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In order to reveal mechanisms to control and manipulate spin currents, we perform a detailed investigation of
the dephasing effects in the open XX model with a Lindblad dynamics involving global dissipators and thermal
baths. Specifically, we consider dephasing noise modeled by current-preserving Lindblad dissipators acting on
graded versions of these spin systems, that is, systems in which the magnetic field and/or the spin interaction
are growing (decreasing) along the chain. In our analysis, we study the nonequilibrium steady state via the
covariance matrix using the Jordan-Wigner approach to compute the spin currents. We find that the interplay
between dephasing and graded systems gives rise to a nontrivial behavior: When we have homogeneous magnetic
field and graded interactions we have rectification enhancement mechanisms, and when we have fully graded
systems we can control the spin current in order to keep the direction of the particle and/or spin flow even with
inverted baths. We describe our result in detailed numerical analysis and we see that rectification in this simple
model indicates that the phenomenon may generally occur in quantum spin systems.
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I. INTRODUCTION

Transport in quantum devices has been receiving in-
creasing attention due to the possibility of building smaller
systems, which in turn has sharpened our understanding of
nonclassical effects on fluxes of energy or particles. The
comprehension of these behaviors, precisely, the derivation
of transport laws from the underlying microscopic dynamics,
is one of the fundamental issues of nonequilibrium statistical
physics.

The investigation of transport in low-dimensional systems
also deserves attention and raises interesting problems, in both
classical and quantum regimes [1–4].

An important and recurrently studied transport property is
the existence of rectification, namely, a preferential direction
for the flow. Many works are devoted to study what types of
interactions the system has to present to guarantee rectifica-
tion [5–9].

In the quantum regime, open spin quantum systems gov-
erned by Lindblad equations have been shown to present
rectification and other interesting behaviors with promising
applications for the manipulation of the energy and spin flow
[10–17,23]. To give an example, we recall studies involving
an Ising chain with thermal reservoirs attached to its ends:
For a junction with two spins and a longitudinal field, it has
been shown that perfect rectification occurs [18]. Considering
systems larger than two spins in the Ising chain, in Ref. [19],
conditions to keep the perfect rectification are presented. For
more complex systems, such as the XX chain, it is observed
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in Ref. [20] that the rectification factor does not tend to zero
at the thermodynamic limit.

In this context, an interesting problem is the effect of
dephasing noise in the quantum transport. In particular, the
problem considered in the present paper is of interest for the
effect of dephasing in the rectification property.

The role played by dephasing in transport has been inves-
tigated, mainly in boundary-driven systems. As an example,
we cite interesting results described in Refs. [21,22]: For
any nonzero dephasing strengths, free tight-binding models
typically become diffusive in the thermodynamic limit. In
Ref. [23], it is demonstrated that the interplay between de-
phasing and a particular type of on-site potential, namely
quasiperiodic potential, gives rise to an enhancement of trans-
port, increasing the system’s conductivity. In Ref. [24], a
detailed investigation of the heat flow on an XXZ chain is per-
formed when bulk dephasing takes place, both on the weakly
interacting and strongly interacting regimes.

It is important to recall that the XXZ chains are the pro-
totypes for open quantum spin systems. In particular, the
rectification phenomena has already been investigated in these
models. In Ref. [25], it is shown the absence of spin rec-
tification in the system with zero anisotropy parameter �

(coefficient of σ z
j σ

z
j+1) and for � �= 0, rectification is ob-

served. It is also well known that the XXZ model can be
mapped into another problem: bosons with creation and an-
nihilation operators, with quadratic terms and a quartic term
proportional to � (Tonks-Girardeau model). The vanishing of
rectification in the absence of the quartic term has an analogy
with the case of classical oscillators, where it is known that
there is no rectification in the absence of anharmonicity (or
other effect beyond pure harmonicity).
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Motivated by the vast transport properties of open quantum
systems and by the interesting effects of dephasing noise
on transport, in the present work we perform an analyti-
cal and numerical detailed investigation of the XX spin-1/2
model, subject to thermal baths and dephasing noise. Using
the global Lindblad master equations, we focus on a specific
type of asymmetric systems, the graded chains. We remark
that graded models have already demonstrated to be precise
systems for the occurrence of rectification [26–28]. In the
present paper, we show a very interesting and nontrivial effect:
The addition of dephasing (which, we recall, means a kind
of noise), in some cases, may increase the spin current and
also the spin rectification in these graded XX spin models.
Our research is, in some way, inspired by the occurrence of
considerable changes in the heat current for the classical chain
of oscillators due to the presence of noise. Precisely, a chain
of harmonic oscillators changes the behavior of the heat trans-
port from ballistic to difusive (obeying the Fourier law) as we
introduce self-consistent stochastic inner reservoirs; see, e.g.,
Ref. [9].

The rest of the paper is organized as follows. In Sec. II, we
introduce the model and some preliminary details about the
study of the nonequilibrium steady state (NESS). In Sec. III,
we describe the currents and some properties using the co-
variance matrix. In Sec. IV, we perform numerical results for
the spin rectification with dephasing. Section V is devoted to
concluding remarks.

II. MODEL AND PRELIMINARY DETAILS

Our model under study is the one-dimensional quantum
XX spin chain with N sites, described by the Hamiltonian

H =
N∑

j=1

h j

2
σ z

j + 1

2

N−1∑
j=1

α j
(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

)
, (1)

where σ i
j are the usual Pauli matrices, h j is the external mag-

netic field acting on site j, and α j is the exchange interaction
between spins j and j + 1. The rectification and the fluxes
present on the system will be directly associated with the
asymmetry of the coefficients hj and α j with respect to the
left-right reflection of the chain.

The system is coupled on the first and last sites to thermal
reservoirs, kept at temperatures TL and TR, respectively. The
thermal baths are modeled by an infinite number of bosonic
degrees of freedom given by the Hamiltonian

Hi
E =

∑
l

�i,l a
†
i,l ai,l , (2)

where ai,l are a set of independent bosonic operators and �i,l

are the corresponding frequencies, which we assume to take
on a quasicontinuum of values in the interval [0,∞). The
interaction with the first and last sites is assumed to take the
form

HL
I = σ x

1

∑
i

gi(a
†
L,i + aL,i ), HR

I = σ x
N

∑
i

gi(a
†
R,i + aR,i ).

(3)

In order to proceed with the study of the currents, we
recast the problem as a Lindblad master equation in the weak

coupling regime [29], where the time evolution of the system’s
density matrix ρ is given by

dρ

dt
= −i[H, ρ] + DL + DR, (4)

where DL and DR are the Lindblad dissipators associated to
the baths. It is possible to derive them from Eq. (3) using the
method of eigenoperators [29].

To obtain a better representation of the Hamiltonian, we
transform it in terms of σ+

l and σ−
l operators given by

σ+
l = 1

2

(
σ x

l + iσ y
l

)
, σ−

l = 1
2

(
σ x

l − iσ y
l

)
, (5)

and then the Hamiltonian in (1) becomes

H =
N∑

j=1

h j

2
(σ+

j σ−
j − 1/2) + 1

2

N−1∑
j=1

α j (σ
+
j σ−

j+1 + σ−
j σ+

j+1).

(6)
In order to study the dissipators in the Lindblad equation,

we must diagonalize H . To do this, we use a fermionic rep-
resentation through the Jordan-Wigner transformation [30,31]
given by

ηl = Qlσ
−
l , η

†
l = Qlσ

+
l , (7)

where Ql = ∏l−1
j=1(−σ z

j ).
Following this transformation, the Hamiltonian is given by

a quadratic form in the fermionic operators

H =
N∑

j=1

h jη
†
jη j +

N−1∑
j=1

α j (η
†
jη j+1 + η

†
j+1η j ) =

∑
n,m

Wn,mη†
nηm,

(8)

where Wn,m is a matrix with entries Wj, j = h j and Wj, j+1 =
Wj+1, j = α j .

It is possible to put H in diagonal form; that is, we first
diagonalize the matrix W . Since it is symmetric, it may be
diagonalized by an orthogonal transformation Sn,k (S†S = 1)
as

Wn,m =
N∑

k=1

εkSn,kSm,k . (9)

Here we define a new set of fermionic operators,

η̃ j =
N∑

k=1

S j,kηk, (10)

in terms of which Eq. (9) becomes

H =
N∑

k=1

εk η̃k
†η̃k. (11)

As derived in a previous work [20], the dissipators are
given in terms of this new set of fermionic operators:

DL(ρ)=
N∑

k=1

γ
(
S−1

1,k

)2
χL,k

{
[1 − fL,k]

[
η̃kρη̃k

† − 1

2
{η̃k

†η̃k, ρ}
]

+ fL,k

[
η̃k

†ρη̃k − 1

2
{η̃k η̃k

†, ρ}
]}

, (12)
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and for the site coupled to the right reservoir

DR(ρ) =
N∑

k=1

γ
(
S−1

N,k

)2
χR,k

{
[1 − fR,k]

×
[
η̃keiπNρeiπN η̃k

† − 1

2
{η̃k

†η̃k, ρ}
]

+ fR,k

[
η̃k

†eiπNρeiπN η̃k − 1

2
{η̃k η̃k

†, ρ}
]}

, (13)

where χk,L(R) is a temperature-dependent function, fk,L(R) is
the Fermi-Dirac distribution,

fL(R),k = 1

eεk /TL(R) + 1

χL(R),k = coth

( |εk|
2TL(R)

)
, (14)

and N is the total number of fermions:

N =
N∑

i=1

η̃
†
i η̃i.

The expression for the dissipators can be written in a more
elegant form given by

DL
k = Ak

L

[
η̃kρη̃

†
k − 1

2 {η̃†
k η̃, ρ}] + Bk

L

[
η̃

†
kρη̃k − 1

2 {η̃k η̃
†
k , ρ}],

DR
k = Ak

R

[
η̃keiπNρeiπN η̃

†
k − 1

2 {η̃†
k η̃, ρ}]

+ Bk
R

[
η̃

†
k eiπNρeiπN η̃k − 1

2 {η̃k η̃
†
k , ρ}],

where we define

Ak
L = γ (gLk )2χL,k (1 − fL,k ) Bk

L = γ (gLk )2χL,k fL,k,

Ak
R = γ (gRk )2χR,k (1 − fR,k ) Bk

L = γ (gRk )2χR,k fR,k . (15)

Our system is driven out of equilibrium by thermal reser-
voirs and every site is subjected to dephasing noise. The time
evolution of the density matrix is described via a Lindblad
master equation with the new dephasing dissipator

Ddeph
i (ρ) = �

2

(
σ z

i ρσ z
i − ρ

)
, (16)

where � is the dephasing strength.
In the presence of dephasing, the Lindblad equation is

given by the following representation,

d

dt
ρ = −i[H, ρ] +

∑
r=L,R

Dr (ρ) +
∑

i

Ddeph
i (ρ), (17)

where Dr (ρ) are the dissipators given by Eqs. (12) and (13).
In the literature, we have examples that demonstrate in-

teresting effects of the system in the presence of dephasing,
specifically the influence on current. As important examples
of systems subjected to dephasing noise, we cite Refs. [21,22],
which showed the change of the transport regime in the ter-
modinamic limit with any nonzero dephasing strength, and
Ref. [23], which show that the existence of quasiperiodic
potentials lead to an enhancement of transport, increasing the
system’s conductivity.

A. Nonequilibrium steady-state (NESS) equation for
the covariance matrix

The fermionic nature of the model allows us to focus on the
steady-state properties only on the system’s covariance matrix
defined as

Ci j = 〈η†
jηi〉, (18)

From Eq. (17), we can write the following time evolution
for the operator 〈η†

nηm〉:
d

dt
〈η†

nηm〉 = i〈[H, η†
nηm]〉 + Tr{η†

nηmDL}

+ Tr{η†
nηmDR} +

∑
i

Tr
{
η†

nηmDdeph
i

}
. (19)

Note that the covariance matrix in Eq. (18) is given in
terms of the fermionic operators η (η†) and the dissipators
in Eqs. (12) and (13) are given in terms of the new set of
fermionic operators η̃ (η̃†).

The time evolution for the covariance matrix is

d

dt
C = −[WC + CW †] + F − ��(C), (20)

where W and F are temperature-dependent matrices given by
W = iH + S−1MS:

M = 1
2 diag

(
AL

1 + AR
1 + BL

1 + BR
1 , ...

)
,

B = diag
(
BL

1 + BR
1 , BL

2 + BR
2 , ...

)
,

F = SBS−1.

In Eq. (20), �(C) is an operation that removes the diagonal
elements of a matrix:

�(C) = C − diag(C11,C22, . . . ,CNN ). (21)

In the NESS, dC/dt = 0, which give us the matrix equa-
tion

WC + CW † + ��(C) = F. (22)

Note that when � = 0, this reduces to a Lyapunov equa-
tion:

WC + CW † = F. (23)

Due to the nature of matrices M and B, we are able to solve
systems up to N = 100. When � �= 0, Eq. (21) is still linear in
C, but not in Lyapunov form, and the complexity of the matrix
remains the same (we need the eigenvalues and eigenvector of
H to solve the system).

III. TRANSPORT PROPERTIES WITH DEPHASING

The classification of the transport regime can be character-
ized, in general, as a power-law scaling with the system size

J ∝ 1

Nα
, (24)

where α � 0 is a transport coefficient. The transport is classi-
fied as ballistic, diffusive, and anomalous, which correspond
to α = 0, α = 1, and α > 1 or α < 1 respectively. In the
literature, we have many works devoted to study the behavior
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of the current in the presence of dephasing bulk in boundary-
driven systems. For a recent review, see Ref. [3].

In this context, our focus here is to go beyond boundary-
driven systems and study the behavior of the spin current in
the presence of dephasing and thermal baths to induce the
system out of the equilibrium.

A. Spin and particle current

Using Eq. (19), we can derive an expression for the particle
currents. In the fermionic representation, the temperature im-
balance between the two baths will lead to a flow of particles
along the chain. In the spin representation, this is mapped into
a flow of magnetization.

To evaluate the current of particles and magnetization, we
start with a conservation law for the time evolution of 〈N 〉,
where N is the total number of fermions:

N =
N∑

i=1

η̃
†
i η̃i.

Since [H,N ] = 0, it follows from Eq. (19) that

d

dt
〈N 〉 = d

dt
Tr{Nρ}

= Tr{NDL(ρ)} + Tr{NDR(ρ)} + Tr{NDdeph(ρ)}.
(25)

Note that the dephasing dissipator is given by the fermionic
operators, and then using the relation between η and η̃ (10),
we can compute the contribution of Tr{NDdeph

i }. Using some
properties of the fermionic operators, it is easy to show that
Tr{NDdeph

i } = 0, then the dephasing term does not affect the
continuity equation. Hence, in NESS we have

JN = Tr{NDL(ρ)} = −Tr{NDR(ρ)}
=

∑
k

γ gL,kχL,k[ fL,k − 〈η̃†
k η̃k〉]. (26)

Defining C̃i j = 〈η̃†
j η̃i〉 and using Eq. (10), we find

C̃i j = 〈η̃†
j η̃i〉 =

∑
kl

SikCkl S
−1
l j = (SCS−1)i j, (27)

and then the covariance matrix in the momemtum representa-
tion is given by C̃ = SCS−1, where S is given in terms of the
eigenvectors of H . With this result, we can write the particle
current as

JN =
∑

k

γ gL,kχL,k[ fL,k − C̃k,k]. (28)

This expression is more general and we can use it even
when including the dephasing perturbation in Eq. (22).

IV. NUMERICAL ANALYSIS

A. Spin current in homogeneous chain

To better understand the interplay between dephasing and
the structure of the Hamiltonian, we study the behavior of a
homogenous chain subject to dephasing noise. The Hamilto-
nian is described by the following interactions:

Wii = 2, Wi+1,i = Wi,i+1 = 1; (29)

FIG. 1. Spin current as a function of the dephasing strength � for
different values of N . The temperature gradient is fixed at �T = 45
(TL > TR). We see that the forward current has a small enhancement
(less than 1%) even in strong dephasing rate.

that is, we have a homogeneous magnetic field hi = 2 and
homogeneous interactions αi = 1. The spin current is depicted
in Fig. 1.

When dephasing is present, we have a small enhance-
ment of current (less than 1%) and the ballistic behavior is
preserved. As we will see in the next section, the interplay
between the graded structure of the Hamiltonian and the de-
phasing strength raises nontrivial phenomena. Note that this
increase of less than 1% is not dependent on N being even or
odd.

B. Dephasing enhanced rectification

Now we consider the first case of our numerical analysis.
The Hamiltonian is graded and described by

hi = 1, αi = N −
(

i − 1

N − 1

)
N + 1; (30)

that is, the magnetic field is homogeneous and the spin inter-
action is decreasing linearly from site 1 to N . We can write

H =
∑
n,m

Wn,mη†
nηm, (31)

with Wn,m given by entries Wj, j = 1 and Wj, j+1 = Wj+1, j =
α j .

For the system to present the rectification phenomenon,
it is essential that it presents asymmetry in the interaction
between the spins. As soon as we invert the thermal baths,
we see different flows. As we discussed in the introduction, it
is possible to build devices where we can efficiently handle
the magnitude of the current. Specifically, if the left-right
symmetry is broken, the magnitude of the spin current, which
is given by J (�T ) and induced by a positive bias, may be
different with respect to the magnitude of J (−�T ). We define
the rectification factor R as

R = J (�T ) + J (−�T )

J (�T ) − J (−�T )
, (32)

for �T > 0 we have J (�T ) > 0 [then J (−�T ) < 0]. This
definition is important to see the efficiency of rectification.
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FIG. 2. Spin current for different values of dephasing. The tem-
perature gradient is fixed at �T = 95 (TL > TR ) and hi = 1. We see
that the forward current is enhanced and the backward current is
erased when we increase the dephasing rate.

R = 0 means that no rectification takes place [J (�T ) =
J (−�T )], while |R| = 1 means that we have perfect rectifi-
cation (i.e., the current is finite in one direction and null in the
other). Other values of R, positive (negative) indicate that the
flow is greater for positive (negative) temperature biases. We
use the size of the chain following a Fibonacci sequence.

According to Eq. (28), we find the pattern for the spin
current shown in Fig. 2.

We see that when dephasing is present the forward current
is enhanced (top figure) and the backward current (�T < 0))
is suppressed (bottom figure) for values of dephasing in 0 <

� < 1 (Fig. 2) and approaches the curve � = 1 for values
of dephasing � > 10 (Fig. 4). Then we get a rectification
enhanced phenomenon, depicted in Figs. 3 and 5. We also
see that in a limiting case where we have intense dephasing
rate, the rectification factor converges to finite values. The
decreasing of the rectification factor when N becomes very
large is a well-known behavior for systems subject to first
neighbor interactions. Even in classical systems of oscillators
we have this behavior, but for long-range interactions the
rectification factor does not vanish and this phenomenon is
due to the new ways of the energy transport which appear and
favor the current.

In order to understand the behavior of rectification at large
dephasing rate, we plot the same previous figures to compare
with this scenario in Fig. 4.

FIG. 3. Rectification pattern of a graded chain described by
Eq. (30) for different values of dephasing. The temperature gradient
is set at �T = 95 (TL > TR) and hi = 1. When we let the dephasing
rate assume more intense values, the rectification is enhanced.

Note that in the presence of dephasing, the rectification
factor is not monotonic with N . We also study the behavior
of currents in the presence of strong magnetic field, that is,

hi = 8, αi = N −
(

i − 1

N − 1

)
N, (33)

FIG. 4. Spin current for different values of strong dephasing rate.
The temperature gradient is fixed at �T = 95 (TL > TR ) and hi = 1.
We see that the forward current is enhanced and the backward current
is erased for dephasing rate less than � < 10 and approaches curve
of � = 0 when we increase the dephasing rate above 10.
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FIG. 5. Rectification pattern of a graded chain described by
Eq. (30) for different values of dephasing. The temperature gradient
is set at �T = 95 (TL > TR) and hi = 1. When we let the dephasing
rate assume more intense values, the rectification is enhanced and for
values of dephasing around 10 we have the most intense rectification.

and again we find that, when dephasing is present, the forward
current is enhanced and the backward current (�T < 0) is
erased (Figs. 6 and 7). Then we get a rectification enhanced
phenomenom assuming a value closer to one when the mag-
netic field is stronger (Fig. 8).

Now we investigate the regime of strong magnetic field and
also strong dephasing rate. We plot this in Figs. 9–12. Note
that for very intense dephasing, the forward current becomes
more intense for values of dephasing greater than � > 10 and
N > 50 (Fig. 9). We see that the existence of the enhancement
of the spin rectification does not depend on the strength of the
magnetic field. We also observe that we have a saturation of
the rectification factor for intense dephasing rate (Fig. 11).

We see that the oscillation behavior dependent on N comes
from the graded structure of the system and the small size
of N . Also, we believe that this behavior vanishes for larger
systems.

It is worth recalling that to compute the heat current and
also the spin current we must diagonalize and keep the eigen-

FIG. 6. Forward spin current for different values of dephasing
with intense magnetic field. The temperature gradient is fixed at
�T = 95 (TL > TR) and the magnetic field is fixed in hi = 8. Again
we see that the forward current is enhanced when we grow the
dephasing rate.

FIG. 7. Backward spin current for different values of dephasing
with intense magnetic field (hi = 8). The temperature gradient is
fixed at �T = −95 (TR > TL). Again we see that the backward
current is essentially erased when we grow the dephasing rate in the
region 0 < � � 1.

FIG. 8. Rectification pattern of a graded chain described by
Eq. (33) for different values of dephasing. The temperature gradient
is set at �T = 95 (TL > TR). We let the dephasing rate assume values
in 0 < � < 1 for strong magnetic field (hi = 8).

FIG. 9. Forward spin current for different values of dephasing
with intense magnetic field. The temperature gradient is fixed at
�T = 95 (TL > TR) and the magnetic field is fixed at hi = 8. Again
we see that the forward current is enhanced when we increase he
dephasing rate, and it essentially saturates for � > 10.
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FIG. 10. Backward spin current for different values of dephas-
ing with intense magnetic field (hi = 8). The temperature gradient
is fixed at �T = −95 (TR > TL). Again we see that the backward
current is erased when we grow the dephasing rate in the region
� > 10.

decomposition to perform further calculations, and thus the
use of the memory grows when we grow the size of the chain.
Here we show even in a regime of strong dephasing rate, we
have an enhancement of the rectification of the spin current
and also we have the finite value for the rectification factor
(Figs. 1–11). Note that for N around 55 and for dephasing
rate (�) around 10 we have the most significant changes in
the data that we presented. Especially in Figs. 5 and 9 we see
that there is a maximum near � = 10. This behavior is very
interesting and may be due to the size of the chain following
a Fibonacci sequence and also the asymmetries caused by the
presence of dephasing in the transport phenomena.

C. One-way street of spin current

Now we focus on a fully graded system given by

hi = 1 +
(

i − 1

N − 1

)
N, αi = N −

(
i − 1

N − 1

)
N, (34)

that is, the Hamiltonian is composed by a graded mag-
netic field growing linearly from site 1 to N , and with spin

FIG. 11. Rectification pattern of a graded chain described by
Eq. (33) for different values of dephasing. The temperature gradient
is set at �T = 95 (TL > TR) and hi = 8.

FIG. 12. Spin current for zero dephasing and strong dephasing
rate. The temperature gradient is set at �T = 95 (TL > TR). The
one way phenomenon (bottom figure) occurs depending on N , �T ,
and �.

interaction decreasing linearly from site 1 to N . In this situ-
ation, we introduce more asymmetry in the system, and then
the interplay between the Hamiltonian and the dephasing term
becomes more complex to analyze; that is, with a graded
system the coherences are affected.

Using the expression for the spin current in Eq. (28) we find
the pattern depicted in Fig. 7. We see that when dephasing is
present, the inverse spin current (when the temperature gra-
dient is inverted) assumes a positive value. This phenomenon
is dependent on three parameters: the size of the chain (N),
the intensity of the dephasing rate (�), and the temperature
gradient (�T ).

It is interesting to mention that the one-way phenomenon
is due to the symmetry in the expression of the current in the
Lindblad equation [32] and it has already been observed in
other systems. As an example, we cite the one-way street phe-
nomenon for the energy current in the XXZ model submitted
to spin reservoirs at the ends [11]. Here we showed that we
have a one-way street also for the spin current in the presence
of dephasing noise.

V. FINAL REMARKS

In the present paper, to understand effective mechanisms
to manipulate and control currents in quantum systems, we
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investigate in detail the spin current in the XX chain sub-
ject to graded and nearest neighbor interactions and global
dissipators. We derived fully analytical expressions for the
computation of heat and spin current. Due the graded struc-
ture, the analytical investigation becomes very hard. We recall
that the graded structure is necessary to study the phenomenon
presented in the paper. For small asymmetry, but not graded,
we showed in a previous fully analytical work the existence
of thermal rectification on the XX chain, without dephasing
[20].

When the system is subject to dephasing noise, we show
the existence of nontrivial behavior of spin current; that is,
we show the existence of rectification enhancement mech-
anisms and how it is possible to control the spin current
through internal parameters of the microscopic evolution that
the system is subjected to (�T , N , and �). We also observe
that it is possible to obtain perfect rectification using graded
materials and specific choice of parameters (see Fig. 7). Here,
we use thermal baths to induce particle and spin transport,
but in a future version we aim to study the behavior of this
phenomenon with spin baths and compare it with the thermal
baths.

It is also worth recalling that the XX chain has already been
shown to be an effective system to obtain rectification [20]. It
is interesting to comment that these microscopic systems can
be performed experimentally; as an example, we can cite a

more complex system, the XXZ chain, with different values
for the coefficients of σ x

j σ
x
j+1, σ

y
j σ

y
j+1, and σ z

j σ
z
j+1 [33,34].

Another relevant comment is that the Heisenberg model
can be experimentally simulated (implemented). As an ex-
ample, we mention the study of energy transport by means
of cold atoms in optical lattices [35] or trapped ions [36].
Experiments with Rydberg atoms in optical traps involving
these spin models are presented in Refs. [37–39].

We reinforce here that for the models that we investigated,
the phenomenon presented is difficult to confirm for other
graded type of interactions, for example, graded interaction
with exponential growth. We also recall that for a classical
chain of anharmonic oscillators the rectification factor grows
in situations where we have the increasing of the interaction
and also in situations with decreasing of the interaction, as
presented in Refs. [40].

To conclude, we believe these results aid in the under-
standing of dephasing effects in the currents of spin chains,
and these results will be certainly useful in the problem of
manipulation of the currents. Moreover, we believe that the
occurrence of rectification in this simple model indicates a
ubiquitous phenomenon in spin systems.
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