification profile for a junction of external magnetic
fields (66) composed of 50 sites. The difference in temperature is
given by �T = TL − TR = 5 and the interaction is αi = 1.

V. NUMERICAL ANALYSIS

In this section we perform some numerical analysis using
the expressions for the heat flow given by (40). We compute
the exact eigenvalues and the eigenvectors for an inhomoge-
neous matrix that represents the interaction of our system (14).
We investigate different systems, for example, models given
by the sequential coupling of parts with different interactions
as the usual proposal of thermal diodes [1,16,17] or graded
systems [7,9], which are other recurrent models in this field.

We perform the first analysis by varying the external mag-
netic field and keeping fixed the interaction between the sites
of the chain (αi = 1). We consider a system subjected to two
different external magnetic fields

hi = h1, i ∈ [1, . . . , N/2],

hi = h2, i ∈ [N/2 + 1, . . . , N].
(66)

The rectification profile for a system of 50 sites is depicted
in Fig. 1. If we make the interaction between the sites more
intense, we see more nuances in the rectification profile and
also a decrease in rectification intensity, as presented in Fig. 2.

FIG. 2. Rectification profile for a junction of external magnetic
fields (66) composed of 50 sites. The difference in temperature is
given by �T = TL − TR = 5 and the interaction is αi = 5.
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FIG. 3. Rectification profile for a junction of two interactions
(67). The system is composed of 50 sites and the difference in tem-
perature is given by �T = TL − TR = 5, without a magnetic field.

We also study the behavior of the rectification with the
interaction between the sites αi. First, we investigate the ex-
istence of rectification without an external magnetic field,
hi = 0. We consider a system composed of 50 sites subjected
to a difference in temperature �T = TL − TR = 5.

Here we consider a system composed of two different
values of interactions

αi = α1, i ∈ [1, . . . , N/2],

αi = α2, i ∈ [N/2 + 1, . . . , N].
(67)

The result for the system in Eq. (67) is given by Fig. 3. As
we can see in Fig. 3, we have rectification in a system only
changing the interaction αi, i.e., the existence of an external
magnetic field is not essential for the occurrence of thermal
rectification.

Now we investigate the behavior with an external magnetic
field. We perform the same calculations with a constant ex-
ternal magnetic field, fixed at hi = 5. The result is presented
in Fig. 4. We see that the rectification is more sensitive to
changes in the external magnetic field compared to changes
in the interaction between neighbor sites. We can observe in
these rectification profiles that we have a reversal of recti-
fication, that is, there are values of hi and αi such that the

FIG. 4. Rectification profile for a junction of two interactions
(67). The system is composed of 50 sites and the difference in
temperature is given by �T = TL − TR = 5. The magnetic field is
fixed at hi = 5.

FIG. 5. Rectification profile for a linear graded external magnetic
field. The system is composed fo ten sites and the difference in
temperature is given by �T = 5, 10, and 15. The intersite interaction
is fixed at αi = 1. The external graded magnetic field is given by
hi ∝ ih.

rectification value changes sign. This phenomenon is dis-
cussed in Refs. [18,19].

Another common way to construct a thermal diode is the
use of graded materials. These materials are abundant in
nature and can be manufactured. Hence, we investigate the
behavior of thermal rectification in chains with graded struc-
ture, i.e., a system in which its internal parameters gradually
vary in space. For a graded external magnetic field, we have
the pattern for a system composed of ten sites as presented
in Fig. 5. The rectification profile for a graded intersite in-
teraction is depicted in Fig. 6. Now, if we make a graded
external magnetic field and graded intersite interaction, we
find the profile depicted in Fig. 7. In conclusion, we see that
the rectification is more significant if we make the temperature

FIG. 6. Rectification profile for a linear graded interaction. The
system is composed of ten sites and the difference in temperature is
given by �T = 5, 10, and 15. The external magnetic field is fixed at
hi = 5 and the intersite interaction is given by αi ∝ iα.
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FIG. 7. Rectification profile for a linear graded chain. The exter-
nal magnetic field and the intersite interaction are linear on δ, more
specifically, hi ∝ iδ and αi ∝ iδ. The system is composed of ten sites
and the difference in temperature is given by �T = 5, 10, and 15.

gradient more intense (Figs. 5 and 6). In Fig. 7 we see that a
graded structure changes the entire pattern of rectification as
well as its intensity, compared to Figs. 5 and 6.

VI. CONCLUSION

In the present paper, aiming to understand the mechanism
of thermal rectification in quantum systems, we investigated in
detail the heat current in the XX chain with nearest-neighbor

interactions and global dissipators, a simple quadratic spin
model. We showed the existence of thermal rectification even
for a simple case of a slightly asymmetrical chain. Interest-
ingly, we gave examples of rectification that remains finite as
the system length increases, i.e., it does not vanish in the limit
N → ∞.

In relation to the possible experimental realization of such
models, we recalled the possibility to engineer XXZ chains
with different configurations, i.e., with different values for
the coefficients σ x

j σ
x
j+1, σ

y
j σ

y
j+1, and σ z

j σ
z
j+1 [20,21]. We also

recalled the simulation of these Heisenberg models by means
of cold atoms in optical lattices [22] or trapped ions [23].
Experiments with Rydberg atoms in optical traps involving
these spin models were presented in Refs. [24–26].

A further comment is pertinent. For other types of dissi-
pators, e.g., for those local dissipators that target polarization
at the boundaries of the chain, the energy current is not only
heat as it is here, but it consists of heat and work (power).
Such a distinction is crucial for thermodynamic consistency.
A detailed discussion was presented in Refs. [14,27,28].

To conclude, the results presented here provide insight
into the problem of quantum thermal diode proposals: The
occurrence of a robust thermal rectification in this simple
model shows that rectification in quantum spin systems is a
ubiquitous phenomenon.
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